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Abstract: A new five-parameter distribution so-called the McDonald quasi Lindley distribution is proposed. The new distribution
contains, as special submodels, several important distributions discussed in the literature, such as the beta quasi Lindley, Kumaraswamy
quasi Lindley, beta Lindley, kumaraswamy Lindley and Lindley distributions, among others. The properties of this new distribution,
including hazard function, reversed hazard function, shapes, moments, entropy and moment generating function are derived. We provide
the density function of the order statistics and their moments. Method of maximum likelihood is used to estimate the parameters of the
new and related distributions. The flexibility and usefulness of the new model are illustrated by means of an applicationto real data set.

Keywords: Quasi Lindley distribution, McDonald distribution, Maximum likelihood estimation, Moment generating function,
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1 Introduction

Recently, several lifetime distributions have been used tomodel and analyze lifetime data. The Lindley (L) distribution was
originally proposed by Lindley [15] in the context of Bayesian statistics as a counter example of fiducial statistics. This
distribution is a mixture of exponential (E) and Length-biased exponential distributions to illustrate the difference between
fiducial and posterior distributions. Ghitany et al. [12] have discussed the properties of this distribution. They have found
that the Lindley distribution performs better than exponential model because of its time dependent/increasing hazard
rate. Zakerzadeh and Dolati [25] obtained a generalized Lindley (GL) distribution and discussed its various properties
and applications. Nadarajah et al. [20] studied the mathematical and statistical properties of the generalized Lindley
distribution. Bakouch et al. [2] obtained an extended Lindley distribution and discussed its various properties. Merovci
and Sharma [18] introduced a new generalization of Lindley distribution called beta-Lindley (BL) distribution. Shanker
and Mishra [?] introduced and studied the mathematical and statistical properties of the quasi Lindley (QL) distribution
where it has the L distribution as a particular case. The cumulative distribution function (cdf) of the QL distribution is
given by

G(x;α,θ ) = 1− (1+
θx

α +1
)e−θx (1)

and the corresponding QL probability density function (pdf) is given by

g(x;α,θ ) =
θ (α +θx)

α +1
e−θx, (2)

for x > 0, θ > 0 andα > −1. Elbatal and Elgarly [11] studied statistical properties of Kumaraswamy quasi Lindley
(KumQL) distribution. The QL distribution reduces to L distribution whenα = θ and atα = 0, it reduces to the gamma
distribution with parameters(2,θ ).

The density function of QL model is a mixture of exponential and gamma distributions, that is

g(x;α,θ ) = p f1(x;θ )+ (1− p) f2(x;θ ),
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with p =
α

α +1
, where f1(x;θ ) = θe−θx and f2(x;θ ) = θ 2xe−θx. It is also positively skewed. The hazard and mean

residual life functions of the QL distribution are given by

h(x;α,θ ) =
θ (α +θx)
1+α +θx

and

m(x;α,θ ) =
2+α +θx

θ (1+α +θx)
,

respectively. The hazard functionh(x;α,θ ) is an increasing function whereas the mean residual life function m(x;α,θ )
is a decreasing function.

In recent years, many authors have proposed distributions which can arise as special submodels within the McDonald
(Mc) generated or generalized beta (GB) generated class of distributions. Alexander et al. [1] introduce a class of
generalized beta-generated distributions that have threeshape parameters in the generator. They consider eleven different
parents: normal, log-normal, skewed student-t, Laplace, exponential, Weibull, Gumbel, Brinbaum-Saunders, gamma,
Pareto and logistic distributions. Other generalizationsare McDonald inverted beta distribution by Corderio and
Lemonte [5], McDonald gamma distribution by Marciano et al. [16], McDonald normal distribution by Corderio et al.
[6] McDonald exponentiated exponential distribution by Corderio et al. [7], McDonald log-logistic distribution by Tahir
et al. [24], McDonald arcsine distribution by Corderio and Lemonte [8], McDonald Weibull distribution by Corderio et
al. [9]. and McDonald Extended Weibull Distribution by Hashimotoet al. [14].

One of the main reasons to consider the McDonald generated distribution is its ability of fitting skewed data, [19].
The McDonald generated family of densities allows for higher levels of flexibility of its tails and has a lot of applications
in various fields such as economics, finance, reliability, engineering, biology and medicine. The main objective of this
paper is to construct and explore the properties of the five-parameter model called the McDonald quasi Lindley (McQL)
distribution. This distribution exhibits the desirable properties of increasing, decreasing, upside-down bathtub and bathtub
shaped hazard function.

This paper is organized as follows. The pdf, cdf and hazard function of the McQL distribution are derived in Section
2. Some special models of the new distribution are describedin this section. In Section 3, we present useful expansions of
cdf and pdf of the McQL distribution. Some properties of the cdf, pdf,kth moment and moment generating function of the
McQL distribution are discussed in Section 4. Moreover, theorder statistics, their moments and entropy are investigated
in this section. Maximum likelihood estimates (MLEs) of themodel parameters are given in Section 5. An application of
the McQL distribution by using a real data set is performed inSection 6.

2 The McQL model

The generalized beta distribution of the first kind or McDonald distribution (denoted with the prefix ”Mc” for short) was
introduced by [17]. McDonald (1984). The cdf of the McDonald distribution is given by

F(x) = I(xc;a/c,b), 0< x< 1,

for a, b, c> 0, whereI(y;a,b)= By(a,b)
B(a,b) =

1
B(a,b)

∫ y
0 ta−1(1−t)b−1dt andB(a,b)=

∫ 1
0 ta−1(1−t)b−1dt are the incomplete

beta function ratio and the beta function, respectively.
The cdf of McQL model is defined by

F(x;a,b,c,α,θ ) = I([1− 1+α +θx
α +1

e−θx]c;a/c,b), x> 0, (3)

whereθ > 0 andα >−1. The pdf corresponding to (3) is given by

f (x;a,b,c,α,θ ) =
cθ (α +θx)e−θx

(α +1)B(a/c,b)

[

1−
(

1+
θx

α +1

)

e−θx
]a−1

×
[

1−
[

1−
(

1+
θx

α +1

)

e−θx
]c]b−1

. (4)

For random variableX with density function (4), we writeX ∼McQL(a,b,c,α,θ ). In fact, the McQL distribution belongs
to the new class of distributions called the McDonald-generated distributions with cdf and pdf as

F(x;a,b,c,φ) = I(Gc(x;φ);a/c,b) =
1

B(a/c,b)

∫ Gc(x;φ)

0
ta/c−1(1− t)b−1dt
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and
f (x;a,b,c,φ) =

c
B(a/c,b)

g(x;φ)Ga−1(x;φ)(1−Gc(x;φ))b−1,

respectively. The cdf is given in (3) can also be represented by

F(x;a,b,c,φ) =
cG(x;φ)a

aB(a/c,b)2F1

(a
c
,1−b,

a
c
+1;G(x;φ)a

)

, (5)

where

2F1(a,b;c;x) =
Γ (c)

Γ (a)Γ (b) ∑
j=0

∞ Γ (a+ j)Γ (b+ j)
Γ (c+ j)

x j

j!
, |x|< 1, (6)

φ = (α,θ ) andG(x;φ) = 1− (1+ θx
α+1)e

−θx is the cdf of QL model.

Theorem 2.1. Let f (x;a,b,c,α,θ ) be the pdf of McQL distribution given by (4). The limiting behavior of
f (x;a,b,c,α,θ ) for different values of its parameters is given below:
i. If a= 1, then limx→0+ f (x;a,b,c,α,θ ) = cθα

(α+1)B(1/c,b) .

ii . If a> 1, then limx→0+ f (x;a,b,c,α,θ ) = 0.
iii . If a< 1, then limx→0+ f (x;a,b,c,α,θ ) = ∞.
iv. limx→+∞ f (x;a,b,c,α,θ ) = 0.

Proof. It is straightforwared to show the above from the McQL density in equation (4).
The hazard rate function (also known as the failure rate function) h(t), which is an important quantity characterizing

life phenomenon, is defined byh(t) =
f (t)

1−F(t)
. The hazard rate function (hrf) of the McQL distribution is given by

h(x;a,b,c,α,θ ) =
cθ (α +θx)e−θx

(α +1)
[

B(a/c,b)−B[1−(1+ θx
α+1 )e

−θx]c(a/c,b)
]

[

1−
(

1+
θx

α +1

)

e−θx
]a−1

×
[

1−
[

1−
(

1+
θx

α +1

)

e−θx
]c]b−1

. (7)

The reversed hazard rate functionr(t) is defined byr(t) =
f (t)
F(t)

. The corresponding reversed hazard rate function of

the McQL distribution is given as

r(x;a,b,c,α,θ ) =
cθ (α +θx)e−θx

(α +1)B[1−(1+ θx
α+1 )e

−θx]c(a/c,b)

[

1−
(

1+
θx

α +1

)

e−θx
]a−1

×
[

1−
[

1−
(

1+
θx

α +1

)

e−θx
]c]b−1

. (8)

Figure 1 illustrates some of the possible shapes of the density and hazard functions of the McQL distribution for
selected values of the parameters. For instance, these plots show the hazard rate function of the new model is much more
flexible than the beta Lindley (BL), quasi Lindley (QL) and Lindley distributions. The hazard rate function can be bathtub
shaped, monotonically increasing or decreasing and upside-down bathtub shaped depending on the parameter values.

The McQL distribution contains as sub-models the beta quasiLindley (BQL), the Kumaraswamy quasi Lindley
(KumQL) [11], and McDonald Lindley (McL) distributions forc = 1, a = c andα = θ , respectively. Forc = 1 and
α = θ , the McQL distribution reduces to the beta Lindley (BL) distribution, [18]. The subject distribution also includes
as special cases the generalized quasi Lindley distribution (GQL), generalized Lindley (GL) distribution proposed by
Nadarajah et al. [20] and McDonald gamma (McG) distribution. The classes of distributions that are included as special
sub-models of the McQL distribution are displayed in Figure2.

If the random variableX has the McQL distribution, then it has the following properties:
1. The random variableV = [1−

(

1+ θx
α+1

)

e−θx]c satisfies the beta distribution with parametersa/c andb. Therefore,

the random variableT = θX− ln(
1+α +θx

α +1
) has the BGE (or McE) distribution, [3]. Furthermore, the random variable

X = G−1(V) follows McQL distribution, whereG(.) is given in (3). This result helps us in simulating data from McQL
distribution.
2. If a= i andb= n− i +1, wherei andn are positive integer values, then theF(x;a,b,c,α,θ ) is the cdf of theith order
statistic of GQL distribution.
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Fig. 1: The pdf and hrf of McQL model for some values of parameters.

Fig. 2: Relationships of the McQL sub-models

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 3, 375-386 (2015) /www.naturalspublishing.com/Journals.asp 379

3 Expansion of the model

In this section we derive some representations of cdf and pdfof McQL distibution. The binomial series expansion is
defined by

(1− z)m =
∞

∑
j=0

(−1) j
(

j
m

)

zj =
∞

∑
j=0

(−1) j Γ (m+1)
Γ (m− j +1)

zj

j!
, (9)

where|z|< 1 andm is a positive real non-integer.
The following proposition reveals that the McQL distribution can be expressed as a mixture of distribution function

of GQL distribution, whereas Proposition2 provides a useful expansion for the pdf in (4).

Proposition 1.The cdf in(3) is a mixture of GQL distributions on the form

F(x;a,b,c,α,θ ) =
∞

∑
j=0

q jG j(x), (10)

where qj =
(−1) jΓ (b)

B(a/c,b)Γ (b− j) j !(a/c+ j) , ∑∞
j=0q j = 1 and Gj(x) = (G(x;α,θ ))a+ jc is the distribution function of a random

variable which has a GQL distribution with parametersα, θ and a+ jc.

If a is a real non-integer, we can expandG j(x) as follows:

G j(x) = (G(x;α,θ ))a+ jc = [1− (1−G(x;α,θ ))]a+ jc

=
∞

∑
i=0

(−1)i
(

a+ jc
i

)

(1−G(x;α,θ ))i , (11)

with

(1−G(x;α,θ ))i =
i

∑
r=0

(−1)r
(

i
r

)

Gr(x;α,θ ),

so that

G j(x) =
∞

∑
i=0

i

∑
r=0

(−1)r+i
(

a+ jc
i

)(

i
r

)

Gr(x;α,θ ). (12)

Now, equation (3) becomes

F(x;a,b,c,α,θ ) =
∞

∑
j=0

b j ,rG
r(x;α,θ ),

where

b j ,r =
∞

∑
i=0

i

∑
r=0

q j(−1)r+i
(

a+ jc
i

)(

i
r

)

.

If b> 0 is an integer, then

F(x;a,b,c,α,θ ) =
b−1

∑
j=0

q jG j(x).

Proposition 2.The pdf of McQL model can be expressed as an infinite mixture ofGQL densities with parametersα, θ and
(a+ jc) given by

f (x;a,b,c,α,θ ) =
∞

∑
j=0

q jg j(x), (13)

where gj(x) = (a+ jc)g(x;α,θ )[G(x;α,θ )]a+ jc−1.

Similarly, if b> 0 is an integer, the pdf of McQL model is given by

f (x;a,b,c,α,θ ) =
b−1

∑
j=0

q jg j(x).
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From equations (13) and (12), the McQL density can be written in the form

f (x;a,b,c,α,θ ) = g(x;α,θ )
∞

∑
j=0

∞

∑
i=0

i

∑
r=0

pi, j ,rG
r(x;α,θ ).

where

pi, j ,r =
c(−1) j+r+iΓ (b)

B(a/c,b) j!Γ (b− j)

(

a+ jc
i

)(

i
r

)

and∑∞
i, j=0 ∑i

r=0 pi, j ,r = 1.

4 Statistical properties

In this section, we deal with the basic statistical properties of the McQL distribution, in particular, moments and
moment generating function.

4.1 Moments and moment generating function

In this subsection we derive thekth non-central moment and moment generating function for the McQL distribution.
Moments are necessary and important in any statistical analysis, especially in applications.

Proposition 3.The kth moment, E(Xk), of the McQL distributed random variable X, is given as

µ ′
k(X) = E(Xk) = wi, j ,r

[

αΓ (k+ i +1)
(θ (r +1))k+i+1 +

θΓ (k+ i +2)
θ (r +1))k+i+2

]

,

where

wi, j ,r = ∑
j ,r=0

∞ ∑
i=0

r c
B(a/c,b)

θ
(α +1)i+1(−1)i+1

(

b−1
j

)(

c j+a−1
r

)(

r
i

)

.

Proposition 4.If X has the McQL distribution then the moment generating function (mgf) of X is given as follows

MX (t) = wi, j ,r

[

αΓ (i +1)
(θ (r +1)− t)i+1 +

θΓ (i +2)
(θ (r +1)− t)i+2

]

. (14)

4.2 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let the random variableXi:n be the
ith order statistic (X1:n ≤ X2:n ≤ ·· · ≤ Xn:n) in a sample of sizen from the McQL distribution. The pdf and cdf ofXi:n for
i = 1,2, . . . ,n are given by

fi:n(x) =
1

B(i,n− i +1)
f (x)[F(x)]i−1[1−F(x)]n−i

=
1

B(i,n− i +1)

n−i

∑
k=0

(

n− i
k

)

(−1)k f (x)[F(x)]k+i−1, (15)

and

Fi:n(x) =
∫ x

0
fi:n(t)dt =

1
B(i,n− i +1)

n−i

∑
k=0

(−1)k

k+ i

(

n− i
k

)

[F(x)]k+i , (16)

respectively, whereF(x) = F(x;α,θ ) = ∑∞
j=0b j ,rGr(x;α,θ ). We use throughout an equation by Gradshteyn and Ryzhik

(2007, page 17) for a power series raised to a positive integer mgiven by
(

∞

∑
r=0

br ur

)m

=
∞

∑
r=0

cm,r ur , (17)
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where the coefficientscm,r (for r = 1,2, . . .) are easily determined from the recurrence equation

cm,r = (rb0)
−1

r

∑
k=1

[k(m+1)− r + k]bkcm,r−k,

wherecm,0 = bm
0 . Hence, the coefficientscm,r can be calculated fromcm,0, . . . ,cm,r−1 and therefore, from the quantities

b0, . . . ,br . Using (17), the equations (15) and (16) can be written as

fi:n(x;α,θ ) =
1

B(i,n− i +1)

n−i

∑
k=0

∞

∑
r=1

r
k+ i

(−1)k
(

n− i
k

)

ci+k,rg(x;α,θ )[G(x;α,θ )]r−1,

Fi:n(x;α,θ ) =
1

B(i,n− i +1)

n−i

∑
k=0

∞

∑
r=0

1
k+ i

(−1)k
(

n− i
k

)

ci+k,r [G(x;α,θ )]r .

An explicit expression for thesth moments ofXi:n can be obtained as

E[Xs
i:n] =

1
B(i,n− i +1)

n−i

∑
k=0

∞

∑
r=1

r
k+ i

(−1)k
(

n− i
k

)

ci+k,r

∫ +∞

0
tsg(t;α,θ )[G(t;α,θ )]r−1dt

=
θΓ (s+1)

B(i,n− i +1)

n−i

∑
k=0

∞

∑
r=1

r
k+ i

(−1)k
(

n− i
k

)

ci+k,r

× 1
θ s

r−1

∑
i1=0

i1

∑
i2=0

i2+1

∑
i3=0

α i2−i3+1(−1)i1

(

i1
i2

)(

r −1
i1

)

Γ (s+ i3+1)
(α +1)i1+1(i1+1)s+i3+1 . (18)

4.3 Entropy

The entropy of a random variable is defined in terms of its probability distribution and can be shown to be a good measure
of randomness or uncertainty. The Rényi entropy is an extension of Shannon entropy. The Rényi entropy is defined to be

IR(γ) =
1

1− γ
log(

∫

R
[ f (x)]γ dx), (19)

whereγ > 0 andγ 6= 1. The Rényi entropy tends to the Shannon entropy asγ → 1. By using the pdf of McQL model, we
have
∫ +∞

0
f γ (x;a,b,c,α,θ )dx=

(

cθα
(α +1)B(a/c,b)

)γ

×
∫ +∞

0
(1+

θ
α

x)γ e−θγx[G(x;α,θ )]aγ−γ [1−Gc(x;α,θ )]bγ−γ dx.

Setting

[G(x;α,θ )]aγ−γ =

[

1− α +1+θx
α +1

e−θx
]

aγ−γ

=
∞

∑
k=0

k

∑
j=0

(−1)k
(

aγ − γ
k

)(

k
j

) (−1)kα j(1+
θ
α

x) j

(1+α)k e−θkx (20)

and

[1−Gc(x;α,θ )]bγ−γ =
∞

∑
l=0

k

∑
m=0

m

∑
n=0

(

bγ − γ
l

)(

cl
m

)(

m
n

)

(−1)l+m

×
αn(1+

θ
α

x)n

(1+α)m e−θmx. (21)
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By using (20) and (21), we obtain

∫ +∞

0
f γ (x;a,b,c,α,θ )dx=

(

cθα
(α +1)B(a/c,b)

)γ ∞

∑
k=0

k

∑
j=0

∞

∑
l=0

∞

∑
m=0

m

∑
n=0

(

aγ − γ
k

)(

k
j

)

×
(

bγ − γ
l

)(

cl
m

)(

m
n

)

(−1)k+l+mαn+ j

(1+α)k+m

∫ +∞

0
(1+

θ
α

x)γ+ j+ne−θ(γ+k+m)xdx

=

(

cθα
(α +1)B(a/c,b)

)γ ∞

∑
k,m,l ,u=0

k

∑
j=0

m

∑
n=0

(

k
j

)(

bγ − γ
l

)

×l

(

cl
m

)(

m
n

)(

γ + j +n
u

)

(−1)k+l+mαn+ j−uΓ (u+1)
θ (1+α)k+m(γ + k+m)u+1 . (22)

Therefore, the Rényi entropy for McQL distribution is obtained by above relation and (19).
The Shannon entropy for the McQL distribution is defined as follows:

HSH( f ) =−Ef [log( f (X))] =−
∫ ∞

0
f (x) log f (x)dx.

Hence, the Shannon entropy for the McQL distribution can be expressed as

HSh( f ) = log(
B(a/c,b)(α +1)

cθα
)−E[log(1+

θ
α

X)]

+ θE(X)+ (1−a)E[logG(x;α,θ )]+ (1−b)E[log(1−Gc(x;α,θ ))].

We note that

E[log(1−Gc(X;α,θ ))] =−
∞

∑
k=1

1
k

E[Gck(x;α,θ )]

and

E[logG(X;α,θ )] =−
∞

∑
k=1

k

∑
l=0

1
k

(

k
l

)

θ l

k(1+α)l E[Xle−kθx].

Therefore by using the results in Lemma 1 in Nadarajah et al. (2011), we have

HSh( f ) = log(
B(a/c,b)(α +1)

cθα
)+

∞

∑
k=1

(−1)kθ k

kαk E(Xk)

+ θE(X)+ (1−a)E[logG(x;α,θ )]+ (1−b)E[log(1−Gc(x;α,θ ))],

where

E[logG(x;α,θ )] = − c
B(a/c,b)

∞

∑
k=1

∞

∑
l=0

∞

∑
i, j=0

j

∑
r=0

(

k
l

)(

a/c+ i −1
j

)(

b−1
i

)(

j
r

)

× (−1)i+ j+rθ l+2

k(1+α)l+1 A((r +1)c,α, l ,α(1+ k))

and

E[log(1−Gc(x;α,θ ))] = − c
B(a/c,b)

∞

∑
k=1

∞

∑
i, j=0

j

∑
r=0

(

k
l

)(

a/c+ i −1
j

)(

b−1
i

)(

j
r

)

× (−1)i+ j+rθ 2

k(1+α)
A((r + k+1)c,α,0,α),

and

A(r,s, t,u) =
∞

∑
m=0

m

∑
n=0

n+1

∑
p=0

(

r −1
m

)(

m
n

)(

n+1
p

)

(−1)msnΓ (t + p+1)
(1+ s)m(sm+u)t+p+1 .
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5 Estimation

Let X1, . . . ,Xn be a random sample of sizen from the McQL(a,b,c,α,θ ) distribution andΘΘΘ = (a,b,c,α,θ ) be the
unknown parameter vector. The log-likelihood function is given by

l(ΘΘΘ) = nlog(cθ )−nlog(B(a/c,b))−nlog(α +1)+
n

∑
i=1

log(α +θxi)−θ
n

∑
i=1

xi

+(a−1)
n

∑
i=1

log

[

1−
(

1+
θxi

α +1

)

e−θxi

]

+(b−1)
n

∑
i=1

log

[

1− [1−
(

1+
θxi

α +1

)

e−θxi ]c
]

. (23)

The maximum likelihood estimation (MLE) ofΘΘΘ is obtained by solving the nonlinear equations,
U(ΘΘΘ) = (Ua(ΘΘΘ),Ub(ΘΘΘ),Uc(ΘΘΘ),Uα (ΘΘΘ),Uθ (ΘΘΘ))T = 000, where

Ua(ΘΘΘ) =
∂ l(ΘΘΘ)

∂a
= n/c[ψ(b+a/c)+ψ(a/c)]+

n

∑
i=1

log[1−
(

1+
θxi

α +1

)

e−θxi ], (24)

Ub(ΘΘΘ) =
∂ l(ΘΘΘ)

∂b
= nψ(b+a/c)−nψ(b)+

n

∑
i=1

log[

(

1+
θxi

α +1

)

e−θxi ]c, (25)

Uc(ΘΘΘ) =
∂ l(ΘΘΘ)

∂c
= n/c2 [c−aψ(b+a/c)+aψ(a/c)]+ (b−1)

n

∑
i=1

log[

(

1+
θxi

α +1

)

e−θxi ], (26)

Uα(ΘΘΘ) =
∂ l(ΘΘΘ)

∂α
=

n
α +1

+
n

∑
i=1

1
α +θxi

+(a−1)
n

∑
i=1

e−θxi θxi
(α+1)2

1−
(

1+ θxi
α+1

)

e−θxi

−(b−1)
n

∑
i=1

ce−θxi θxi
(α+1)2

[

1−
(

1+ θxi
α+1

)

e−θxi

]c−1

1− [1−
(

1+ θxi
α+1

)

e−θxi ]c
, (27)

Uθ (ΘΘΘ) =
∂ l(ΘΘΘ)

∂θ
=

n
θ
−

n

∑
i=1

xi +
n

∑
i=1

xi

α +θxi

+(b−1)
n

∑
i=1

cxie−θxi

α+1 − xie−θxi

(

1+ θxi
α+1

)[

1−
(

1+ θxi
α+1

)

e−θxi

]c−1

1− [1−
(

1+ θxi
α+1

)

e−θxi ]c

+(a−1)
n

∑
i=1

xie−θxi

α+1 − xie−θxi

(

1+ θxi
α+1

)

1−
(

1+ θxi
α+1

)

e−θxi

, (28)

whereψ(.) = Γ
′
(.)

Γ (.) denotes the digamma function.
We need the observed information matrix for interval estimation and hypotheses tests on the model parameters. The

5×5 Fisher information matrix,J = Jn(ΘΘΘ), is given by

J =−











Jaa Jab Jac Jaα Jaθ
Jba Jbb Jbc Jbα Jbθ
Jca Jcb Jcc Jcα Jcθ
Jαa Jαb Jαc Jαα Jαθ
Jθa Jθb Jθc Jθα Jθθ











,

where the expressions for the elements ofJ are in the appendix.
Under conditions that are fulfilled for parameters in the interior of the parameter space but not on the boundary,

asymptotically √
n(Θ̂ΘΘ −ΘΘΘ)∼ N5(0, I(ΘΘΘ)−1),
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whereI(ΘΘΘ) is the expected information matrix. This asymptotic behavior is valid if I(ΘΘΘ) replaced byJn(Θ̂ΘΘ) , i.e., the
observed information matrix evaluated atΘ̂ΘΘ (Cox and Hinkley, 1979).

6 Application of McQL to a real data set

In this section, we fit the McQL distribution to a real data setand compare it with some models and submodels such as: the
McDonald Dagum (McD) by Rajasooriya [21], the McDonald Weibull (McW) and the McDonald log-logistic(McLL)
distributions and the KumQL, KumG, BQL, QL and L distributions to show the superiority of the McQL distribution.
The data set is given by Suprawhardana and Prayoto [23], that refers to the time between failures (thousands of hours) of
secondary reactor pumps. The data set consists of 23 observations.

The MLEs of the parameters, -2log-likelihood, AIC (Akaike Information Criterion), BIC (Bayesian Information
Criterion), AICC (Consistent Akaike Information Criterion), the KS statistic with its p-value and LRT statistic for this
data set are displayed in Table 1.

From the values of these statistics, we conclude that the McQL distribution provides a better fit to this data than the
McD, McW, McLL, KumQL, BQL, QL and L distributions. Moreover, the plots of empirical cdf of the data set and
estimated cdf of seven models are displayed in Figure 3. These plots suggest that the McQL distribution is superior to the
other distributions in terms of model fitting.

Table 1: MLEs of the model parameters for the time between failures data, the corresponding AIC, AICC, BIC, KS and LRT statistics.
Dist. MLE -2 Log L AIC AICC BIC KS (p-value) LRT p-value
McQL(a,b,c,α , θ ) â= 1.5594, b̂= 0.1193, ĉ= 22.8140, 61.5037 71.5037 75.0332 67.9918 0.1136 (0.8955) – –

α̂ = 3.8165, θ̂ = 3.5611
McD(a,b,c,α , θ ,δ ) â= 7.8434, b̂= 41.7895, ĉ= 6.8431, 63.6685 75.6685 80.9185 71.4542 0.121 (0.8497) 5.6044 0.0052

α̂ = 0.0816, θ̂ = 3.3260, δ̂ = 0.1362
McW(a,b,c,α , θ ) â= 46.0331, b̂= 31.9924, ĉ= 0.0314, 63.5928 73.5928 77.1222 70.0809 0.1204 (0.8539) 3.2457 0.0212

α̂ = 0.1288, θ̂ = 0.0915
McLL(a,b,c,α , θ ) â= 12.3203, b̂= 7.0308, ĉ= 3.5592, 74.1614 84.1614 87.6909 80.6495 0.2061 (0.2466) 12.0816 0.0021

α̂ = 0.3011, θ̂ = 0.0100
KumQL(a,b,a,α , θ ) â= 0.7982, b̂= 18.2196, ĉ= 0.7982, 65.1652 73.1652 73.7260 67.9918 0.1417 (0.6934) 3.0141 0.0454

α̂ = 16.1428, θ̂ = 0.0195
BQL(a,b,1,α , θ ) â= 0.7456, b̂= 8.0368, ĉ= 1, 65.5198 73.5198 73.7260 70.7102 0.1994 (0.2808) 3.2306 0.0319

α̂ = 13.2208, θ̂ = 0.0642
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Fig. 3: Plots of the estimated pdfs and cdfs of KumQL, KumG, BQL, QL,BL and L models using the time between failures data.
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Appendix

We can compute the elements of the observed information matrix J for the five parameters(a,b,c,α,θ ). We obtain the
following:

Jaa =
∂ 2l(ΘΘΘ)

∂a2 =
n
(

ψ(1)(b+a/c)−ψ(1)(a/c)
)

c2 ,

Jab =
∂ 2l(ΘΘΘ)

∂a∂b
=

n
(

ψ(1)(b+a/c)
)

c
,

Jac =
∂ 2l(ΘΘΘ)

∂a∂c
=

n(−cψ(b+a/c)+cψ(a/c)+a(−ψ(1) (b+a/c)+ψ(1)(a/c))

c3 ,

Jaα =
∂ 2l(ΘΘΘ)

∂a∂α
=

n

∑
i=1

θxie−θxi

(α +1)2(1−e−θxi

(

1+ θxi
α+1

)

)
,

Jaθ =
∂ 2l(ΘΘΘ)

∂a∂θ
=

n

∑
i=1

− xie−θxi

α+1 +xie−θxi

(

1+ θxi
α+1

)

1−e−θxi

(

1+ θxi
α+1

) ,

Jbb =
∂ 2l(ΘΘΘ)

∂b2 = n(−ψ1(b)+ψ1(b+a/c)),

Jbc =
∂ 2l(ΘΘΘ)

∂b∂c
=

−an(ψ(1)(b+a/c))

c2 +
n

∑
i=1

log[

(

1+
θxi

α +1

)

e−θxi ],

Jbα =
∂ 2l(ΘΘΘ)

∂b∂α
=

n

∑
i=1

−cθxi

(α +1)2
(

1+ θxi
α+1

) ,

Jbθ =
∂ 2l(ΘΘΘ)

∂b∂θ
=

n

∑
i=1

ceθxi ( xie−θxi

α+1 −xie−θxi

(

1+ θxi
α+1

)

)
(

1+ θxi
α+1

) ,

Jcc =
∂ 2l(ΘΘΘ)

∂c2 =−
n(c2+a

[

−2cψ(b+a/c) +2cψ(a/c)+a(−ψ(1)(b+a/c)+ψ(1)(a/c))
]

c4 ,

Jcα =
∂ 2l(ΘΘΘ)

∂c∂α
= (b−1)

n

∑
i=1

−θxi

(α +1)2
(

1+ θxi
α+1

) ,

Jcθ =
∂ 2l(ΘΘΘ)

∂c∂θ
= (b−1)

n

∑
i=1

eθxi [ xie−θxi

α+1 −xie−θxi

(

1+ θxi
α+1

)

]
(

1+ θxi
α+1

) ,

Jαα =
∂ 2l(ΘΘΘ)

∂α2 =
n

(1+α)2 +
n

∑
i=1

−1
α +θxi

+(b−1)
n

∑
i=1



− cθ 2xi
2

(1+α)4
(

1+ θxi
α+1

) +
2cθxi

(α +1)3
(

1+ θxi
α+1

)





+(a−1)
n

∑
i=1

[

− e−2θx2
i θ 2xi

2

(1+α)4(1−e−θxi

(

1+ θxi
α+1

)2
)

− 2e−θxi θxi

(α +1)3(1−e−θxi (1−e−θxi

(

1+ θxi
α+1

)

]

,
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Jαθ =
∂ 2l(ΘΘΘ)

∂α∂θ
=

n

∑
i=1

−xi

(α +θxi)2
+(b−1)

n

∑
i=1

ceθxi (−xie−θxi

(α+1)2 + xie−θxi

(α+1)2 )
(

1+ θxi
α+1

)

+
cθxieθxi ( xie−θxi

α+1 −xie−θxi

(

1+ θxi
α+1

)

)

(1+α)2(1+ θxi
α+1)

2

+(a−1)
n

∑
i=1

xie−θxi

(α+1)2 − θxie−θxi

(α+1)2

1−e−θxi

(

1+ θxi
α+1

) −
θxieθxi (− xie−θxi

α+1 +xie−θxi

(

1+ θxi
α+1

)

)

(α +1)2(1−e−θxi

(

1+ θxi
α+1

)

)2
,

Jθθ =
∂ 2l(ΘΘΘ)

∂θ 2 =− n

θ 2 +
n

∑
i=1

−xi
2

(α +θxi)2

+(a−1)
n

∑
i=1



−
(− e−θxi xi

(1+α) +e−θxi xi

(

1+ θxi
α+1

)

)2

(1−e−θxi

(

1+ θxi
α+1

)

)2
+

2e−θxi xi
α+1 −e−θxi xi

2(1+ θxi
α+1)

1−e−θxi

(

1+ θxi
α+1

)





+(b−1)
n

∑
i=1

[

−
ceθxi xi(

xie−θxi

α+1 −xie−θxi

(

1+ θxi
α+1

)

)

(α +1)
(

1+ θxi
α+1

)2

+
ceθxi xi(

xie−θxi

α+1 −xie−θxi

(

1+ θxi
α+1

)

)
(

1+ θxi
α+1

) +
ceθxi (− 2xie−θxi

α+1 +xi
2e−θxi

(

1+ θxi
α+1

)

)
(

1+ θxi
α+1

)

]

.
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