Extended Eigenvalues of Direct Sum of Operators

Zameddin I.Ismailov ${ }^{1, *}$ and Elif Otkun Çevik ${ }^{2}$
${ }^{1}$ Karadeniz Technical University, Faculty of Sciences, Department of Mathematics, 61080 Trabzon, Turkey
${ }^{2}$ Karadeniz Technical University, Institute of Natural Sciences, 61080 Trabzon,Turkey

Received: 12 Apr. 2015, Revised: 27 May 2015, Accepted: 2 Jun. 2015
Published online: 1 Jul. 2015

Abstract

In this paper a connection between extended eigenvalues of direct sum of operators in the direct sum of Hilbert spaces and their coordinate operators has been investigated. Moreover, the structure of the set of extended eigenvalues of normal compact operators has been researched.

Keywords: Extended eigenvalue, direct sum of operators, compact operator.

1 Introduction

It is known that a complex number λ is called an extended eigenvalue of the linear bounded operator A in the Hilbert space H if there exists nonzero operator $T \in L(H)$ such that $T A=\lambda A T$, where $L(H)$ is a space of linear bounded operators. A set of extended eigenvalues of the linear bounded operators is denoted by $\Sigma(\cdot)$ [1].

Note that the structure of the set of extended eigenvalues in complex plane for operators in $L(H)$ have many different forms (for example, see [1-7]). One of the fundamental problems in this theory is to describe a structure of the set of extended eigenvalues in complex plane for linear bounded operators in Hilbert spaces.

2 Extended eigenvalues of direct sum of operators

In this section the structure of the set of eigenvalues of direct sum of operators will be investigated. Firstly, we prove the following result.

Theorem 2.1. Let H_{n} be a Hilbert space, $A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1} H_{n}$, $A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H)$. In this case for the set of extended
eigenvalues it is true that

$$
\bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right) \subset \Sigma(A)
$$

Proof. Firstly we assume that $\lambda \in \bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right)$. In this case there exists at least one natural number n_{λ} and nonzero operator $T_{n_{\lambda}} \in L\left(H_{n_{\lambda}}\right)$ such that

$$
T_{n_{\lambda}} A_{n_{\lambda}}=\lambda A_{n_{\lambda}} T_{n_{\lambda}}
$$

If we choose an operator $T_{\lambda}: H \longrightarrow H$ in form

$$
T_{\lambda}=\left\{0, \ldots, 0, T_{n_{\lambda}}, 0, \ldots\right\}
$$

where operator $T_{n_{\lambda}}$ is placed in n_{λ}-th index, then operator $T_{\lambda} \in L(H), T_{\lambda} \neq 0$ and $T_{\lambda} A=\lambda A T_{\lambda}$. Hence, $\lambda \in \Sigma(A)$, i.e.

$$
\bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right) \subset \Sigma(A)
$$

Theorem 2.2. Let H_{n} be a Hilbert space,
$A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1}^{\infty} H_{n}$, $A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H), \lambda \in \Sigma(A)$ such that $T A=\lambda A T$ and $T H_{n_{\lambda}} \subset H_{n_{\lambda}}$ for some $n_{\lambda} \in \mathbb{N}$. Then $\lambda \in \bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right)$, i.e.
$\left\{\lambda \in \Sigma(A): T A=\lambda A T \quad\right.$ and there exists $\quad n_{\lambda} \in \mathbb{N} \quad$ such

[^0]that $\left.T H_{n_{\lambda}} \subset H_{n_{\lambda}}\right\} \subset \bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right)$
Proof. Let us $\lambda \in \Sigma(A)$. Then there exists nonzero operator $T \in L(H)$ such that $T A=\lambda A T$. In this case from relation $T A=\lambda A T$ it is obtained that
$$
T A_{n}=\lambda A T_{n}, n \geq 1
$$
where T_{n} is a restriction of the operator T to the space $H_{n}, n \geq 1$. Since $T H_{n_{\lambda}} \subset H_{n_{\lambda}}$ for some $n_{\lambda} \in \mathbb{N}$ and $T_{n_{\lambda}} \neq 0$, then it is established that
$$
T_{n_{\lambda}} A_{n_{\lambda}}=\lambda A_{n_{\lambda}} T_{n_{\lambda}}
$$
i.e. $\lambda \in \Sigma\left(A_{n_{\lambda}}\right)$. Consequently
$$
\lambda \in \bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right)
$$

From these theorems we have the following corollary.
Corollary 2.3. Let H_{n} be a Hilbert space, $A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1}^{\infty} H_{n}$, $A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H)$. If for each $\lambda \in \Sigma(A)$ there exists $T_{\lambda} \in L(H)$ such that $T_{\lambda} A=\lambda A T_{\lambda}$ and there exists $n_{\lambda} \in \mathbb{N}$ such that $\{0\} \neq T_{\lambda} H_{n_{\lambda}} \subset H_{n_{\lambda}}$, then

$$
\Sigma(A)=\bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right)
$$

Theorem 2.4. Let H_{n} be a Hilbert space, $A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1}^{\infty} H_{n}$, $A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H)$. If $A_{m}=0$ for some $m \in \mathbb{N}$, then $\Sigma(A)=\mathbb{C}$.

Proof. Indeed, if we choose the operator $T=\bigoplus_{n=1}^{\infty} T_{n}: H \longrightarrow H$ in following form

$$
T_{m} \neq 0 \quad \text { and } \quad T_{n}=0, n \neq m, n \geq 1, T_{n} \in L\left(H_{n}\right)
$$

then it is clear that an equation $T A=\lambda A T$ is hold for any $\lambda \in \mathbb{C}$ and $T \in L(H)$.

Theorem 2.5. Let H_{n} be a Hilbert space, $A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1}^{\infty} H_{n}$, $A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H)$. If for some $m \in \mathbb{N}$ an operator A_{m} is a nilpotent in H_{m}, then $\Sigma(A)=\mathbb{C}$.

Proof. In this case the operator T can be choosen

$$
T=0 \oplus \cdots \oplus 0 \oplus A_{m}^{k-1} \oplus 0 \oplus \cdots,
$$

where $k \in \mathbb{N}$ is a nilpotency index of the operator A_{m}.
It is known that if A is a normal compact operator in a Hilbert space H, then it can be written as a direct sum of operators, i.e. $A=\bigoplus_{n=0}^{\infty} \mu_{n} E_{n}$, where $E_{n}: H_{n} \longrightarrow H_{n}$ is a identity operator, $H_{n}=H_{\mu_{n}}(A)$ is a subspace of eigenelements corresponding to eigenvalue μ_{n} of the operator A for any $n \geq 0, \mu_{0}=0$. Moreover $H=\bigoplus_{n=0}^{\infty} H_{n}$, where $H_{0}=\operatorname{ker} A$.

Theorem 2.6. If A is a normal compact operator in a Hilbert space $H, \operatorname{ker} A \neq 0, \sigma_{p}(A)=\left\{\mu_{n}: n \geq 0\right\}$ is point spectrum of $A, H_{n}=H_{\mu_{n}}(A), n \geq 0$ is a subspace of eigenelements corresponding to eigenvalue μ_{n} of the operator A, then $\Sigma(A)=\mathbb{C}$.
Proof. Since $A_{0}=0$ in the direct sum $A=\bigoplus_{n=0}^{\infty} \mu_{n} E_{n}$ in the Hilbert space $H=\bigoplus_{n=0}^{\infty} H_{n}$, then from the Theorem 2.4 it is obtained that $\Sigma(A) \stackrel{n=0}{=} \mathbb{C}$.

The following examples are some applications of the last theorem.

Example 1. Let us

$A: l_{2}(\mathbb{N}) \longrightarrow l_{2}(\mathbb{N}), A\left(x_{n}\right)=\left\{0, w_{2} x_{2}, w_{3} x_{3}, \ldots\right\},\left(x_{n}\right) \in l_{2}(\mathbb{N})$,
where $\left(w_{n}\right)$ is a sequence of complex numbers such that $\lim _{n \longrightarrow \infty} w_{n}=0$.

It is clear that A is normal compact operator. Then from above theorem we have $\Sigma(A)=\mathbb{C}$.

Example 2. Let H be any Hilbert space, M be any linear manifold in $H, M \neq H, \operatorname{dim} M<\infty$ and $P: H \longrightarrow M$ is an orthogonal projection compact operator in H.

In this case from Theorem 2.6 it is clear that $\Sigma(P)=\mathbb{C}$.

Example 3. In Banach space B there exists a compact operator A such that $\Sigma(A)=\mathbb{C}$.

Indeed, if we assume that $B=l_{p}(\mathbb{N}), 1 \leq p<\infty$ and for any $x=\left(x_{n}\right) \in l_{p}(\mathbb{N})$
$A\left(x_{n}\right)=\left\{w_{1} x_{1}, 0, w_{3} x_{3}, 0, w_{5} x_{5}, \ldots, 0, w_{2 n-1} x_{2 n-1}, 0, \ldots\right\}$,
where $\left(w_{n}\right)$ is a sequence of complex numbers such that $\lim _{n \rightarrow \infty} w_{n}=0$, then A is compact operator in $l_{p}(\mathbb{N})$. Moreover an operator defined in form
$T: l_{p}(\mathbb{N}) \longrightarrow l_{p}(\mathbb{N}), 1 \leq p<\infty$,
$T\left(x_{n}\right)=\left\{0, x_{2}, 0, x_{4}, 0, \ldots, 0, x_{2 n}, 0, \ldots\right\}, x=\left(x_{n}\right) \in l_{p}(\mathbb{N})$, it is hold that $T A=A T=0$. Consequently, $\Sigma(A)=\mathbb{C}$.

Theorem 2.7. Let A be a normal compact operator in a Hilbert space $H, \sigma_{c}(A)=\{0\}, \sigma_{p}(A)=\left\{\mu_{n}: n \geq 1\right\}$ is point spectrum of $A=\bigoplus_{n=1}^{\infty} \mu_{n} E_{n}, H_{n}=H_{\mu_{n}}(A), n \geq 1$ is a subspace of eigenelements corresponding to eigenvalue μ_{n} of the operator $A, H=\bigoplus_{n=1}^{\infty} H_{n}, \lambda \in \Sigma(A), T A=\lambda A T$ and T_{n} is a resrtiction of the operator T to the space $H_{n}, n \geq 1$. In this case if $T_{n} H_{n} \cap H_{m} \neq\{0\}$ and $T_{n} H_{n} \cap H_{k} \neq\{0\}$ for some $m, k \in \mathbb{N}$, then $m=k$ and $\lambda=\frac{\mu_{n}}{\mu_{m}}$.

Proof. In this case there exists an element $x_{n}^{m} \in H_{n} \backslash\{0\}$ such that

$$
T x_{n}^{m} \in H_{m} \backslash\{0\} \quad \text { and } \quad T_{n} A_{n} x_{n}^{m}=\lambda A_{m} T_{n} x_{n}^{m} .
$$

Therefore

$$
\left(\mu_{n}-\lambda \mu_{m}\right) T_{n} x_{n}^{m}=0
$$

Consequently

$$
\lambda=\frac{\mu_{n}}{\mu_{m}}
$$

In a similar way it can be obtained that $\lambda=\frac{\mu_{n}}{\mu_{k}}$. From this we have $\mu_{m}=\mu_{k}$, then $m=k$.

Theorem 2.8. For a normal compact operator A with $\operatorname{ker} A=\{0\}$ it is true that

$$
\Sigma(A) \subset \bigcup_{n, m=1}^{\infty}\left\{\frac{\mu_{n}}{\mu_{m}}\right\}
$$

where $\mu_{n}, n \geq 1$ is a nonzero eigenvalue of A.
Proof. Let $\lambda \in \Sigma(A)$. Then there exists nonzero operator $T \in L(H)$ such that $T A=\lambda A T$. Since $T \neq 0$, then there exists $n_{\star} \in \mathbb{N}$ such that $T_{n_{\star}} \neq 0, T_{n_{\star}}$ is a restriction of the operator T to the space $H_{n_{\star}}, n_{\star} \geq 1$. From last relation there exists $x_{n_{\star}} \in H_{n_{\star}} \backslash\{0\}$ such that $T_{n_{\star}} x_{n_{\star}} \neq 0$. Additionally, there exists $m_{\star} \in \mathbb{N}$ such that

$$
y_{m_{\star}}=T_{n_{\star}} x_{n_{\star}} \in H_{m_{\star}} \backslash\{0\} .
$$

In this case from relation $T A=\lambda A T$ it is obtained that

$$
T A_{n_{\star}}=\lambda A T_{n_{\star}}, n_{\star} \geq 1
$$

Then for $x_{n_{\star}} \in H_{n_{\star}} \backslash\{0\}, n_{\star} \geq 1$

$$
T A_{n_{\star}} x_{n_{\star}}=\lambda A T_{n_{\star}} x_{n_{\star}}
$$

From this

$$
\mu_{n_{\star}}\left(T_{n_{\star}} x_{n_{\star}}\right)=\lambda \mu_{m_{\star}}\left(T_{n_{\star}} x_{n_{\star}}\right)
$$

Then

$$
\left(\mu_{n_{\star}}-\lambda \mu_{m_{\star}}\right) T_{n_{\star}} x_{n_{\star}}=0
$$

Since $T_{n_{\star}}, n_{\star} \geq 1$, then $\lambda=\frac{\mu_{n_{\star}}}{\mu_{m_{\star}}}$.
Actually, the last results are true for the large class of linear bounded operators too.

Theorem 2.9. If $A \in L(H), \operatorname{ker} A=\{0\}, \sigma(A)=\sigma_{p}(A)=$ $\left\{\mu_{n}: n \geq 0\right\}, H_{n}=H_{\mu_{n}}(A)$ is a subspace of eigenelements corresponding to eigenvalue μ_{n} of the operator A for any $n \geq 1$ and $H=\bigoplus_{n=1}^{\infty} H_{n}$. In this case it is true that

$$
\Sigma(A)=\bigcup_{m, n=1}^{\infty}\left\{\frac{\mu_{m}}{\mu_{n}}\right\}
$$

Proof. For the simplicity of explanations let us $A x_{n}=\mu_{n} x_{n}, \operatorname{dim} H_{n}=1$. In work [5] it has been proved that

$$
\Sigma(A) \subset\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda A) \neq \varnothing\}
$$

From this and the structure of the spectrum A it is implied that

$$
\Sigma(A) \subset \bigcup_{n, m=1}^{\infty}\left\{\frac{\mu_{n}}{\mu_{m}}\right\}
$$

Now we assume that $T \in L(H), T_{n}$ is a restriction of the operator T to the subspace H_{n} for $n \geq 1$. If we choose operator $T=\bigoplus_{n=1}^{\infty} T_{n}: H \longrightarrow H$ in form

$$
T_{n} x_{n}=x_{m}, n \geq 1 \quad \text { and } \quad T_{k}=0, k \neq n
$$

then for $x=\left(x_{n}\right) \in H$ it is clear that

$$
\begin{aligned}
T A x & =T A\left(x_{n}\right)=T\left(A_{n} x_{n}\right)=T\left(\left\{A_{1} x_{1}, A_{2} x_{2}, \ldots, A_{n} x_{n}, \ldots\right\}\right) \\
& =T\left(\left\{\mu_{1} x_{1}, \mu_{2} x_{2}, \ldots, \mu_{n} x_{n}, \ldots\right\}\right) \\
& =\left\{0,0, \ldots, 0, \mu_{n} x_{m}, 0, \ldots\right\}
\end{aligned}
$$

In a similar way it can be shown that

$$
\begin{aligned}
A T x & =A T\left(\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}\right)=A\left(\left\{0,0, \ldots, 0, x_{m}, 0, \ldots\right\}\right) \\
& =\left\{0,0, \ldots, 0, \mu_{m} x_{m}, 0, \ldots\right\}
\end{aligned}
$$

Then for the $\lambda=\frac{\mu_{m}}{\mu_{n}} \in \mathbb{C}$ and $T \in L(H), T \neq 0$ we have

$$
T A x=\left(\frac{\mu_{m}}{\mu_{n}}\right) A T x
$$

This means that

$$
\frac{\mu_{m}}{\mu_{n}} \in \Sigma(A), m \geq 1, n \geq 1
$$

Consequently

$$
\bigcup_{m, n=1}^{\infty}\left\{\frac{\mu_{m}}{\mu_{n}}\right\} \subset \Sigma(A)
$$

Hence

$$
\Sigma(A)=\bigcup_{m, n=1}^{\infty}\left\{\frac{\mu_{m}}{\mu_{n}}\right\}
$$

Corollary 2.10. If $A \in C_{\infty}(H), \operatorname{ker} A=\{0\}, \sigma_{p}(A)=\left\{\mu_{n}:\right.$ $n \geq 1\}$, then

$$
\Sigma(A)=\bigcup_{m, n=1}^{\infty}\left\{\frac{\mu_{m}}{\mu_{n}}\right\}
$$

Theorem 2.9 and Corollary 2.10 give some ideas on the form of the set of extended eigenvalues in complex plane (see [7]).

Example 4. Unfortunately these results are not true for nonnormal compact operators. For example, the Volterra operator

$$
V: L_{2}(0,1) \longrightarrow L_{2}(0,1), V f(x)=\int_{0}^{x} f(t) d t, f \in L_{2}(0,1)
$$

is a nonnormal compact operator in $L_{2}(0,1)$ and $\Sigma(V)=$ $(0,+\infty)$ (see [1]).

On the other hand in Hilbert space H there exists nonnormal compact operator A such that $\Sigma(A)=\{1\}$ [7].

Theorem 2.11. Let H_{n} be a Hilbert space, $A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1}^{\infty} H_{n}$, $A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H)$. If $\operatorname{dim} H<\infty$, then

$$
\Sigma(A)=\bigcup_{n, m=1}^{\infty}\left\{\lambda \in \mathbb{C}: \sigma\left(A_{n}\right) \cap \sigma\left(\lambda A_{m}\right) \neq \varnothing\right\}
$$

In general case

$$
\Sigma(A) \subset \bigcup_{n, m=1}^{\infty}\left\{\lambda \in \mathbb{C}: \sigma\left(A_{n}\right) \cap \sigma\left(\lambda A_{m}\right) \neq \varnothing\right\}
$$

Proof. Under these conditions it is easy to prove that

$$
\sigma(A)=\sigma_{p}(A)=\bigcup_{n=1}^{\infty} \sigma_{p}\left(A_{n}\right)
$$

On the other hand for the case $\operatorname{dim} H<\infty$ it is known that

$$
\Sigma(A)=\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda A) \neq \varnothing\} .
$$

But for any Hilbert space

$$
\begin{equation*}
\Sigma(A) \subset\{\lambda \in \mathbb{C}: \sigma(A) \cap \sigma(\lambda A) \neq \varnothing\} \tag{5}
\end{equation*}
$$

Hence the above relations are true.

Remark 2.12. Let H_{n} be a Hilbert space, $A_{n}: H_{n} \longrightarrow H_{n}, \quad A_{n} \in L\left(H_{n}\right)$ for any $n \geq 1, H=\bigoplus_{n=1}^{\infty} H_{n}$,
$A=\bigoplus_{n=1}^{\infty} A_{n} \in L(H)$. In general

$$
\Sigma(A) \neq \bigcup_{n=1}^{\infty} \Sigma\left(A_{n}\right)
$$

Proof. It is sufficient that to give an example for the validity of this claim. Assume that H_{1} and H_{2} are any Hilbert spaces,
$A_{1} \in L\left(H_{1}\right), A_{2} \in L\left(H_{2}\right), H=H_{1} \oplus H_{2}, A=A_{1} \oplus A_{2}$,
$\sigma\left(A_{1}\right)=\{1,3\}, \sigma\left(A_{2}\right)=\{2,4\}$
In this case

$$
\begin{aligned}
& \left\{\lambda \in \mathbb{C}: \sigma\left(A_{1}\right) \cap \sigma\left(\lambda A_{1}\right) \neq \varnothing\right\}=\{1,3,1 / 3\} \\
& \left\{\lambda \in \mathbb{C}: \sigma\left(A_{2}\right) \cap \sigma\left(\lambda A_{2}\right) \neq \varnothing\right\}=\{1,2,1 / 2\} \\
& \left\{\lambda \in \mathbb{C}: \sigma\left(A_{1}\right) \cap \sigma\left(\lambda A_{2}\right) \neq \varnothing\right\}=\{1 / 2,1 / 4,3 / 4,3 / 2\}, \\
& \left\{\lambda \in \mathbb{C}: \sigma\left(A_{2}\right) \cap \sigma\left(\lambda A_{1}\right) \neq \varnothing\right\}=\{2 / 3,4 / 3,2,4\} .
\end{aligned}
$$

Then from Theorem 2.11 it is clear that

$$
\begin{aligned}
\Sigma(A) & =\{1,1 / 4,1 / 3,1 / 2,2 / 3,3 / 4,4 / 3,3 / 2,2,3,4\} \\
& \neq \Sigma\left(A_{1}\right) \cup \Sigma\left(A_{2}\right)=\{1,1 / 3,1 / 2,2,3\}
\end{aligned}
$$

3 Conclusions

In this paper the inner structure of the set of extended eigenvalues of direct sum of operators defined in the direct sum of Hilbert spaces has been researched. In particular this problem for normal compact operators has been investigated more deeply. In corresponding places the obtained results have been supplemented by examples.

Acknowledgement

The authors are grateful to G. Ismailov (Marmara University, Istanbul) for his technical suggestions.

References

[1] A. Biswas, A. Lambert and S. Petrovic, GlasgowMath. J., 44, 521-534 (2002).
[2] A. Lambert, New York J. Math., 10, 83-88 (2004).
[3] M. T. Karaev, Methods Func. Anal. Topology, 11, 48-59 (2005).
[4] M. T. Karaev, Proc. Amer. Math. Soc., 134, 2883-2392 (2006).
[5] A. Biswas and S. Petrovic, Int. Equat. Oper. Theory, 55, 233248 (2006).
[6] S. Petrovic, Int. Equat. Oper. Theory, 57, 593-598 (2007).
[7] S. Shkarin, J. Math. Anal. Appl., 332, 455-462 (2007).

[^1]

Elif Otkun Çevik is PhD student in Institute of Natural Sciences of Karadeniz Technical University. Her main interests are functional analysis, operator theory and spectral theory of operators.

[^0]: * Corresponding author e-mail: zameddin.ismailov@gmail.com

[^1]: Zameddin I. Ismailov received the PhD degree in Mathematical Analysis in Institute of Mathematics of NASU in Kiev. His research interests are functional analysis, operator theory and applied mathematics. He is referee of mathematical journals.

