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Abstract: Neural populations encode sensory information, memory rmotbr patterns through electro-chemical firings, which
propagate throughout the nervous system via synapsesuausé that couples neurons together. A powerful tool testigate
synchronization issues in such systems are the PhaseiRgsettves. However these are best suited for brief and gpedilirbations.
Motivated by the observation of strong inhibition in someura circuits, we investigate a resetting model with simfatures to a
known neural population callestriatum in which three groups of neurons inhibit themselves. Thelehds intrinsically based on
Kuramoto oscillators, and is analytically treatable. Weivdea synchronization threshold in this model, and show enically an
unexpected complex dynamics.
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This paper is dedicated to the memory of Professormethods have been proposed to deal with such often
Jose Sousa-Ramos. complex systems, and the main toolkit are the Phase
Resetting curves (PRCs)4,15], which assess how the
trajectory of a system deviates when an external
1 Introduction perturbation is prompted. With this technique, it is
possible to derive informative dynamical variables, such
The key mechanism underneath several complex@s the Lyapunov exponent, and then understand
phenomena and behaviors in biological systems is in théynchronization and phase-locking effects},p]. This
dynamics of well coordinated coupled units%,3]. In technique has been extensively applied to neuroscience
special, large interacting populations of neurons canl16], especially to experimental setupk7[18,19,20,21]
generate complex motor patternsg] and behaviorsg,  and medical application2p,23,24,25,26,27,28|
6] that drive life. On the mainstream there are the Central Nevertheless a primary assumption in such
Pattern Generators, representing core circuits, often wit formalisms is that the perturbation is brief and weak, as a
intricate information flow despite a relatively small very short and small amplitude pulse. Once it is
number of neurons7], responsible for the maintenance of established that this is the case, a lot of information can
vital functions such as circulatory rhythn 9]. be derived from the PRCs itself using differential calculus
These systems have been successfully studied using§]. Specifically, regardless of the phase in which a
interdisciplinary techniques led by biology, physics and perturbation is presented the oscillator will always stay
dynamical systems. They are usually described by avery close to the original limit cycle. Such systems are
group of interacting (non-linear) oscillatorsl(11], thus classified as type 2|
trapped in limit cycles with huge basins of attraction, This may be the case in several systems, but if the
resulting in robust closed trajectories that encodeinteraction between the oscillators does not fit into this
important patterns 12,13,6]. Powerful and elegant class, then it is harder to properly estimate the PRCs,
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which hinders further developmen29,14]. Depending system of differential equations

on the system this may manifest drastically on the PRCs, )

for instance, in form of discontinuities. This defines a @) = — FFH), (1)
second class of PRCs, the type 0.

Even with a PRC properly estimated, further
analytical results on strong perturbations may not hold as — ¢(t) is a real-valued function to account for more
infinitesimal arguments are not valid anymore. Not than one complete turn in either direction. To locate a
surprisingly, in real systems interactions may be strong phase on the unit circle, we talkg (t) mod 2 in the

t > 0, where

[30,18,31,32,33,34,35,1355]. To fill this gap, we interval [0, 271), unless otherwise stated,;

propose a simple model for synchronization in an -y > 0is thenatural frequencyf oscillatork € %;

inhibitory circuit, in which the interaction is short butino ~ — & > 0 is thecoupling strengthwhich is the same for

weak. As its elements are based on Kuramoto oscillators all oscillators; and

[36,37], it has the virtue of being analytically tractable =~ —F"~1(t) is theinteraction termwhich, as indicated by

and can be universally applieg@]. the notation, depends on the oscillators4f ;. Its
The connections are displayed in mutually inhibiting ~ precise expression will be given below. Let us only

groups, as in thestriatum a subcortical region of the mention at this point that & F"}(t) < N for anyn

forebrain [B9,40]. Although we do not intend to andt.

thoroughly study the striatum here, it is a central struetur . L .
for generating time patterns and control complex motor. Henceforth we stick to notation inl), i.e., lower

sehaviors 41,4243, Mallncton of the stiau may  NOCSSK, |, (0sshly sceompenies by albr over
result in Parkinson’s desease, Huntington’s disease, and P ging group

other movement disorders usually linked  to Indicated by the upper index(n— 1, ...). Note that the

synchronization issues44,45,46]. Very recent models 'nteé?ﬁggréielr:rﬂ_'fé?issrpoer2,: ﬂlgﬁggll?ﬁéﬁ inagroup.
have dwelled with the mechanisms underlying - = y '

endogenously firing patterns which sequentially switch N o< EEML() < o 2
cell assemblies39] and how such systems are capable of hES TN 1) = @, 2)
timing control |7]. that is .

In this paper we use the striatum connectivity as a W —e< @) <o ©)

benchmark while developing a framework intended to

predict synchronization of strongly coupled populations Integration of ¢) between 0 and> 0 yields

of neurons. We show that some simple initial 0 0 e [t 1
configurations undergo a phase transition from an %(t):%(o)+%t—n/odTF (7). 4)
unordered phase (non-synchronized oscillators) to an '

ordered phase (fully synchronized oscillators) at a @itic According to @),

value of the coupling constant. This core result will be
illustrated with numerical simulations using a similar
model, closer to the dynamics of neuron cells, implying
the possibility of new investigations and efforts targeted
at rigorous results with strong inhibition. We suppose for the time being that (ii) is the case.

This paper is organized as follows. We first define the ~ Thus, lete > o, ¢(0) > 0, andty, be the first time
model in Sectior2 and in Sectior8 we note details of the  thatg(t) mod 2treaches the value 0 with negative speed:
numerical simulations. In sectiodsand5 we exploit the )
model and simulations to understand conditions under @ (tg1) mod 2T=0, ¢f'(t;) <O. (5)
which synchronized states are possible. At the end, we ) ) )
find a necessary condition for full synchronization to take L&t NOWtg, >t be the earliest timetf, =  otherwise)
part in the dynamics. We finally conclude our findings in such that the speegl reverses sign (from a negative to a

()if &€ < wy then @ (t) will grow forever (i.e., circle in
positive direction), while
(iNif &€ > wy theng?(t) may become negative.

Section?. positive speed), i.e.,
A (t2) =0, @ (tl,) >0, (6)
2 The mathematical model whereg(t) = — §F"1(t) according to {).

In our model, the observable quantities (or the
. ) guantities with a possibly biological meaning) are not
The model consists of 3 grougé of N phase oscillators  going to be the phases themselves but theiivity dP(t),
@) (n= 123, k=1.,N) having an inhibitory  defined by
coupling with all oscillators in the “previous” group,

where we understand that the three groups are cyclically OOt — @'(t) mod 2if t € [0,t)] 7
ordered. These phases evolve in time according to the k(1) = 0 iftelty, t0] Q)
(@© 2015 NSP
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Note that
@7(0) = ¢'(0) mod 2.

We say that the phase oscillatoe ¢, has been reset (to
0) at timety; to describe the fact that its activitg(t)
vanishes in the time intervétf ;. t,]. We anticipate thak
(its activity proper) will be “reactivated” at t|m§'2

If t, < oo, this procedure can be repeated. The final
result is a finite sequence of ordered times

0<tly <t <. <tg .. (8)
or an infinite one,
0 <ty <ty <. <ty <tgprig <. 9)

(Smax = ), WheretQZrJrl, r > 0, are theeset timesi.e.,

@ (02 1) mod 21=0, (10 1) <0,  (10)
andty, , r > 1, are theeactivation timesi.e.,
@(tQZr) =0, Qﬁ?(tQZr) > 0. (11)

Formally we can sety, = 0. Note thatty, = O if
@(0) mod 2T = 0 and @7 (0) < 0. We come back to
oscillators with zero initial phase below.

The definition of the activity®(t) in the intervals
te o tear 2] With r > 1 is formally the same as before.
Specifically,

@ (t) mod 2
oft)=4{9 (12)
(@(t) — g(tf5)) mod 2
if
if t € [0,t]
if ety 1ty forr=1,2., fmapl
Smax—2

ift € [t tep gl forr=212.,

respectively. Ifspax < o, thent{(‘Sm',;IX .1 = . As stated

above, the activity function or ‘actual’ phasg(t) is the
observable quantity, the phase(t) acting as a

oscillator is inactive. Ith = 0then (@2 holds also true if
we dispense with the first “interval0,t,] = {0}.

The geometrical meaning of the reset and reactivation
times is the following. At = t,  , the curvet — ¢@(t)
on the Cartesian plané,@) crosses a level line axis
@ = 2nv (v € Z) with a negative slope, while at
t =t5 ., it has local minima. The resulting activity
curve t — @/(t) vanishes in the inactivity periods,
teor 1.2, @nd itis a translate off!(t) mod 2t in the
activity periods, [t¢,,td5 4] Reset and reactivation
times alternate: an oscillator can only be reset if active,
and it can only be reactivated if inactive.

For the interaction tern"(t) we use hereafter the

ansatz
N

(t) = z Xizr-a,2m (PL(1)), (13)
K=1

where X(2r—a 2 IS theindicator functionof the interval

[2m—A,2m),0< A < 27, i.e.

0if @ ¢ [2m—A,2m
Xon-a.2m(P) = {1 o {27‘[ A 2n§
ThereforeF"(t) counts the number of oscillatokse ¢,
suchthat Zr— A < @P(t) < 2.

From a mathematical point of viewF"(t) is a
piecewise constant function. Therefore, its derivative is
actually a generalized function. Nonetheless, we will
consider below only the case of a continuous distribution
of oscillators so a$"(t) will be a continuous function.
This being the case, we assume henceforth figt) is
differentiable except possibly at a finite set of points. As a
result, the auxiliary phaseg)(t) are continuous and
piecewise differentiable functions, while the actual @sas
@J(t) are, in general, only piecewise continuous and
differentiable.

For further reference we prove the following result.

Proposition 1. A necessary and sufficient condition for
@t 5) > @5, 2). T >0, to hold is

n
tori2

tdF”’l(t)E/k%th” Lt)dt<0.  (14)
tn

n
tl<32r k,2r

Proof. From (see11) and (1))

mathematical scaffolding. The reason why we need to

deal with both phases is thgf'(t) is the solution of the D) — 0 o o = SE-Ln
time evolution law ), while @/ (t) results fromg (t) via % (tzr) %N (tar).
ad hoc decision rules (reset and reactivation) on tthe obtain (seed))

values ofg(t), see {2).

We can summarize the above discussion by sayin
that the phase oscillatére %, is reset at timet,,_, and
reactivated at timeﬁ‘ﬂ, although it is properly its activity

Sometimes we also say that the oscillator is ‘active’ if
DL(t) #0 (ie., ift € (tgy, 15 1)), then otherwisaby(t)

is constantly equal to 0. In the latter case we say that the= #(0)

LA

@7 which is reset and reactivated at those times. _

k2r
0) + ity 5 — N/ Lt)dt

€ - k r
RO+ 5 (F“ ot [ >dt)

tn
+5/k‘2'tdF“—1(t).
N Jo
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Therefore, If not stated otherwisel = 3 x 10°, wj(m =wh =
@0)— @ (thy) = @ (tl) — Q) 1Vj,n, T = 10° and the initial condition for all oscillators
' " ' was drawn from a uniform distribution over the interval
_ & [y FP1(t), [0, 2m). Finally, A will be set so that the oscillator is active
N Jo only during 10% of the whole interval, i.ed, = 0.1 x 21T.
and
n/en n/en 3 t;?,zr+2 n—1
B (o) — A (beari2) = —y . tdF" (1), 4 Study case l: <
forr > 1, which proves the propositionl In this case, see], all oscillators circle counterclockwise

. . . with variable or constant angular speed, hence their phases
The main scope of this paper is to study the 5a not reset. By4)

possibility of synchronization in the above model. We say

that two oscillatorg,k € ¢, are synchronized (or activity () — @"(t) = @(0) — @™(0) + (! — cwMt,
synchronized) if there is a tim& such that®j(t) = %) =) = @0~ g0+ ()

@(t) for all t > to. In the remaining sections we are This shows that phase synchronization is not possible.

going to study the possibility of full synchronization,.j.e By way of illustration, suppose that
that all oscillators in a group are synchronized from a
given finite time on. Owing to the complexity of the W =",

model, a theoretical analysis of this question will require ] ]
some simplifying hypotheses. Further recourse to thefor all k€ %, i.e. all oscillators of Group have the same
auxiliary phasegy(t) will be still needed to keep track of natural frequency. Then all phases wind around the unit

the activitiesdp (t). circle with a constant relative phase difference:
@(t) — ¢'(t) = @(0) — ¢'(0) = const  (16)
3 Numerical results in a similar model Any distribution of initial phases rotates around the @ircl
network as a rigid ring. We say that the phases are locked. In
particular, the uniform distributiorp"(0, @) = %T is also

This study is motivated by the observations of stronglystationary, i.e.p"(t,) = - fort > 0.
coupled phase oscillators present in biological systems,

mostly in neurosciencelf,3,15]. Thus, we also show

results from simulations of a slightly different model that 5 Study case Il: € > 0-1'2
represents pulse oscillators close to neurons coupled

through  inhibitory ~ synapses, complementing the To illustrate the dynamics of this supposedly simple model
mathematical ~formulation. The connections areand to gain some insight, we first show in Figutesnd?2
instantaneous. The only difference relies on the functionathe time evolution of some phases in each group run. We
form (13): instead of the activity®d!", we use the phase assume thatf! = w" for 1 <n< 3 and alk, andp (0, ) =

itself — explicitly defined below. We show that, in this N Therefore, 16) holds also true in this case, i.e., the
scenario, our mathematical conclusions still hold and thisg et s @(t) is a vertical translate of the cunte—
motivates new efforts targeted at new rigorous results(pp(t) on the(t, ¢) plane for allk, j within each group (see
wnfwtrﬁng |nh|b|t||o:1.d th wallv inhibit f Figurel). Consequently, all oscillatofse ¥, are initially
h N av_ﬁz stlmu a ﬁ r_ef mu tqa 3{'” Ibtory groups o activity-locked and will become patrtially synchronized as
phase oscillators, whose interaction term 1S some of them become reset and jointly reactivated.
N Furthermore, note that a complete oscillation af 2
FN(t) = Z X[Zn—AZn)(‘pjn(t))a (15) rad in positive Qir_ection doeg not change the activity qf
=1 the phases, while it synchronizes the activity of them all if
) ] _in negative direction; from then on the whole group
which means that whenever the phase of an oscillator liefemains synchronized. This being the case, we may
on the interval2m— A, 2m), it is inhibiting the following  restrict our attention to oscillations whose angle range is

group of oscillators. This is very common in excitable not greater than 2 rad. Specifically we assume hereafter
models, in which there are (at least) an excited state and hat there is an angle = a,

resting state. The differential equatiorl) (is then

integrated during a time windoWw large enough so that A <a<2m, a7)
the equilibrium is achieved. Also, the phases are restticte

to the intervall0, 2). To assess synchronization, we have such that

used the usual Kuramoto order parame8at.| —a < (g%(t) <2m—a (18)

(@© 2015 NSP
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J/ ' Group 3 way that 21— o is its maximal amplitude in positive
_,./ (counterclockwise) direction, and-a is its maximal
[ amplitude in negative (clockwise) direction. We say then
| /i ’ that the phases of Groum are performing small

oscillations?.
/M | /////// formal description of the activity synchronization.
f / / // 5.1 Synchronization separatrices

It is possible that some oscillators synchronize for
small values ofe, but the system as a whole may not
20 40 60 80 100 120 140
Time

synchronize. In this section, the phase oscillators with
zero initial phases will play an important role in the

Phases

O W OO0 W oo wWw o

Let
Fig. 1: H how the ti lution of t llat 0=t <lo2 < - <losm,

ig. 1: Here we show the time evolution of two oscillators per - P
group withe = 8. Each curve is a randomly chosen oscillator nax > 2, be the finite '130 ax < ) nor infinite
within a same group, as labeled in the top right of each giagh.  (k.snax = ®) S€Quence of reset times ;) and
can not only see the phase synchronization after some ¢reinsi reactivation timestf ,) of the oscillatorky € %, with
time, but also clearly see that Equatidt6) holds also true in initial phaseqqz](o) — 0. We call the curveﬂzJ (t) the Gh
this case: the curve— ¢(t) is a vertical translate of the curve  geparatrix of synchronization
t— ¢ N(t) on the(t, ) plane for alk, j within each group. Not all By (16), if
oscnlators may synchronize for every valuesahough, and this
is expected as for low values efthe system itself is basically qq?l(o) = _qq%(tgo 2)s
uncoupled. ’

(as real-valued function), thegf, (t¢ ,) = 0 in virtue of

Y S T T P 9 (1) = g (0 + @ (0)
3 ! (see (6)). We call (,q?l(t) the first separatrix of
ol synchronizationAll oscillators with initial phases
: Grou| .
6 e 9(0) € [0.¢50)] = [0.|d (16, 2)||
3 4
BMMI}IL will be reset in the time intervalty ,;.t¢ ,) and hence
0 ; - altogether will be reactivated at timg and remain
@ 6 Group 1 activity synchronized withq?l(t) fort > tI?O,Z' Therefore,
83} ] by time t = tf, , there are at leas{; ¢ (0) oscillators
o, synchronized.
' ' ' : ' ' ' The construction of separatrices can be iteratively
0 100 200 300 400 500 600 continued —there is one for each reactivation time. Thus,
Time the rth separatrix of synchronizationorresponds to the

. N . phase trajectory of the oscillatky,
Fig. 2: Same as in Figurel, setting € = 10. We see

several complex behaviors throughout the time evolutidasp @2 (t) = qq%(t) + qqg (0) (19)
locking, overlapping of phases, intermittency and, finally
synchronization. At the end, we will see that in fact= (see (6)) such that
10 will play an important hole as the transition point to full )
synchronization. @ (e, 2)=0,ie, g (0)=—ge(t o)

By definition,

n n RPN o e |

for all t > 0, whereky € 4, is (without restriction) the By (be_12) <O=c (b, 2);
oscillator with initial phaseg (0) = 0. The paramete and thus,
is the same that appears in the expressiofr't), Eq. qqgil(t) < gqg(t) forallt >0 (20)

(13). Therefore, we are assuming thHat may take both
positive and negative phases and it oscillates in such a? Inthe simulations we use, = 0 for n = 1,2, 3 though.

(@© 2015 NSP
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because they are solutions of the same differentiawill be reset in the time intervdlr,ty, 1) and reactivated

equation. Furthermore,

t 2 = tig.2(r+1) (21)
aslongas @& + 1) < |smax/2], but the above construction
of therth separatrices can be done evesyifx = 2.

Likewise as before, it follows that all oscillators such
that

@07 0) = || o).t ,2))

(22)
will be reset for the first timein the time interval
te 1.t ,2)- Note that the interval2?) is non-empty
because ofZ0). We conclude that all oscillatots € ¢,
with

@(0) €

At 2)|) @3
will be reset in the periodt .t  ,) and hence
altogether will be reactivated at timeg , and
synchronized withg (t).

The activity synchronization in the whole period
[ty _, 2.t o] for oscillators of 4, with initial positive
phase is the following:

@& ®)| if g(0) € |0,¢;(0)
+

A =1 [, i a0 < g 0.4, 0) @
@) otherwise

whereg (t) is given by (9).

40 € [0.¢,(0) = [0,

at timety, o, providedt, 1 > 0. If t, 1 = 0 thengf (1) =
B (O)-

Separatrices of order-r, ¢f (t), are defined as
follows:

By (T7) =0, 18,0 (0) = —g (1) <O,

see (9. As in the case of separatrices of positive order,
we conclude that all oscillatokse 4, such that

n H n
%(0) € (OTi'Qr B iy (0>,0] = (— haxX o (T LO]

(27)
will be reset in the time intervdl,t 1), and reactivated
at time t, ». Here we have to take the minimum
minogigrqqul)(O) because, contrarily to 20Q), the
separatrices (kl(t),...,(ngml) (t) need not be
monotonically ordered. From then on, the pha233 ére

synchronized withg,, , (t).

Proposition 2. A necessary and sufficient condition for
@l0) < g(1g) (f 1§ > 0), and g(17") < @(17,1),

r >0,to hold is

o
/ “tE"1(t)dt > 0 28)
0

and
T .
/ HEI()dt > 0
T

n
r

(29)

respectively.

Till now we have considered only separatrices in the proof. For a given oscillatok € %,

positive direction from the Oth separatrix. To introduce

negative separatrices, calf the reversal timeof ¢ (t)
immediately before the reset tim@ ;, r > 1. If t{jo ;=0

(i.e., ¢ (0) < 0), then setf = 0. Thus,

@ (T =0,¢} (1" <0, (25)

where 0< 1g <tj, andty  , <7 <tg,forr>1. Atthe
reversal times the functiong'(t) have local maxima.

Consider now oscillators with negative initial phase.
Similarly to what we did above, if

@&, (0) = —4(10); (26)

thengy | (15) = 0. We call

@&, O =de® -+, (0)

the separatrix of order-1. It follows that all oscillators
k € ¢4, with

90 € (@,(0).0] = (~o(T5).0]

@ (1) =0,

since the solution flow of1) has local maxima at all
separatrix reversal times. Replace thefi(ty, ) by

@ (17") in the proof of Proposition 1 to obtai29). O

Insum, if forn=1,2,3,
(A, 0), @, (0] U (¢, (0),
[0, (0)) Ui (0),

or, equivalently,

= (—0an,2m—ay),

where some intervals with negative separatrices might be
repeated, then all oscillators end up activity synchrahize

(@© 2015 NSP
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5.2 Evolution equations for small oscillations

Remember that all phases in a group move under the same

force, and we are assuming a uniform initial distribution
of the initial phases"(0, @) = N/2.

(i) A necessary and sufficient condition for the
synchronization of the oscillators k ¥, with

@ 0) € (—(p(rr”h),o] C [—an,0] is the existence of a
subsequence of separatrix reversal tinggs 17, ...,
Tr“h, h> 1, such that

Consider the geometrical representation of a phase

oscillator@"(t) as a point on the unit circle. "(0) =0

then its time evolution corresponds to the Oth separatrix of

synchronization of the grouf,. In the notation of the
previous sectiong”(t) = ¢f (t); quantities likeg" and

t"without the subscriptk refer hereafter to the Oth
separatrixk = kg, of 4,. In a typical oscillation, the phase

¢"(t) changes from negative to positive speed at the first

reactivation timet}. It starts then moving in the positive
direction till it stops at the first reversal tinte= 11 and

T'nl n—1
/ tE"1(t)dt > 0
0

bounces back in the negative direction, and stops again at

t =1y, 2 before reversing direction once more, and so on.

According to 3) and @7), whetherg"(0) < 0 (in
which case 0= 1 = t{, ¢(1{) = 0) or ¢"(0) > 0 (in
which case < 17 < t7, @(13) > 0), all oscillatorsk € ¢,
such that

O (i, 0.60,0) -

(— max g, (1), |<p"<t£,,z>\) (30)

n

%

o<i<r

will be synchronized att = tp , with @, (t), their
common activity being

Bu(t) = @1 (1) = @) + 6,4 (0)

fort € [t 5.t¢ | 4]- Thus, full synchronization is possible
via the combination of two mechanisms:

and, ifh > 2,
/T :rr;“tli”*l(t)dt >0 (33)
fori=1,....h—1.
Proof. (i) Fort = tl?ri 2

(P(t|2i 2)=0

since the solution flow ofl) has local minima at all the
separatrix reactivation times. Replace thgitt/,) by
Pt o) = G (tg ,) in the proof of Proposition 1 to
obtain 2.

(i) Replace ¢f'(tf") by ¢"(1f!) in Proposition 2. It
follows theng"(0) < ¢"(17}) < ... < ¢"(17}). O

The bottom line is that the separatrix reactivation
times tl?o-,Z’ tlr<11-,2’ ... and reversal times{, 17, ... (or a
subsequence of them) describe the whole activity
synchronization process in the setting considered in this
section.

To extract further information out of Proposition 3,
we are going to exploit the specific forni3) of the

Mechanism1l. There is a sequence of separatriXnteraction tern"(t) in the regimen of small oscillations

reactivation timesy, , such thai"(tg ,) — —an.

(17)-(18). According to @3), F"(t) counts the number of

Mechanism 2. There is a sequence of separatrix reversascillatorsk € ¢, with ®/(t) € [-A,0). Note that the

timest;" such thatp"(1" ;) < ¢"(1") for everyr, and
Q"(1") — 21— .

Exceptionally, full synchronization might be also
achieved via Mechanism 1 alone(= 2m).

Proposition 3. Let ¢" be the Oth synchronization
separatrix of%;,.

() A necessary and sufficient condition for the
synchronization of the oscillators k %, with

90 € [0.|o, ,)|) © [0.2m- w52 0,is

tn ]
/kro’th“‘l(t)dt <0 31)
0
and, ifs>1,
tn ]
/ “ 2 EL()dt < 0 32)
t

n
ki 2

fori=0,1,....s— 1.

proviso (L7) guarantees that reactivated oscillators do not
enter the angular sectgrA,0) becaused/(t) > 0 for
them. In view of 80), the separatrices that inform about
which other oscillators have their activities irA,0) at
timet are

[, A — o"(t) — N(gh
LT = min @) (1) = ¢ — maxg(zr), (34)

wherer is fixed by the condition that is the greatest
reversal time such that® < t. If 1§ > 0 andt < 1, set
o"(t;17) == ¢@"(t), although we are interested in the
asymptotic dynamic. The separatrice®4)( divide the
oscillatorsk € %, with ¢ (t) € [-A,0) which have been
reset, namely,

(LT <@(t) <0

(and henced{(t) > 0), from those which have not been
reset yet, namely,

—A<@t) <"t 1)
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(and hencep(t) = ¢'(t)), for i/’ <t < 1"

r+1-

This being the case we find that, fiff , <t<Tt’
(tg_, ,=0forr=0),
NA
F(t) = { §—§+ 70" (6T ) (35)
0<@(t;1 ) <2m—ay
if ¢ -A<"(t;1,)<0
—an < @1 ;) <A
while for i <t <ty ,,
) = { 2n oG if —A< @'t <O
0 if —an<@'(t;7") < -A
(36)

since ¢"(t;7) < 0 in the period[ty,tg ,]. From (1) it
follows that forty 1, <t < 1,

A
w: ; n 1
w 27'[ 2rrq) (v r— 1)

|

1
while for 7"+ <t <tk, Y
{ w" — ﬁqon—l(t; Trn—l)
wn
o [A<@itT <o
—an <@L <A

Finally, upon differentiation of35) and @6), we obtain for
e oSt<1,

(37)

0< ¢" Yt t ) <2m—ang
A<(pn 1(’r1)<o
_anl<(pn 1(’r1)< A

FT

o"(t) (38)

. 0 ifo<@"(t;1 ;) <2m—an
F'(t) =< fo"t)if —A<@'(t;T" 1) <0
0 if —an<@(t;1 ) <-4

(39)
and forr! <t <ty ,,

Ent) = {(%u,rcb”(t) if —A<@"(t;1") <0 (40)

if —an<@(t;7") <A

5.3 Full synchronization

Suppose that"(t) is performing small oscillations, see
(17) and (8).

Proposition 4. A necessary condition for the oscillators k
to reach full synchronization in the three groups,
through a finite number of small oscillations is

2"
A

(41)

forn=1,2,3.

Proof. According to Proposition 3(i), a necessary

condition for the synchronization in &le 4, with

@ (0) € [0,2r1— an]
is that
o
/ko’th“ it <0, [FrE L dt<0  (42)
0 0,
forr =0,1,...,rf . — 1 (if ri > (krn )‘_
2m—ap,andn=12 3.
From 37) we obtain
. . EA
mf{(p”() el <t<t 1} w" ~ o
(tel, = 0 for r = 0) becauseqg"(t; h <o

Therefore see3p),
F”(t){ G
n— 1)

fortg~t, <t <1t (¢" Mt 1]
leeW|se from @8) we obtain

N
Z27'r

Lyif —A<¢ it <0
otherwise
(43)
"Lt if r =0).

- A
; n -1 <t< n—-1 n__ g_
mf{qo(t) t tk,z} W' o
because”1(t; "1) < 0. Hence, seed(),
Enyd = (@ =5%)if —A<@ Mt ) <0
=0 otherwise

(44)
for 77~ <t <7 Altogether, 43) and ¢#4) amounts to
> N wn eA
F(t) { - o ( %) it e L, <t<ti . (45)
Therefore, ifT = min{t} R t‘gr%ax, ,tlf’r%axz}we conclude
that N .
. N (o _ g4
F“(t){ég)n(‘*’ o) ifo<t<T  (46)
forn=1,2,3.
Assume now that
EA
"> — 47
- 2n (47)

forn=1,2,3. It follows then from 46) that

n+1

t
Krt1, 24
n+1

s

FM(t)dt >0

for every [tl?le,tl'(‘:iz] C [0,T]. This proves by
contradiction with 42) the necessity of 41) for the
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Fig. 3: Phase transition in the Kuramoto order parameter. TheFig. 4: Phase transition curve for a initial configuration of phases
network achieve full synchronization only when conditiosfs ~ drawn from a truncated gaussian distribution, with meah 3
equation 41) hold. We also note that precisely at the boundary of and variable variance. The necessary conditiod) for full
inequality @1) the convergence of the dynamics is considerably Synchronization does not hold anymore: full synchronaatis
slower. In fact, this was depicted in Figu2etransient dynamics ~ achieved for a lowee than expected, showing that the initial

is 10 times slower than for both smaller and larger coupting ~ Phases distribution plays an important role in the mecinanis
of synchronization. Aso grows, the gaussian becomes more

scattered and thus become similar to an uniform distributs
o grows the same results from the uniform initial distribatie

oscillators k € %, with ¢'(0) € [0,2m—a,] to regained.

synchronize, hence, for full synchronizatian.

Proposition 4 is an important prediction about the 6 Final considerations on the model

dynamics of the system, as it defines a critical coupling ) o
value & = 2rw"/A under which there cannot be full Most of our results are derived for a specific initial phases

synchronization. In Figur8 we show the phase transition distribution, namely, an uniform distribution. To check if
from an unsynchronized (unordered) phase to athose results are robust to changes in this distribution, we

synchronized (ordered) phase obtained by simulationglave performed simulations with a truncated Gaussian in
varying w. Since A = 0.1 x 2m, then the necessary the intervaI[O,gi_T) with different values of variance. As a
condition @1) becomes result, the critical couplinge; may change with the
variance: as the variance growg,also grows. We show
this effect in Figured. Naively, one can expect that with a
lower variance in the distribution of initial conditionseth
. . . . . oscillator phases would be already grouped together, thus
Not only Figure3 complies with this result, showing that needing apsmaller coupling to ac);li%ve 2 highger level of
& = 10w is a threshold point to synchronization, but we synchronization. For a larger enough variance, the same
alsp have tgsted seyeral valuesfas well to actually results with uniform distribution are retrieved.
verify that this condition holds (not shown). , Finally, we have also briefly tested how noise affects
Additionally, we note that near the critical couplieg  the system, as it is one of the most important ingredients
the oscillators always tend to delay its synchronization,in yea| natural system,50,51], and its effects on PRCs
going through a transient dynamics that may last up to temaye been investigated in the pasg][ To account for a
times more than with values larger or smaller tilsarFor  simple source of noise, we turned the equatibrirfto the
instance, in Figur@ we have shown the network exactly siochastic differential equation
at the critical point = & = 10. For networks set up with
€ = 8 (see Figurel) or € = 12, for all initial conditions {q?(t) =af— Epn—l(t) + odW, (49)
tested the transient dynamics did not last more than 100 N
time units, which is a quarter of the transient period whereadW is a Wiener process. This adds a white noise
shown in Figure2 for ¢ = 10. This is completely with variancec? and zero mean, as shown in Figife
unexpected, since usually the transient dynamics tend ttop. A slightly more complicated case is to add a small
subside quickly as a stronger coupling/inhibition takesphase dependence on the noisg[but we shall stick to
place. This resembles notwithstanding effects seen inthe this simpler and more illustrative case. As result, the
statistical physics models, in which at the edge of a phas@hase transition seems more smooth, although the
transition several thermodynamics potentials andinequality seems to still hold (see Figusdottom). Such
variables may diverge, as the time scales definingchanges in the phase transitions are expected and usual in
correlations among the unitg§. the dynamics of Kuramoto oscillators or excitable units

[53.

> 10" (48)
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oscillators with strong couplings. This is the case, for
instance, of a network consisted of conduction-based
model neurons, interacting through non-linear couplings.
A better understanding of such mechanisms may lead to
important developments on our understanding of how
synchronization takes place in the brain.
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