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Abstract: In this paper, we define and study the notions of pre-I -kernel for any set (briefly,∧P
I ( )), generalized∧P

I -sets,∧P
I -closed

sets andI -generalized pre-closed (briefly,I -gp-closed) sets by using pre-I -open sets in ideal topological spaces. The family of
∧P

I -sets, which is stronger than the class of pre-I -open sets, is introduced. The collection of∧P
I -sets is Alexandroff space is proven.

Also, we propose and characterize some relevant low separation axioms, namely pre-I -τ1 and pre-I -τ 1
2
. The concepts∧P( ) (resp.

∧( ), ∧I ( )) from pre-I -kernel of any set with different kinds of ideals are deduced. Variants of continuity, namely∧P
I -continuous,

quasi-∧P
I -continuous,∧P

I -irresolute and strongly pre-I -irresolute functions in terms of∧P
I -open sets are characterized. Moreover,

the relationships between these classes of functions are studied. Some properties and characterizations of them are obtained.

Keywords: pre-I -open sets,I -gp-closed sets,∧P
I -continuous functions

1 Introduction

Kuratowski [10] defined the concept of ideals on
topological spaces. Jankovic and Hamlett [9] introduced
the notion ofI -open sets in topological spaces. Several
kinds of I -openness are initiated. Abd El-Monsef et al.
[1] investigated further properties ofI -open sets and
I -continuous functions. Dontchev [3] introduced the
notion of pre-I -open sets and obtained a decomposition
of I -continuity. In 2002, Hatir and Noiri [7] presented
the concept of semi-I -open sets in ideal topological
spaces. Recently, Noiri and Keskin [14] introduced the
notions of

∧
I -sets,I -g-closed sets and

∧
I -closed sets

by using I -open sets. They used these notions to
characterize some related separation axioms.
In this paper, we define the notions of∧P

I -sets,
generalized∧P

I -sets,∧P
I -closed sets andI -generalized

pre-closed (briefly I -gp-closed) sets by using
pre-I -open sets in ideal topological spaces. Several
characteristics are studied. Also, two low separation
axioms, namely pre-I -τ1 and pre-I -τ 1

2
are presented.

Moreover, we characterize variants of continuity, namely
∧P

I -continuous, quasi-∧P
I -continuous,∧P

I -irresolute and
strongly pre-I -irresolute functions in terms of∧P

I -open

sets and investigates related features. The concepts∧P( )
(resp.∧( ), ∧I ( )) from pre-I -kernel of any set with
different kinds of ideals are deduced.

2 Preliminaries

Throughout this paper,P(X), cl(A) and int(A) denote the
power set of X, the closure of A and the interior of A,
respectively.

An ideal I [10] on a topological space (X,τ) is a
nonempty collection of subsets of X, which satisfies the
following two properties:
(i) A∈I and B⊆A implies B∈I .
(ii) A∈I and B∈I implies A∪B∈I .

It is obvious that the simplest ideals are{ /0} and
P(X). Furthermore,I f is the ideal of finite sets in (X,
τ). A topological space (X,τ) with an idealI on X is
called an ideal topological space and is denoted by (X,τ,
I ). Given an ideal topological space (X,τ, I ), a set
operator()⋆ : P(X)−→P(X), is called a local function
[10] of A with respect toτ andI , is defined as follows:
for A⊆X, A⋆(I , τ)={x∈X | U∩A /∈I for every
U∈τ(x)}, whereτ(x)={U∈τ | x∈U}. When there is no
chance for confusion, we will simply write A⋆ for A⋆(I ,
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τ). In general, X⋆ is a proper subset of X. The hypothesis
X=X⋆ [8] is equivalent to the hypothesisτ∩I =/0 [15].
For any ideal topological space (X,τ, I ), there exist a
topologyτ⋆(I , τ), is called the⋆-topology, finer thanτ,
generated by the collectionβ (I , τ)={V - E | V∈τ and
E∈I }, but in generalβ (I , τ) is not always a topology
[9]. Additionally, cl⋆(A)=A∪A⋆(I , τ) [9] defines a
Kuratowski closure operator for a topologyτ⋆(I , τ). For
a subset A of an ideal topological space (X,τ, I ), A is
said to beτ⋆-closed [9] (resp. ⋆-perfect [8]) if A ⋆⊆A
(resp. A⋆=A).

Lemma 2.1. [9] Let (X, τ) be a topological space with
idealsI andJ on X. For subsets A and B of X, we have
the following assertions:
(i) A ⋆⊆B⋆ if A⊆B.
(ii) A ⋆=cl(A⋆)⊆cl(A).
(iii) A ⋆⋆⊆A⋆.
(iv) A ⋆(J )⊆A⋆(I ) if I⊆J .
(v) (A∪B)⋆=A⋆∪B⋆ and (A∩B)⋆⊆A⋆∪B⋆.
(vi) U∩A⋆⊆(U∩A)⋆ if U∈τ.

Definition 2.2. A subset A of an ideal topological space
(X, τ, I ) is said to be
(i) pre-open [12] if A ⊆int cl(A).
(ii) I -open [1] if A ⊆int (A⋆).
(iii) semi-I -open [7] if A ⊆cl⋆ int(A).
(iv) pre-I -open [1] if A ⊆int cl⋆(A).

The complement of semi- (resp. pre-)I -open set is
said to be semi- (resp. pre-)I -closed. The family of all
semi- (resp. pre-)I -open sets of an ideal topological
space (X,τ, I ) is denoted by SIO(X,τ) (resp. PIO(X,
τ)).

Lemma 2.3.[1] For an ideal topological space (X,τ, I ),
the following statements hold:
(i) Arbitrary union of pre-I -open sets is pre-I -open.
(ii) Intersection of pre-I -open set and open set is pre-I -
open.
(iii) Every pre-I -open set is pre-open.
(iv) EveryI -open set is pre-I -open.

Definition 2.4. [1] Let A be a subset of an ideal
topological space (X,τ, I ). Then,
(i) Pre-I -closure of A, denoted by clPI(A), is the
intersection of all pre-I -closed sets that contain A.
(ii) Pre-I -interior of A, denoted by intPI(A), is the union
of all pre-I -open sets contained in A.

Definition 2.5. A set A of an ideal topological space (X,
τ, I ) is τ⋆-dense if cl⋆(A)=X.

Definition 2.6. [2] A topological space (X,τ) is an
Alexandroff space if arbitrary intersections of sets inτ
belongs toτ.

Definition 2.7. [4] An ideal topological space (X,τ, I )
is said to be⋆-extremally disconnected if theτ⋆-closure
of every open subset A of X is open. Equivalently, cl⋆

int(A)⊆int cl⋆(A) for every A⊆X.

3 ∧P
I -Sets and Its Properties

Definition 3.1. The pre-I -kernel of a set A in an ideal
topological space (X,τ, I ), denoted by∧P

I (A), is the
intersection of all pre-I -open superset of A, i.e.
∧P

I (A)=∩{U∈PIO(X, τ) | A⊆U}.

Lemma 3.2. Let A be a subset of an ideal topological
space (X,τ, I ). Then,
(i) If I ={ /0}, then∧P

I (A)=∧P(A), (where∧P(A)=∩{U |
A⊆U, U pre-open} [5]).
(ii) If I =I f and (X,τ) is τ1-space, then∧P

I (A)=∧P(A).
(iii) If I =P(X), then ∧P

I (A)=∧(A), (where
∧(A)=∩{U∈τ | A⊆U} [11]).
(iv) If A ∈PIO(X, τ), then ∧P

I (A)=∧I (A), (where
∧I (A)=∩{U | A⊆U, U I -open}[14]).

proof. Straightforward.

Lemma 3.3. Let A be a subset of an ideal topological
space (X,τ, I ). Then,∧P

I (A)=∧(A) is true if one of the
following statements holds:
(i) Every pre-I -open set isτ⋆-closed.
(ii) Every pre-I -open set is⋆-perfect.
(iii) PIO(X, τ)⊆I .

Proof. Straightforward.

Some of fundamental properties of pre-I -kernel of
sets will be shown in the next Lemma.

Lemma 3.4. For sets A, B and Aα (α∈Γ ) of an ideal
topological space (X,τ, I ), the following properties
hold:
(i) ∧P

I (A)⊆∧I (A).
(ii) ∧P

I ( /0)=/0 and∧P
I (X)=X.

(iii) A ⊆∧P
I (A).

(iv) A⊆B, then∧P
I (A)⊆∧P

I (B).
(v) ∧P

I ∧P
I (A)=∧P

I (A).
(vi) A∈PIO(X, τ), then A=∧P

I (A).
(vii)∧P

I (∪α∈Γ Aα )=∪α∈Γ∧
P
I (Aα ).

(viii)∧P
I (∩α∈Γ Aα )⊆∩α∈Γ∧

P
I (Aα).

(ix) ∧P
I (A∩B)⊆∧P

I (A)∪∧(B).

Proof. We prove only (vii) and the rest of the proof
follows directly from Definition 3.1.
(vii) Suppose x/∈∪α∈Γ (∧P

I (Aα)), then x/∈∧P
I (Aα ) for

each α∈Γ . Therefore, for eachα∈Γ there exists
Uα∈PIO(X, τ) such that x/∈Uα and Aα⊆Uα . Thus
∪α∈Γ (Aα )⊆∪α∈Γ (Uα) and∪α∈Γ (Uα )∈PIO(X, τ) which
does not contain x. Which implies that x/∈∧P

I (∪α∈Γ Aα ).
Consequently,∧P

I (∪α∈Γ Aα )⊆∪α∈Γ∧
P
I (Aα). Obviously

∪α∈Γ∧
P
I (Aα )⊆∧P

I (∪α∈Γ Aα ). Hence,
∧P

I (∪α∈Γ Aα )=∪α∈Γ∧
P
I (Aα ).

Corollary 3.5. (i) intPI(A)⊆∧P
I (A).

(ii) intPI(A)=∧P
I (A) if A ∈PIO(X, τ).

(iii) ∧P
I (A)⊆clPI(A) if A ∈PIO(X, τ).

(iv) clPI(A)⊆∧P
I (A) if A is pre-I -closed set.

In view of Lemma 3.4, the next theorem hold.
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Theorem 3.6.The collection of all pre-I -kernel of sets is
supra topological space.

Lemma 3.7.Let (X, τ) be a topological space with two
idealsI , J on X. For a subset A of X, the following
statements hold:
(i) ∧P

I (A)⊆∧P
J (A) if I⊆J .

(ii) ∧P
I ∩J (A)⊆∧P

I (A)∩∧P
J (A).

(iii) ∧P
I (A)∪∧P

J (A)⊆∧P
I∪J (A).

Proof. (i) I⊆J , then A⋆(J )⊆A⋆(I ). Hence, every
Pre-J -open is pre-I -open. Therefore,∧P

I (A)⊆∧P
J (A)

by using Definition 3.1. The rest of the proof follows
directly from (i).

Definition 3.8. [16] Let A be a subset of an ideal
topological space (X,τ, I ). Then,∧S

I (A)=∩{U∈SIO(X,
τ) | A⊆U}.

Theorem 3.9.Let (X, τ, I ) be⋆-extremally disconnected
space and A⊆X. Then,∧P

I (A)⊆∧S
I (A).

Proof. Immediate consequence of Definition 2.7.

Definition 3.10. The concept of∧P
I -sets in an ideal

topological space (X,τ, I ) is the set that coincide with
their pre-I -kernel. In other words, A is called∧P

I -set if
A=∧P

I (A).

Theorem 3.11.Let (X, τ, I ) be an ideal topological
space. Then, the following statements hold:
(i) /0, X are∧P

I -sets.
(ii) ∧P

I (A) is ∧P
I -set, for any set A of X.

(iii) Every pre-I -open is∧P
I -set.

(iv) Everyτ⋆-dense is∧P
I -set.

(v) Union of∧P
I -sets is∧P

I -set.
(vi) Intersection of∧P

I -sets is∧P
I -set.

Proof. Follows directly from Lemma 3.4 and Definition
3.10.

Corollary 3.12. The class of all∧P
I -sets is finer than

PIO(X, τ).

Theorem 3.13.Let (X, τ, I ) be an ideal topological
space, thenτ∧P

I ={A | A is ∧P
I -set} is an Alexandroff

topology on X.

Proof. Immediate consequence of (i), (v), (vi) of Theorem
3.11.

Corollary 3.14. PIO(X, τ)⊆τ∧P
I .

Lemma 3.15.Let (X, τ, I ) be an ideal topological space.
If A is ∧P

I -set and A⊆B⊆∧P
I (A), then B is∧P

I -set.

Proof. Let A be ∧P
I -set, then A=∧P

I (A). Since
A⊆B⊆∧P

I (A), then B=∧P
I (A) and so

∧P
I (B)=∧P

I∧P
I (A)=∧P

I (A)=B.

Definition 3.16.A subset A of an ideal topological space
(X, τ, I ) is said to be generalized∧P

I -set (briefly g∧P
I -

set) if∧P
I (A)⊆F whenever A⊆F and F isτ-closed set.

Lemma 3.17.Let (X, τ, I ) be an ideal topological space
and A⊆X. Then, the following properties hold:
(i) Union of g∧P

I -sets is g∧P
I -set.

(ii) A is ∧P
I -set if it is bothτ-closed and g∧P

I -set.
(iii) If A is g ∧P

I -set and A⊆B⊆∧P
I (A), then B is g∧P

I -
set.

Proof. (i) Let A, B be g ∧P
I -sets, (A∪B)⊆F and F is

τ-closed set, then A⊆F and B⊆F. Hence,∧P
I (A)⊆F and

∧P
I (B)⊆F and so [∧P

I (A)∪∧P
I (B)]⊆F. Therefore,

∧P
I (A∪B)⊆F and so (A∪B) is g∧P

I -set.
(ii) It is clear that A⊆∧P

I (A). Since A isτ-closed and g
∧P

I -set, then∧P
I (A)⊆A. Hence, A=∧P

I (A) and so A is
∧P

I -set.
(iii) Assume that B⊆F and F isτ-closed set. Since A⊆B
and A is g ∧P

I -set, then ∧P
I (A)⊆F and so

∧P
I (B)⊆∧P

I∧P
I (A)⊆F. Consequently, B is g∧P

I -set.

Lemma 3.18.Let (X, τ, I ) be an ideal topological space,
then a subset A of X is g∧P

I -set if and only if∧P
I (A)∩U=/0

whenever A∩U=/0 and U∈τ.

Proof. Obvious

Theorem 3.19.A subset A of an ideal topological space
(X, τ, I ) is g∧P

I -set if and only if∧P
I (A)⊆cl(A).

Proof. Let x/∈cl(A), then there is U∈τ such that A∩U=/0
and x∈U. Since A is g∧P

I -set, then by Lemma 3.18,
∧P

I (A)∩U=/0. Consequently, x/∈∧P
I (A). On the other

hand, assume that A⊆F, F is τ-closed set and
∧P

I (A)⊆cl(A). Then, by hypothesis
∧P

I (A)⊆cl(A)⊆cl(F)=F. Hence, A is g∧P
I -set.

Lemma 3.20.Let (X, τ, I ) be an ideal topological space
and A be g∧P

I -set of X. Then, F=X holds for everyτ-
closed set F such that (X -∧P

I (A))∪A⊆F.

Proof. Immediate.

Lemma 3.21.Let (X, τ, I ) be an ideal topological space
and A be g∧P

I -set of X. Then, (X -∧P
I (A))∪A is τ-closed

set if and only if A is∧P
I -set.

Proof. By Lemma 3.20, (X - ∧P
I (A))∪A=X. Thus,

∧P
I (A)∩(X - A)=/0 i.e., ∧P

I (A)⊆A. Hence,∧P
I (A)⊆A

and so A is∧P
I -set. The other side is obvious.

Definition 3.22.A subset A of an ideal topological space
(X, τ, I ) is said to beI -generalized pre-closed (briefly
I -gp-closed) if A⋆⊆U whenever A⊆U and U∈PIO(X,τ).
The complement of anI -gp-closed set is said to beI -gp-
open.

Lemma 3.23.(i) Finite union ofI -gp-closed sets isI -
gp-closed.
(ii) Every τ⋆-closed set isI -gp-closed.

Proof. (i) Let A, B be I -gp-closed sets, (A∪B)⊆U and
U∈PIO(X, τ), then A⊆U and B⊆U. Hence, A⋆⊆U and
B⋆⊆U and so A⋆∪B⋆⊆U. Therefore, (A∪B)⋆⊆F by using
Lemma 2.1. So (A∪B) is I -gp-closed-set.
(ii) Obvious.

Theorem 3.24.A subset A of an ideal topological space
(X, τ, I ) is I -gp-closed if and only if A⋆⊆∧P

I (A).

Proof. Let x/∈∧P
I (A), then there is U∈PIO(X, τ) such that

A⊆U and x/∈U. Since A isI -gp-closed set, then A⋆⊆U.
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Hence x/∈A⋆ and so A⋆⊆∧P
I (A). On the other hand,

assume that A⊆U and U∈PIO(X, τ). Then, by hypothesis
A⋆⊆∧P

I (A)⊆∧P
I (U)=U. Hence A isI -gp-closed.

Lemma 3.25.For each x∈X, either{x} is pre-I -closed
or {x} is I -gp-open set.

Proof. Suppose that{x} is not pre-I -closed. Then, (X -
{x}) is not pre-I -open and the only pre-I -open set
containing (X -{x}) is X itself. Thus, (X -{x})⋆⊆X and
hence (X - {x}) is I -gp-closed. Therefore,{x} is
I -gp-open set.

Definition 3.26. An ideal topological space (X,τ, I ) is
said to be pre-I -τ1 if for any pair of distinct points x and
y of X there exist pre-I -open sets U, V of X such that
x∈U, y/∈U and y∈V, x/∈V.

Lemma 3.27.For an ideal topological space (X,τ, I ), the
following properties are equivalent:
(i) (X, τ, I ) is pre-I -τ1.
(ii) For each x∈X, the singleton{x} is∧P

I -set.
(iii) For each x∈X, the singleton{x} is pre-I -closed set.

Proof. (i) =⇒ (ii) Let x be any point of X. For each y∈X,
y 6=x, there exists pre-I -open set U such that x∈U and
y/∈U. Thus, we have y/∈∧P

I {x}. This shows that
∧P

I {x}⊆{x}. Since {x}⊆∧P
I {x}, we obtain

{x}=∧P
I {x}.

(ii) =⇒ (iii) Let x be any point of X and y∈X - {x}.
Then, we have{y}=∧P

I {y}. So there exists pre-I -open
set Vy such that x/∈Vy and y∈Vy. Thus, y∈Vy⊆(X - {x})
and so (X -{x})=∪{Vy | y∈(X - {x})}. By Lemma 2.3,
(X - {x}) is pre-I -open set and so{x} is pre-I -closed.
(iii) =⇒ (i) Straightforward.

Theorem 3.28.For an ideal topological space (X,τ, I ),
the following properties are equivalent
(i) (X, τ, I ) is pre-I -τ1.
(ii) Every subset of X is∧P

I -set.
(iii) Every pre-I -closed set of X is∧P

I -set.

Proof. (i)⇒(ii) Let A be any subset of X, then by Lemma
3.27, for any point x in A, the singleton{x} is ∧P

I -set.
Therefore, A is∧P

I -set in view of Theorem 3.11.
(ii)⇒(iii) Obvious.
(iii)⇒(i) Obvious.

Corollary 3.29. Let (X, τ, I ) be an ideal topological
space, then (X,τ∧P

I ) is always pre-I -τ1.

4 ∧P
I -Closed Sets

Definition 4.1. A set A of an ideal topological space (X,
τ, I ) is called∧P

I -closed set if there exist∧P
I -set B and

τ⋆-closed set C such that A=B∩C. A set is said to be a
∧P

I -open set if its complement is∧P
I -closed.

In view of X is both∧P
I -set andτ⋆-closed set, then

proof of next lemma is immediate.

Lemma 4.2.(i) Every∧P
I -set is∧P

I -closed set.
(ii) Every τ⋆-closed set is∧P

I -closed set.

Next we show some results related with∧P
I -closed

sets.

Lemma 4.3.For a set A of an ideal topological space (X,
τ, I ), the following statements are equivalent
(i) A is ∧P

I -closed set.
(ii) A=B∩cl⋆(A), where B is∧P

I -set.
(iii) A= ∧P

I (A)∩cl⋆(A).

Proof. (i)=⇒(ii) Let A be ∧P
I -closed set, then there exist

∧P
I -set B andτ⋆-closed set C such that A=B∩C. Since

A⊆C, then cl⋆(A)⊆C and so A⊆B∩cl⋆(A)⊆B∩C=A.
Hence A=B∩cl⋆(A).
(ii)=⇒(iii) Assume that A=B∩cl⋆(A) and B is ∧P

I -set.
Since A⊆B, then ∧P

I (A)⊆∧P
I (B)=B follows from

Lemma 3.4. Therefore, A⊆∧P
I (A)∩cl⋆(A)⊆B∩cl⋆(A)=A

and so A=∧P
I (A)∩cl⋆(A).

(iii)=⇒(i) A=∧P
I (A)∩cl⋆(A) is ∧P

I -closed follows
immediately from ∧P

I (A) is ∧P
I -set and cl⋆(A) is

τ⋆-closed.

Lemma 4.4.For a set A of an ideal topological space (X,
τ, I ), the following statements are equivalent
(i) A is τ⋆-closed.
(ii) A is ∧P

I -closed andI -gp-closed.

Proof. (i)=⇒(ii) Follows directly from Lemmas 3.23, 4.2.
(ii)=⇒(i) Since A isI -gp-closed set, by Theorem 3.24,
A⋆⊆∧P

I (A). Hence, cl⋆(A)⊆∧P
I (A). Since A is

∧P
I -closed, then A=∧P

I (A)∩cl⋆(A) by Lemma 4.3. Thus
A=cl⋆(A) and so A isτ⋆-closed set.

Lemma 4.5.The intersection of∧P
I -closed sets is∧P

I -
closed set.

Proof. Suppose that Aα is ∧P
I -closed set for eachα∈Γ .

Then, for eachα∈Γ , there exist∧P
I -set Bα andτ⋆-closed

set Cα such that Aα=Bα∩Cα . Hence we have
∩α∈Γ Aα=∩α∈Γ (Bα∩Cα )=(∩α∈Γ Bα )∩(∩α∈Γ Cα ). Since
∩α∈Γ Bα is ∧P

I -set and∩α∈Γ Cα is τ⋆-closed set. This
shows that∩α∈Γ Aα is∧P

I -closed set.

Subsequently, we present certain notions that will
allow us to obtain some results related with the
∧P

I -closed sets.

Theorem 4.6.For subsets A and B of an ideal topological
space (X,τ, I ), the following properties hold:
(i) If A is I -gp-closed and pre-I -open set, then it isτ⋆-
closed.
(ii) If A is I -gp-closed set and A⊆B⊆A⋆, then B isI -
gp-closed set.

Proof. (i) Immediate consequence of Theorem 3.11,
Lemmas 4.2, 4.4.
(ii) Let B⊆U and U∈PIO(X, τ). Since A⊆B and A is
I -gp-closed set, then A⋆⊆U. Thus, A⋆⊆B⋆⊆A⋆⋆⊆A⋆.
Hence, A⋆=B⋆. Therefore, B⋆⊆U and so B is
I -gp-closed set.
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Theorem 4.7.A subset A of an ideal topological space
(X, τ, I ) is I -gp-closed if and only if (A⋆ - A) does not
contain any nonempty pre-I -closed set.
Proof. Let A be I -gp-closed set. Assume that F⊆(A⋆ -
A) and F is pre-I -closed set. Observe that A⊆(X - F)
and (X - F) is pre-I -open. Then, A⋆⊆(X - F) and F⊆(X -
A⋆). Since F⊆A⋆, we have F⊆(X - A⋆)∩A⋆=/0. So F=/0.
Thus, (A⋆ - A) does not contain any nonempty
pre-I -closed set. On the other hand, let A⊆U and
U∈PIO(X, τ). Suppose that A⋆∩(X - U) 6= /0. Since A⋆ is
τ-closed and everyτ-closed is pre-I -closed, then A⋆∩(X
- U) is nonempty pre-I -closed. Since A⋆∩(X - U)⊆A⋆ -
A, then A⋆∩(X - U)=/0 and so A⋆⊆U.
Theorem 4.8.Let (X, τ, I ) be an ideal topological space
and A⊆X. Then, (A⋆ - A) does not contain any nonempty
τ⋆-open set.
Proof. Let A⊆X. Suppose that U isτ⋆-open set and
U⊆(A⋆ - A). Since U⊆(A⋆ - A)⊆(X - A), we have A⊆(X
- U) and (X - U) isτ⋆-closed. Then, A⋆⊆(X - U)⋆⊆(X -
U). Hence, U⊆(X - A⋆). Since U⊆A⋆, we have U=/0.
Definition 4.9. An ideal topological space (X,τ, I ) is
said to be pre-I -τ 1

2
if every I -gp-closed set of X is

τ⋆-closed.

The proof of the next lemma is obvious in view of
Lemma 3.23.
Lemma 4.10.Let (X, τ, I ) be a pre-I -τ 1

2
space, then the

conceptsI -gp-closed andτ⋆-closed are the same.
Theorem 4.11.An ideal topological space (X,τ, I ) is
pre-I -τ 1

2
if and only if every singleton{x} of X is pre-

I -closed orτ⋆-open.
Proof. Suppose that{x} is not pre-I -closed set. By
Lemma 3.25,{x} is I -gp-open and so (X -{x}) is
I -gp-closed. Since (X,τ, I ) is pre-I -τ 1

2
, then (X -

{x}) is τ⋆-closed. Therefore,{x} is τ⋆-open. On the other
hand, let A beI -gp-closed set and x∈A⋆. Then, we have
the following two cases:
If {x} is pre-I -closed. By Theorem 4.7, (A⋆ - A) does
not contain any nonempty pre-I -closed. Hence x/∈(A⋆ -
A). Since x∈A⋆, then we obtain x∈A.
If {x} is τ⋆-open, we have (X -{x}) is τ⋆-closed, i.e. (X -
{x})⋆⊆X - {x} or equivalently{x}⊆[X - (X - {x})⋆]. It is
obvious x/∈(X - {x})⋆ and so there exists open set U such
that x∈U and U∩(X - {x})∈I . Since x∈A⋆, then
V∩A /∈I for each open set V containing x. In particular,
U∩A /∈I and U∩(X - {x})∈I . We claim that{x}∩A 6= /0.
If {x}∩A=/0, then A⊆(X - {x}) and hence U∩A⊆U∩(X -
{x})∈I . It follows that U∩A∈I . This is a contradiction.
Therefore,{x}∩A 6= /0 and so x∈A.
Consequently, in both cases A⋆⊆A. Then, A isτ⋆-closed
and so X is pre-I -τ 1

2
.

Definition 4.12.A set A of an ideal topological space (X,
τ, I ) is called locally pre-I ⋆-closed if A=B∩C, where
B is pre-I -open set and C isτ⋆-closed set.

The proof of the following is obvious and then omitted.

Lemma 4.13.In an ideal topological space, every locally
pre-I ⋆-closed set is∧P

I -closed.

Lemma 4.14.Let (X, τ, I ) be an ideal topological space.
For a subset A of X, the following properties are equivalent
(i) A is τ⋆-closed.
(ii) A is I -gp-closed and locally pre-I ⋆-closed.
(iii) A is I -gp-closed and∧P

I -closed.

Proof. (i)⇒(ii) Since X is pre-I -open and A isτ⋆-closed
set, then A is locally pre-I ⋆-closed. Also, in view of
Lemmas 3.23, A isI -gp-closed.
(ii)⇒(iii) Immediate in view of Lemma 4.13.
(iii)⇒(i) Since A isI -gp-closed set, then A⋆⊆∧P

I (A) by
Theorem 3.24. Furthermore, we have cl⋆(A)⊆∧P

I (A).
Since A is∧P

I -closed, then A=∧P
I (A)∩cl⋆(A)=cl⋆(A) by

Lemma 4.3. This shows A isτ⋆-closed set.

5 Some Forms of Continuous Functions via
∧P

I -Open Sets

In this section we use the notions ofτ-open, pre-I -open,
∧P

I -open andτ⋆-open sets in order to introduce new
forms of continuous functions called∧P

I -continuous,
quasi-∧P

I -continuous and∧P
I -irresolute. We study the

relationships between these classes of functions and also
obtain some properties and characterizations of them.

Definition 5.1.A function f : (X, τ, I ) −→ (Y, σ , J ) is
called
(i) Pre-I -irresolute if f−1(V) is pre-I -open set in (X,τ,
I ) for each pre-J -open set V of (Y,σ , J ).
(ii) ∧P

I -continuous iff−1(V) is ∧P
I -open set in (X,τ, I )

for each open set V of (Y,σ , J ).
(iii) Quasi-∧P

I -continuous iff−1(V) is ∧P
I -open set in (X,

τ, I ) for eachσ⋆-open set V of (Y,σ , J ).
(iv) ∧P

I -irresolute if f−1(V) is ∧P
I -open set in (X,τ, I )

for each∧P
J -open set V of (Y,σ , J ).

(v) Strongly pre-I -irresolute if f−1(V) is τ-open set in
(X, τ, I ) for each pre-J -open set V of (Y,σ , J ).

Theorem 5.2.If a function f : (X, τ, I ) −→ (Y, σ , J )

is pre-I -irresolute, thenf : (X, τ∧P
I ) −→ (Y, σ∧P

J ) is
continuous.

Proof. Let V∈σ∧P
J , i.e V is ∧P

J -set of (Y, σ , J ), then

V=∧P
J (V)= ∩{W | V⊆W and W is pre-J -open in (Y,σ ,

J )}. Since f is pre-I -irresolute, then f−1(W) is
pre-I -open set in (X,τ, I ). Hence∧P

I ( f−1(V))= ∩{U |

f−1(V)⊆U and U∈PIO(X, τ)}⊆∩{ f−1(W) |
f−1(V)⊆ f−1(W) and f−1(W)∈PIO(X, τ)}= f−1(V). On
the other hand, always we havef−1(V)⊆∧P

I ( f−1(V)) and

so f−1(V)=∧P
I ( f−1(V)). Therefore,f−1(V)∈τ∧P

I and so

f : (X, τ∧P
I ) −→ (Y, σ∧P

J ) is continuous.
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Theorem 5.3. If f : (X, τ, I ) −→ (Y, σ , J ) is ∧P
I -

irresolute function, thenf is quasi-∧P
J -continuous.

Proof. Let V be aσ⋆-open set of (Y,σ , J ), then from
Lemma 4.2., V is∧P

J -open. Sincef is∧P
I -irresolute, then

f−1(V) is ∧P
I -open set of (X,τ, I ). Therefore,f is quasi-

∧P
I -continuous.

Theorem 5.4.If f : (X, τ, I ) −→ (Y, σ , J ) is quasi-
∧P

I -continuous function, thenf is∧P
I -continuous.

Proof. Let V be anσ -open set of (Y,σ , J ), then V is
σ⋆-open. Sincef is quasi-∧P

I -continuous, thenf−1(V) is
∧P

I -open set of (X, τ, I ). This shows that f is
∧P

I -continuous.

By Theorems 5.3, 5.4, we have the following diagram
and none of these implications is reversible.
(i) ∧P

I -irresolute =⇒ quasi-∧P
I -continuous =⇒

∧P
I -continuous.

(ii) Strongly pre-I -irresolute=⇒ pre-I -irresolute.

Lemma 5.5.Let f : (X, τ, I ) −→ (Y, σ , J ) andg : (Y,
σ , J ) −→ (Z, θ , K ) be two functions, whereI , J , K
are ideals on X, Y, Z respectively. Then,
(i) g◦ f is∧P

I -irresolute if f is∧P
I -irresolute andg is∧P

J -
irresolute.
(ii) g ◦ f is ∧P

I -continuous if f is ∧P
I -irresolute andg is

∧P
J -continuous.

(iii) g◦ f is∧P
I -continuous iff is∧P

I -continuous andg is
continuous.
(iv) g◦ f is quasi-∧P

I -continuous iff is∧P
I -irresolute and

g is quasi-∧P
J -continuous.

(v) g ◦ f is strongly pre-I -irresolute if f is strongly pre-
I -irresolute andg is pre-J -irresolute.
(vi) g ◦ f is strongly pre-I -irresolute if f is continuous
andg is strongly pre-J -irresolute.

Proof. We prove only (i) and the rest of the proof is
similar to (i).
(i) Let V be a ∧P

K -open set in (Z,θ , K ) and g is
∧P

J -irresolute, theng−1(V) is ∧P
J -open set in (Y,σ , J ).

Since f is ∧P
I -irresolute, we obtain thatf−1(g−1(V)) is

∧P
I -open set in (X,τ, I ). This shows thatg ◦ f is

∧P
I -irresolute.

In the next three theorems, we characterize
∧P

I -continuous, quasi-∧P
I -continuous and∧P

I -irresolute
functions, respectively.

Theorem 5.6.For a functionf : (X, τ, I ) −→ (Y, σ ), the
following statements are equivalent:
(i) f is ∧P

I -continuous.
(ii) f−1(B) is ∧P

I -closed set in (X,τ, I ) for each closed
set B in (Y,σ ).
(iii) For each x∈X and each open set V in (Y,σ ) containing
f (x) there exists∧P

I -open set U in (X,τ, I ) containing x
such thatf (U)⊆V.

Proof. We prove only the equivalence between (i) and
(iii). The rest of the proof is obvious.
(i)⇒(iii) Let x∈X and V be an open set in (Y,σ ) such that
f(x)∈V, then x∈ f−1(V). Since f is a ∧P

I -continuous
function, f−1(V) is ∧P

I -open set in (X, τ, I ). If
U= f−1(V), then U is ∧P

I -open set in (X, τ, I )
containing x such thatf (U)= f ( f−1(V))⊆V.
(iii)⇒(i) Let V be any open set in (Y,σ ) and x∈ f−1(V),
then f (x)∈V. By using (iii), there exists∧P

I -open set Ux
in (X, τ, I ) such that x∈Ux and f (Ux)⊆V. Thus,
x∈Ux⊆ f−1( f (Ux))⊆ f−1(V) and so f−1(V)=∪{Ux |
x∈ f−1(V)}. Then, f−1(V) is ∧P

I -open set in (X,τ, I )
and sof is∧P

I -continuous.

The proof of the following theorems are similar to
Theorem 5.6.

Theorem 5.7.For a functionf : (X, τ, I ) −→ (Y, σ , J ),
the following statements are equivalent
(i) f is quasi-∧P

I -continuous.
(ii) f−1(B) is ∧P

I -closed set in (X,τ, I ) for eachσ⋆-
closed set B in (Y,σ , J ).
(iii) For each x∈X and eachσ⋆-open set V in (Y,σ , J )
containing f (x) there exists∧P

I -open set U in (X,τ, I )
containing x such thatf (U)⊆V.

Theorem 5.8.For a functionf : (X, τ, I ) −→ (Y, σ , J ),
the following statements are equivalent:
(i) f is∧P

I -irresolute.
(ii) f−1(B) is ∧P

I -closed set in (X,τ, I ) for each∧P
J -

closet set B in (Y,σ , J ).
(iii) For each x∈X and each∧P

J -open set V in (Y,σ , J )

containing f (x) there exists∧P
I -open set U in (X,τ, I )

containing x such thatf (U)⊆V.

Theorem 5.9.For spaces (X,τ, I ) and (X, τ∧P
I ), the

following properties hold:
(i) (X, τ, I ) is pre-I -τ1 if and only if (X, τ∧P

I ) is the
discrete space.
(ii) The identity functionI : (X, τ∧P

I ) −→ (X, τ, I ) is
strongly pre-I -irresolute.

Proof. (i) Suppose that (X,τ, I ) is pre-I -τ1. According
to Lemma 3.27,{x} is ∧P

I -set for each x∈X. So

{x}∈τ∧P
I . For any subset A of X and by using Theorem

3.11., we have A isτ∧P
I -open. This shows that (X,τ∧P

I )
is the discrete. Conversely, for each x∈X, {x}∈τ∧P

I and
so{x} is ∧P

I -set. Therefore, from Lemma 3.27, we have
(X, τ, I ) is pre-I -τ1.
(ii) Let V be any pre-I -open set of (X,τ, I ), then by
using Theorem 3.11.,I−1(V)=V∈τ∧P

I . Hence, I is
strongly pre-I -irresolute.

6 Conclusion

In this paper, we defined the notions of pre-I -kernel for
any set, generalized∧P

I -sets, ∧P
I -closed sets and
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I -generalized pre-closed sets by using pre-I -open sets
in ideal topological spaces. We proved that the collection
of ∧P

I -sets is Alexandroff space. Moreover, we proposed
some relevant low separation axioms, namely pre-I -τ1
and pre-I -τ 1

2
. We characterized variants of continuity,

namely ∧P
I -continuous, quasi-∧P

I -continuous,
∧P

I -irresolute and strongly pre-I -irresolute functions in
terms of∧P

I -open sets.
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