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Abstract: In this paper, we define and study the notions of greékernel for any set (brieflyf,\f}( ), generalized\Pj-sets,/\P]-closed
sets and#-generalized pre-closed (briefly’-gp-closed) sets by using pré-open sets in ideal topological spaces. The family of
/\'}-sets, which is stronger than the class of pfespen sets, is introduced. The coIIection/@-sets is Alexandroff space is proven.

Also, we propose and characterize some relevant low sépauatioms, namely pre#-t; and prerﬂ-r%. The concepts\P() (resp.
A(), Az () from pre-#-kernel of any set with different kinds of ideals are dedudéatiants of continuity, namelxk!'}-continuous,

quasiJ\P]-continuous,/\;-irresolute and strongly preZ-irresolute functions in terms orﬂ}-open sets are characterized. Moreover,
the relationships between these classes of functionsudtiedt Some properties and characterizations of them aainell.

Keywords: pre-#-open sets,7-gp-closed sets(,\fc,-continuous functions

1 Introduction sets and investigates related features. The coneeffts
(resp.A( ), Ayz()) from pre-7-kernel of any set with

. ) ) different kinds of ideals are deduced.
Kuratowski [LO] defined the concept of ideals on

topological spaces. Jankovic and Hamlé&ft ihtroduced
the notion of.#-open sets in topological spaces. Several P
kinds of .#7-openness are initiated. Abd El-Monsef et al. 2 preliminaries
[1] investigated further properties of-open sets and
#-continuous functions. Dontche\3][ introduced the
notion of pre=#-open sets and obtained a decomposition
of .#-continuity. In 2002, Hatir and Noiriq] presented
the concept of semi#-open sets in ideal topological
spaces. Recently, Noiri and Keskit4] introduced the
notions of A ,-sets,.#-g-closed sets anf| ,-closed sets
by using .#-open sets. They used these notions to

characterize some related separation axioms. P It is obvious that the simplest ideals af@®} and
In th|s. papgr, we geﬂne the notions of\j-sgts, P (X). Furthermore,#; is the ideal of finite sets in (X,
generallzedAj-s:ets,A]-closed sets ach—generallze_d 7). A topological space (X7) with an ideal.# on X is
pre-closed (briefly ./-gp-closed) sets by USING c5eq an ideal topological space and is denoted byr(X,
pre-7-open sets in ideal topological spaces. Several ;) “Gjyen an ideal topological space (X, .#), a set
characteristics are studied. Also, two low Separat'onoperator() . P(X)—2(X), is called a local function
axioms, namely pre#-1, and pre-/-7, are presented. 10 of A with respect tor and.#, is defined as follows:
Moreover, we characterize variants of continuity, namelyfor ACX, A*(.#, 1)={xeX | UnA¢.# for every
A,-continuous, quast,-continuousA -irresolute and ~ Uet(x)}, where 1(x)={UcT | xcU}. When there is no
strongly pre=#-irresolute functions in terms dﬁf}-open chance for confusion, we will simply write’Afor A*(.#,

Throughout this paper/?(X), cl(A) and int(A) denote the
power set of X, the closure of A and the interior of A,
respectively.

An ideal .# [10] on a topological space (Xt) is a
nonempty collection of subsets of X, which satisfies the
following two properties:

(i) Ae.Z and BCA implies Be.7.
(i) AeZ and B=.# implies AUBE.#.
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7). In general, X is a proper subset of X. The hypothesis 3 /\;-Sets and Its Properties

X=X* [8] is equivalent to the hypothesis).#/=0 [15].
For any ideal topological space (X, .#), there exist a
topology 7(.#, 1), is called thex-topology, finer tharr,
generated by the collectiof(.#, 1)={V - E | Vet and
Ec.7}, but in genera3(.#, 1) is not always a topology
[9]. Additionally, cF(A)=AUA*(.#, 1) [9] defines a
Kuratowski closure operator for a topolog$(.#, 1). For
a subset A of an ideal topological space @X,.%), A is
said to bet*-closed P] (resp. x-perfect B]) if A*CA
(resp. A=A).

Lemma 2.1.[9] Let (X, 1) be a topological space with
ideals.# and_# on X. For subsets A and B of X, we have
the following assertions:

(i) A*CB* if ACB.

(i) A*=cl(A*)Ccl(A).

(i) A**CA*,

(V) A*( Z£)CA () if FC 7.

(v) (AuB)*=A*UB* and (ANB)*CA*UB*.

(Vi) UnA*C(UnA)*if Uer.

Definition 2.2. A subset A of an ideal topological space
(X, 1, .¥) is said to be

(i) pre-open 2] if A Cint cl(A).

(i) .#-open ] if A Cint (A*).

(iii) semi-#-open [7] if A Ccl* int(A).

(iv) pre--Z-open [1] if A Cint cl*(A).

The complement of semi- (resp. pre#-open set is
said to be semi- (resp. pre# -closed. The family of all
semi- (resp. pre-)#-open sets of an ideal topological
space (X,1, .#) is denoted by SIO(X7) (resp. PIO(X,
7).

Lemma 2.3.[1] For an ideal topological space (X, .#),
the following statements hold:

(i) Arbitrary union of pre=#-open sets is preZ-open.

(ii) Intersection of pre-open set and open set is pré-
open.

(iii) Every pre-#-open set is pre-open.

(iv) Every .7 -open set is preZ-open.

Definition 2.4. [1] Let A be a subset of an ideal
topological space (X1, .#). Then,

(i) Pre~7-closure of A, denoted by gl(A), is the
intersection of all pre#-closed sets that contain A.

(ii) Pre-7-interior of A, denoted by i (A), is the union
of all pre-#-open sets contained in A.

Definition 2.5. A set A of an ideal topological space (X,
T, .%)is t*-dense if ct(A)=X.

Definition 2.6. [2] A topological space (X,1) is an
Alexandroff space if arbitrary intersections of setstin
belongs tar.

Definition 2.7.[4] An ideal topological space (X, .¥)

is said to bex-extremally disconnected if the*-closure
of every open subset A of X is open. Equivalently; cl
int(A) Cint cl*(A) for every ACX.

Definition 3.1. The pre=#-kernel of a set A in an ideal
topological space (X7, .#), denoted by/\ (A), is the
intersection of all pre#-open superset of A, ie.
AP (A)=n{UePIO(X, T) | ACU}.

Lemma 3.2.Let A be a subset of an ideal topological
space (X1, .#). Then,

(i) If 7={0}, thenA",(A)=AP(A), (where AP(A)=n{U |
ACU, U pre-open [5])

(ii) If .#=2; and (X,7) is 11-space, then", (A)=AP(A).
iy 1f 7=2(X), then AF (A= /\(A) (where
AA)=N{Uet | ACU} [171]).

(iv) If AePIO(X, 1), then AP (A)=A,(A), (where
Ay (A)=N{U | ACU, U .#-open[14).

proof. Straightforward.

Lemma 3.3.Let A be a subset of an ideal topological
space (X,1, .#). Then, AP (A)=A(A) is true if one of the
following statements holds

(i) Every pre-#-open set ig*-closed.

(i) Every pre-#-open set is-perfect.

(ii) PIO(X, T)C.7.

Proof. Straightforward.

Some of fundamental properties of prekernel of
sets will be shown in the next Lemma.
Lemma 3.4.For sets A, B and A (a€l’) of an ideal
topological space (X1, .¥), the following properties
hold:
(i) AY, (A)C/\y(A)
(i) AP ((D) 0 andAF, (X)=X.
(|||)AC/\ (A).
(iv) ACB, then/\P P (A)CAF,(B).
(V) AE AT (A)=AF,(A).
(w)AePIO(X r) then A=\T (A).
(Vi) AT (Uaer Aa)= Uael'/\y(Aa)
(viii) AY, (Naer Aa)SNaer A (Aa).
(ix) AT (ANB)CAF (A)UA(B).
Proof. We prove only (vii) and the rest of the proof
follows directly from Definition 3.1.
(vii) Suppose ¥Uger (A%, (Aq)), then xtAF (Aq) for
each aelr. Therefore, for eachael there exists
UyePIO(X, 1) such that ¥U, and A;CUg. Thus
Uaer (Aa)CUaer (Ug) andUger (Ug)€PIO(X, T) which
does not contain x. Which implies thaﬁmf}(uaerAa).
ConsequentlyAP, (Uger Aq)CUqer AR, (Aq). Obviously
Uger A (Aa)CAT (Uger Ag). Hence,
/\Py(Uael'Aa)_Uael'/\Py(Aa)
Corollary 3.5. (i) intp (A) CAT,(A).
(ii) Intp|(A) AP (A) if A ePIO(X, T).
(i) AP (A)Cclp|(A) if A ePIO(X, 1).
(iv) pr| (A)C/\ (A) if Ais pre-#-closed set.

In view of Lemma 3.4, the next theorem hold.

(@© 2017 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett6, No. 1, 97-103 (2017) www.naturalspublishing.com/Journals.asp

99

Theorem 3.6.The collection of all pre#-kernel of sets is
supra topological space.

Lemma 3.7.Let (X, T) be a topological space with two

ideals.#, # on X. For a subset A of X, the following

statements hold:

(|)/\ (A)C/\ (A If IC 7.

(ii) 1Y, m/(A)C/\ (A)mA - (A).

(iif) /\P L (AUAP, (A)C/\%/(A)

Proof. (i) JC/ then A(_#)CA*(.#). Hence, every

Pre- 7 -open is pre#-open. Therefore/\ (A)C/\p (A)

by using Definition 3.1. The rest of the proof follows

directly from (i).

Definition 3.8. [16] Let A be a subset of an ideal

topological space (X1, .#). Then/\ > (A)=N{UeSIO(X,

T) | ACU}.

Theorem 3.9.Let (X, T, .%) bex-extremally disconnected

space and AX. Then, AR, (A)CAS,(A).

Proof. Immediate consequence of Definition 2.7.

Definition 3.10. The concept ofA",-sets in an ideal

topological space (X1, .#) is the set that coincide with

their pre=#-kernel. In other words, A is calledf}-set if
="V (A).

Theorem 3.11.Let (X, 17, .#) be an ideal topological

space. Then, the following statements hold:

(i) 0, X areAF, —sets.

(i) AP Z(A)is /\ -set, for any set A of X.

(iii) Every pre-f openisn¥, -set.

(iv) Every T*-dense s\ -set.

(v) Union of AF, -sets isAF -set.

(vi) Intersection ofAY -sets isA7 -set.

Proof. Follows directly from Lemma 3.4 and Definition

3.10.

Corollary 3.12. The class of allA",-sets is finer than

PIO(X, 1).

Theorem 3.13.Let (X, 1, .#) be an ideal topological

space, therrA»F}:{A | Ais AP -set is an Alexandroff

topology on X.

Proof. Immediate consequence of (i), (v), (vi) of Theorem

3.11.

Corollary 3.14. PIO(X, T)C 1"

Lemma 3.15.Let (X, 1, .#) be an ideal topological space.
If Ais AP, -setand AZBCAF,(A), then B isAF, -set.

Proof. Let A be AF,-set, then A=F,(A). Since
ACBCAF, (A) then B=AT,(A) and so
AF (B)=AF, A, (A)=A,(A)=B.

Definition 3.16.A subset A of an ideal topological space
X, 1, f) is said to be generalize@lP -set (briefly g/\P

set) if AP *»(A)CF whenever AF and F ist-closed set.
Lemma 3.17.Let (X, 1, .¥) be an ideal topological space
and ACX. Then, the following properties hold:

(i) Union of g A7 -sets is g\7 -set.

(i) Ais AP, -setif it is botht-closed and g\F -set.
(iii) If Ais g AF,-set and AZBCAF,(A), then B is gAF, -
set.
Proof. (i) Let A, B be g A -sets, (AJB)CF and F is
7-closed set, then &F and KF HenceF, (A)CF and

7 ,(B)gF and so [ (A)U/\ /(B)]CF. Therefore,
AP, (AUB)CF and so (AuB) is g /\f’ -set.
(ii) It is clear that ACA7,(A). Since A ist-closed and g
AP -set, then/\'}(A)CA Hence, A=\7,(A) and so A is
A ]-set
(iif) Assume that BZF and F ist-closed set. Since @B
and A is g AY-set, then AT (A)CF and so
AF(B)CAF, AF (A)CF. Consequently, B is gF,-set.
Lemma 3.18.Let (X, T, f) be an ideal topologlcal space,
then a subset A of X is g,-set ifand only |f/\ (A)NU=0
whenever A\U=0 and U=T.
Proof. Obvious
Theorem 3.19.A subset A of an ideal topological space
(X, 1, ) is g AF,-set if and only if A7, (A) Ccl(A).
Proof. Let x¢cl(A), then there is WY1 such that AU=0
and xU. Since A is gAF,-set, then by Lemma 3.18,
AP (A)NU=0. Consequently, ¢<A_f}(A). On the other
hand, assume that &, F is 71-closed set and
AP (A) Ccl(A). Then, by
AP (A)Ccl(A)Ccl(F)=F. Hence, A is g\",-set.
Lemma 3.20.Let (X, 1, .¥) be an ideal topological space
and A be g/\;—set of X. Then, F=X holds for every-
closed set F such that (X%, (A))UACF.
Proof. Immediate.
Lemma 3.21.Let (X, 1, .¥) be an |deal topological space
and A be gAﬂ-set of X. Then, (X AP 7 (A))UA s 1-closed
set if and only if A |s/\P -set.

Proof By Lemma 3.20, (X -AP "7 (A))UA=X. Thus,
AP (A)N(X - A)=0 i.e., AF,(A)CA. Hence, AF,(A)CA
and SO A |s/\f° -set. The other side is obvious.

Definition 3.22. A subset A of an ideal topological space
(X, 1, ) is said to bes-generalized pre-closed (briefly
& -gp-closed) if ACU whenever AZU and U=PIO(X, ).
The complement of ar¥ -gp-closed set is said to h€é-gp-
open.

Lemma 3.23.(i) Finite union of .#-gp-closed sets i/ -
gp-closed.
(ii) Every T*-closed set is# -gp-closed.

Proof. (i) Let A, B be .#-gp-closed sets, (AB)CU and
UePIO(X, 1), then ACU and BCU. Hence, ACU and
B*CU and so AUB*CU. Therefore, (AJB)*CF by using
Lemma 2.1. So (AB) is .#-gp-closed-set.

(i) Obvious.

Theorem 3.24.A subset A of an ideal topological space
(X, 1, #) is .7-gp-closed if and only if ACAT, (A).

Proof. Let x¢ A7, (A), then there is GPIO(X, T) such that
ACU and xtU. Since A is.#-gp-closed set, then’A_U.

hypothesis
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Hence xA* and so Ag/\"}(A). On the other hand,
assume that AU and U=PIO(X, 7). Then, by hypothesis
A*CAP (A)C/\ (U)=U. Hence A is#-gp-closed.

Lemma 3.25.For each xX, either{x} is pre-#-closed
or {x} is .#-gp-open set.

Proof. Suppose thafx} is not pre-#-closed. Then, (X -
{x}) is not pre=Z-open and the only preZ-open set
containing (X -{x}) is X itself. Thus, (X -{x})*CX and

hence (X - {x}) is .#-gp-closed. Therefore{x} is

Z-gp-open set.

Definition 3.26. An ideal topological space (X, .#) is
said to be pre#-14 if for any pair of distinct points x and
y of X there exist pre#-open sets U, V of X such that
xeU, y¢U and yeV, x¢V.

Lemma 3.27.For an ideal topological space (X,.#), the
following properties are equivalent:

@) (X, 1, F) is pre-7-13.

(i) For each xeX, the singleton{x} is AF, -set.

(iii) For each »eX, the singletor{x} is pre-#-closed set.

Proof. (i) = (ii) Let x be any point of X. For eachgX,
y#X, there exists preZ-open set U such thateU and
y¢U. Thus, we have gAF, {x} This shows that
AP AX}C{x}. Since {x}CA%{x}, we obtain
{x}=n%{x}.

(i) = (iii) Let x be any point of X and ¥X - {x}.
Then, we havey}=A" {y}. So there exists pre£-open
set i, such that ¢Vy and ¥eVy. Thus, yeVyC(X - {x})
and so (X -{x})=U{Vy | ye(X - {x})}. By Lemma 2.3,
(X - {x}) is pre-#-open set and s{x} is pre-#-closed.
(iiiy = (i) Straightforward.

Theorem 3.28.For an ideal topological space (X, .¥),
the following properties are equivalent

) (X, 1, %) is pre-7-13.

(ii) Every subset of X is\F -set.

(iii) Every pre-#-closed set of X is\F -set.

Proof. (i)=(ii) Let A be any subset of X, then by Lemma
3.27, for any point x in A, the singletofix} is A%, -set.
Therefore, A is\",-set in view of Theorem 3.11.
(if) = (iii) Obvious.

(i) =(i) Obvious.

Corollary 3.29. Let (X, 1, .#) be an ideal topological
space, then (Xr@) is always pre#-1;.

4 AF,-Closed Sets

Definition 4.1. A set A of an ideal topologlcal space (X,
1, ) is called/\,-closed set if there eX|srt7-set B and
T*-closed set C such that A¥EC. A set is said to be a
AF,-open set if its complement is%, -closed.

In view of X is both AF,-set andr*-closed set, then
proof of next lemma is |mmed|ate

Lemma 4.2.(i) Every AP, -set isAF, -closed set.
(ii) Every t*-closed set ism'}-closed set.

Next we show some results related Wi}Nﬁ}-closed
sets.

Lemma 4.3.For a set A of an ideal topological space (X,
1, .#), the following statements are equivalent

(i) Ais AP -closed set.

(i) A= Bﬂcl*(A) where B isn", -set.

(iii) A= AP 7 (A)NCl*(A).

Proof. (i)=(ii) Let A be /\f}-closed set, then there exist
AF,-set B andr*-closed set C such that AEC. Since
ACC, then ct(A)CC and so A-BNcl*(A)CBNC=A.
Hence A=Bcl*(A).

(il =(iii) Assume that A= BWCI*(A) and B is AP, -set.
Since ACB, then /\ (A)C/\ (B)=B follows from
Lemma 3.4. Therefore g/\;(A)ﬂcl*(A)gBmcl*(A) A
and so A7 (A)ncl*(A).

(i) =(@) A=nP (A)mcl*(A) is AP -closed follows
|mmed|ately from AP(A) is AR, -set and cl(A) is
T*-closed.

Lemma 4.4.For a set A of an ideal topological space (X,

1, .7), the following statements are equivalent

(i) Ais T*-closed.

(i) Ais AP, -closed ands-gp-closed.

Proof. (i)==(ii) Follows directly from Lemmas 3.23, 4.2.

(||):>(|) Since A is.#-gp-closed set, by Theorem 3.24,

A*CAF.(A). Hence, cl(A)CAT(A). Since A is
ﬂ—closed then AaF, (A)ncl*(A) by Lemma 4.3. Thus

A=cl*(A)and so Ai |sr -closed set.

Lemma 4.5.The intersection of\F,-closed sets is\",-
closed set.

Proof. Suppose that A is /\Pj—closed set for eacbrel.
Then, for eaclmel, there exist/\;—set B, andt*-closed
set G such that A=BsNC,. Hence we have
NaerAa=Naer (BaNCa)=(Naer Ba)(Naer Ca). Since
NgerBa is /\F}-set andngerCqy is T*-closed set. This
shows thahger Aq is A7, -closed set.

Subsequently, we present certain notions that will
allow us to obtain some results related with the
AF,-closed sets.

Theorem 4.6.For subsets A and B of an ideal topological
space (X1, .¥), the following properties hold:

() If Ais .7-gp-closed and pre£-open set, then it is*-
closed.

(i) If Ais Z-gp-closed set and ABCA*, then B is./-
gp-closed set.

Proof. (i) Immediate consequence of Theorem 3.11,
Lemmas 4.2, 4.4,

(i) Let BCU and W=PIO(X, 1). Since ACB and A is
#-gp-closed set, then AU. Thus, ACB*CA**CA*.
Hence, A=B*. Therefore, BCU and so B is
#-gp-closed set.
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Theorem 4.7.A subset A of an ideal topological space

X, 1, &) is #-gp-closed if and only if (A - A) does not
contain any nhonempty prez-closed set.

Proof. Let A be .#-gp-closed set. Assume thaCFA* -
A) and F is pre-closed set. Observe thatAX - F)
and (X - F) is preZ-open. Then, AC(X - F) and FE(X -
A*). Since EZA*, we have E(X - AY)NA*=0. So F=0.
Thus, (A - A) does not contain any nonempty
pre-#-closed set. On the other hand, letCA and
UePIO(X, 1). Suppose that A0(X - U)=£0. Since A is
1-closed and every-closed is pre#-closed, then AN(X

- U) is nonempty pre#-closed. Since AN (X - U)CA* -
A, then A'n(X - U)=0 and so ACU.

Theorem 4.8.Let (X, 1, .#) be an ideal topological space
and ACX. Then, (A" - A) does not contain any nonempty
T*-open set.

Proof. Let ACX. Suppose that U ist*-open set and
UC(A* - A). Since UC(A* - A)C(X - A), we have AC(X

- U) and (X - U) ist*-closed. Then, AC(X - U)*C(X -
U). Hence, LL(X - A*). Since UCZA*, we have U=0.
Definition 4.9. An ideal topological space (X, .#) is
said to be preﬂ-r% if every .#-gp-closed set of X is

T*-closed.

The proof of the next lemma is obvious in view of
Lemma 3.23.

Lemma4.10.Let (X, 1, #)bea preﬂ-r% space, then the
conceptss-gp-closed and*-closed are the same.
Theorem 4.11.An ideal topological space (X, .¥) is
pre-f—r% if and only if every singletor{x} of X is pre-
#-closed ort*-open.

Proof. Suppose that{x} is not pre-#-closed set. By
Lemma 3.25,{x} is .#-gp-open and so (X {x}) is
#-gp-closed. Since (X1, .¥) is pre—f—r%, then (X -

{x}) is T*-closed. Thereforegx} is t*-open. On the other
hand, let A be#-gp-closed set andsA*. Then, we have
the following two cases:

If {x} is pre=#-closed. By Theorem 4.7, (A- A) does
not contain any nonempty prg-closed. Hence &(A* -
A). Since xcA*, then we obtain gA.

If {x} is T*-open, we have (X {x}) is T*-closed, i.e. (X -
{x})*CX - {x} or equivalently{x}C[X - (X - {x})*]. Itis

obvious £ (X - {x})* and so there exists open set U such

that xcU and UN(X - {x})e.#. Since xA*, then

VNA¢.7 for each open set V containing x. In particular,

UNA¢.# and UN(X - {x})e.#. We claim that{x}NA#0.
If {x}NA=0, then AC(X - {x}) and hence DACUN(X -
{x})e.#. Itfollows that UNAc.#. This is a contradiction.
Therefore{x}NA#D and so xA.

Consequently, in both cases @A. Then, A ist*-closed
and so X is preﬂ-r%.

Definition 4.12.A set A of an ideal topological space (X,
7, .Z) is called locally pre#x-closed if A=B1\C, where
B is pre-7-open set and C is*-closed set.

The proof of the following is obvious and then omitted.

Lemma 4.13.In an ideal topological space, every locally
pre-#+-closed set is\F, -closed.

Lemma 4.14.Let (X, 1, %) be an ideal topological space.
For a subset A of X, the following properties are equivalent
(i) Ais T*-closed.

(i) Ais .Z-gp-closed and locally pre£*-closed.

(i) Ais .#-gp-closed and\", -closed.

Proof. (i)=-(ii) Since X is pre=#-open and A ist*-closed
set, then A is locally pre#x-closed. Also, in view of
Lemmas 3.23, A is#-gp-closed.

(ii)=(iii) Immediate in view of Lemma 4.13.

(iif) = (i) Since A is.#-gp-closed set, then’A AF, (A) by
Theorem 3.24. Furthermore, we have(ADCA (A).
Since A isAF,-closed, then AaF, (A)Ncl*(A)= cl*(A) by
Lemma 4.3. ThIS shows A is*- closed set.

5 Some Forms of Continuous Functions via
AF,-Open Sets

In this section we use the notions bpen, pre#-open,

/\P ~-open andt*-open sets in order to introduce new
forms of continuous functions calle(zkP -continuous,
quasiAF,-continuous and\¥,-irresolute. We study the
relationships between these classes of functions and also
obtain some properties and characterizations of them.

Definition 5.1. A function f : (X, 7, .#) — (Y, 0, 7)is

called

(i) Pre-#-irresolute iff ~1(V) is pre-#-open set in (X1,

&) for each pre-#7-open set V of (Yo, 7).

(i) A%,-continuous iff (V) is AT, -open setin (X1, .#)

for each open set V of (\g, 7).

(iii) Quasi-\7,-continuous iff ~1(V) is AT, -open setin (X,

1, #) for eacho*-open set V of (Yo, 7).

(iv) A% -irresolute if f~1(V) is AF,-open setin (X1, .#)

for eachAF)’Z-open setV of (Yo, 7).

(v) Strongly pre:#-irresolute if f~1(V) is t-open set in

(X, 1, .#) for each pre-7-open set V of (Yo, 7).

Theorem 5.2.If a function f : (X, 7, #) — (Y, 0, #)
P

is pre-#-irresolute, thenf : (X, r@) — (Y, oA/) is

continuous.

Proof. Let Ved'7, i.e V is NP, -set of (Y,0, 7), then

V—/\P (V)= n{W | VCW and W is pre-#-open in (Y,o,

/)} Since f is pre-Z-irresolute, thenf (W) is

pre-7-open set in (X1, .#). HenceA", (f~1(V))= n{U |

f~{(V)CU and U=PIO(X, r)}cm{f wy |

f~Y(v)Cf~1(w) and f1(W)ePIO(X, r; f~1(V). On

the other hand, always we hafe!(V) CAF (f~ 1(V)) and

o f=1(V)=AT(f1(V)). Therefore,f~ LV)er" and so
P
f: (X, %) — (Y, ¢"7) is continuous.
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Theorem 5.3.1f f : (X, 1, &) — (Y, 0, 7)is AF,-
irresolute function, thet is quasi/\;—continuous.

Proof. Let V be ag*-open set of (Yo, _#), then from
Lemma4.2.,V is(\'(}-open. Sincd is A7 -irresolute, then
f=1(V)is AF,-open set of (X1, .#). Thereforef is quasi-
AP, -continuous.

Theorem 5.4.1f f : (X, 1, &) — (Y, 0, #) is quasi-
AP, -continuous function, thef is AF, -continuous.

Proof. Let V be ano-open set of (Y,o, #), then V is
o*-open. Since is quasiA®, -continuous, therf ~1(V) is

AP -open set of (X,7, .#). This shows thatf is

AP, -continuous.

Proof. We prove only the equivalence between (i) and
(iii). The rest of the proof is obvious.

(i)=(iii) Let xeX and V be an open set in () such that
f(x)eV, then xef~-1(V). Since f is a A7,-continuous
function, f~1(V) is A7-open set in (X, 7, .#). If
U=f-1(v), then U is A% -open set in (X,1, .#)
containing x such that(U)=f(f ~1(V))CV.

(iii) = (i) Let V be any open set in (Yg) and x= f~1(V),
then f(x)eV. By using (iii), there existsf\f}-open set |
in (X, 7, .#) such that xUyx and f(Uy)CV. Thus,
xeUxC T H(f(U)C T L(V) and so f~3(V)=u{Ux |
xef~1(V)}. Then, f~1(V) is AF,-open set in (X1, .#)
and sof is /\f}-continuous.

The proof of the following theorems are similar to

By Theorems 5.3, 5.4, we have the following diagram Theorem 5.6.

and none of these implications is reversible.

0] /\f}-irresolute = quasivf\f}-continuous —
AF,-continuous.

(i) Strongly pre-#-irresolute—>- pre-#-irresolute.

Lemma5.5.Let f: (X, 1, .7) — (Y, g, 7)andg: (Y,
o, 7)—(Z,0,.¢)betwo functions, whereZ, 7,7
are ideals on X, Y, Z respectively. Then,

(i) go f is AF -irresolute iff is AR -irresolute andyis /\'}-
irresolute. '

(i) go f is AF,-continuous iff is AP -irresolute andy is
/\'},—continuous.

(iii) go f is AP, -continuous iff is AF, -continuous and is
continuous.

(iv) go f is quasiA®,-continuous iff is AP -irresolute and
gis quasiA'}-continuous.

(v) go f is strongly preZ-irresolute if f is strongly pre-
Z-irresolute andy is pre- 7 -irresolute.

(vi) go f is strongly pre-irresolute if f is continuous
andg is strongly pre-# -irresolute.

Proof. We prove only (i) and the rest of the proof is
similar to (i).

(i) Let V be aAf}-open set in (2,6, #) and g is
Af}—irresolute, themy (V) is /\';,—open setin (Yo, 7).
Since f is A7 -irresolute, we obtain that~1(g=%(V)) is
AP -open set in (X,7, .#). This shows thatgo f is
AF-irresolute.

Theorem 5.7.For a functionf : (X, 1, %) — (Y, 0, _7),
the following statements are equivalent

(i) fis quasiAF,-continuous.

(i) 1-1(B) is AF,-closed set in (X1, .#) for eacho™-
closed setBin (Yo, 7).

(iii) For each x2X and eacho*-open set V in (Y,g, 7)
containingf (x) there existg\"}—open set U in (X1, .¥)
containing x such that(U)CV.

Theorem 5.8.For a functionf : (X, 1, %) — (Y, 0, _7),
the following statements are equivalent:

(i) fis AF,-irresolute.

(i) f~1(B) is AF,-closed set in (X1, .#) for each/\'}-
closetsetBin (Yo, 7). '
(iii) For each »X and each’\'}—open setVin(Yo, 7)
containingf(x) there exists\",-open set U in (X1, .#)
containing x such that(U)CV.

Theorem 5.9.For spaces (X1, .#) and (X, T/\Pf), the
following properties hold:

) (X, 1, ) is pre-7-11 if and only if (X, rA»F}) is the
discrete space.

(i) The identity functionl : (X, T\%) — (X, T, .#) is
strongly pre-7-irresolute.

Proof. (i) Suppose that (X1, .#) is pre-#-1;. According
to Lemma 3.27,{x} is AF,-set for each &X. So
{x}er@. For any subset A of X and by using Theorem
3.11., we have A ig\%-open. This shows that (")
is the discrete. Conversely, for eachX, {x}er@ and

In the next three theorems, we characterizesg {x} is AP -set. Therefore, from Lemma 3.27, we have

AP, -continuous, quasi,-continuous and\%-irresolute
functions, respectively.

Theorem 5.6.For a functionf : (X, 1, .#) — (Y, 0), the

following statements are equivalent:

(i) fis AF,-continuous.

(i) f71(B) is A7,-closed set in (X7, .#) for each closed
setBin (Y,0).

(i) For each xeX and each open set V in () containing

f(x) there exists&f}-open set U in (X1, .#) containing X
such thatf (U)CV.

X, 1, #)is pre-7-13.

(ii) Let V be any pre=#-open set of (X,1, .#), then by
using Theorem 3.11.,|_1(V):V€T/\PV. Hence, | is
strongly pre=#-irresolute.

6 Conclusion

In this paper, we defined the notions of prékernel for
any set, generalized\f,-sets, A7 -closed sets and
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