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Abstract: In many real epidemiology or clinical trials, doubly censoring is a common practice. Where the generated data sets may
result in right or left censored failure times along with complete times. In this article, the nonparametric maximum likelihood estimation
technique for approximating the survival function when some covariates are involved under doubly censoring scheme is employed. The
Taylor series is used to extract the baseline hazard function in the Cox model and hence the likelihood ratio test is also used to determine
the appropriate order for Taylor series. This analytical approach demonstrates by a simulation study followed by a realcase study using
HIV data set.
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1 Introduction

In survival analysis, nonparametric maximum likelihood estimation (NPMLE) of the survival function with various
censoring models is a common practice. Where, in censored data it is not possible to obtain complete information for the
entire group of units in the study. Different censoring types arise depending on the way of data collection from the
experiment. The most generalized censoring type is interval censoring which studied extensively in ([11], [10], [16] and
[2])and so many others, where the exact failure time of the individuals enrolled in the study is not exactly observed and it
is only known that it belongs to an observed interval with well-known limits (i.e inspection points), the notation of
interval censored data is[tL, tR] wheretL andtR are two adjacent inspection points. The interval censoringmay produce
another sub censoring types especially such as left and right censoring, where left censoring occurs if the interested event
occurred prior to the starting point of the study with unknown exact failure time, while right censoring occurs when the
unit has not yet experience the interested event at the last observed inspection point. In some situations and when the
cohort of data set consisted of both right and left censored observations, then this well-known as doubly censoring,
Where, this model is common in many situations especially inlife testing experiments, and it can be described briefly
whenn units are involved in a life testing study and thenr1 elements may be left censoring due to some certain problems
at the beginning point and the experiment terminates as somer2 didn‘t experience the interested event (right censoring),
wherer1+ r2 ≤ n.

A well-known example of doubly censoring arises from HIV studies, where hemophiliacs who enrolled in a sufficient
follow up studies and thus death or being at risk of developing HIV due to AIDS as a result of receiving tainted blood
is the main interest. In these studies, the AIDS incubation time is the main interested variable for the clinicians, and
determination of the accurate time of HIV infection is impossible and this latent variable is only known to belong to
certain interval that has a lower limit at starting time of the epidemic and the upper limit is the HIV diagnosis. On the
other hand, if the period between HIV infection and death, ordevelopment of HIV is quite long, the HIV patients may
alive with AIDS and they may not develop HIV. In such case we define such data set as being doubly censored contains
both ”right” and ”left” censoring patterns in the same groupof patients ([5]; [4]; [6]). The fundamental variances amongst
doubly censoring and other common censoring types induce the obviation of the common techniques such as Turnbull
estimator of the survival function in case of doubly censored data sets ([12]). Some work on doubly censoring was
conducted by [8], [17], [4], [14] , and [2].
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However, under doubly censored data a satisfying procedureto get the NPMLE of the survival function is not available
and hence an iterative technique can be used to extract it ([12], [14],and [3]). Therefore, in this article, the nonparametric
approach is used to estimate the survival function using doubly censoring model when the covariates are employed in the
analysis. The Taylor series are employed in the approximation procedure with a likelihood ratio test to assign the ideal
order for Taylor expansion.

The data structure and statistical models for doubly censored data are presented in Section 2. Taylor series
approximation for the baseline hazard function will be discussed in Section 3. Section 4 illustrates the results of survival
function approximation using simulation studies with concluding remarks.

2 Statistical Models for Doubly Censored Data

2.1 Doubly Censoring

Let T be a continuous random variable on the interval[0,∞) with distribution functionF(T ), and letL andU be two
positive random variables which are independent withT such thatL < U . In this article the main interest is to estimate
the survival function such that:

S(t) = 1−F(t) = P(T > t), ∀t > 0

and letT1,T2, ...,TN be the observed lifetimes for a sample ofN observations. In case of doubly censoring, we may
consider the situation that some of theTi‘s are censored on the left and some are censored on the right andsome are
exactly observed. Thus, for each itemi the recorded information isXi such that:

Xi = max
[

min(Ti,Ui),Li

]

, ∀i = 1, ...,N where Li 6Ui,∀i

However, for exact failure time thenXi = Ti, and for left censoring case it is known thatXi = Li (late entry), while
whenXi =Ui the item considered as right censoring (loss).

Consequently, defineε as censoring indicator variable such thatε = 1 for exact failure time, while in case of right
censoringε = 2, andε = 3 for left censoring. Therefore under doubly censoring, theobserved independent observations
areD = (D1,D2, ...,DN) where:

D ≡ (X ,ε) =











(T,1) : i f L < X 6U
(U,2) : i f X =U
(L,3) : i f X = L

2.2 The Full Likelihood Function

Suppose that the observed information for the entire group of subjects are given in the form of(D1,D2, ...,DN). Then the
likelihood function for the observed data is given by:

L(S) =
N

∏
i=1

[ f (Xi)]
εi=1 [S(Xi)]

εi=2 [1− S(Xi)]
εi=3 (1)

Conventionally, the probability density functionf (Xi) in the computation of the NPMLE can be replaced by the jump
of the survival function at the given point(i.e. f (Xi) = S(Xi−1)− S(Xi)). Assume that the experiment composed ofm
inspection points such that 0< t1 < t2 < ... < tm < ∞, and assume that fori = 1,2, ...,m











∆1
i = T he number o f items at ti with ε = 1

∆2
i = T he number o f items at ti with ε = 2

∆3
i = T he number o f items at ti with ε = 3

Based on these notations, the log-likelihood function given in (1) can be written as:

l(S/D) =
m

∑
i=1

∆1
i log[S(ti−1)− S(ti)]+

m

∑
i=1

∆2
i log[S(ti)]+

m

∑
i=1

∆3
i log[1− S(ti)] (2)
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The NPMLE of the survival function is the vector(S1,S2, ...,Sm) that maximizes the log-likelihood function in(2) subject
to 06 S(tm) 6 S(tm−1) 6 ... 6 S(t2) 6 S(t1) 6 1 . When the covariates involved in the analysis, the Cox proportional
hazard model (briefly, Cox model) that incorporates the effect of covariates on the survivorship of a group of subjects
enrolled in a study might be employed. Given an observed covariates vectorZ = (z1,z2, ...,zp)

T then the Cox model is:

λ (t/Z,β ,θ ) = λ◦(t/θ )exp(β T Z) (3)

Whereλ (t/Z,β ,θ ) andλ◦(t/θ ) are the hazard function and baseline hazard function respectively, β = (β1,β2, ...,βp)
T

is the parameters vector of the corresponding covariates and θ is the parameters vector of the baseline hazard function.
An important advantage of the Cox model is the direct relationship of the hazard function to survival function such

that:

S(t/Z) = exp(−Λ(t/Z)) (4)

WhereΛ(t/Z) is the cumulative hazard function given the covariates vector Z such that

Λ(t/Z,β ,θ ) =
∫ t

0
λ (y/Z,β ,θ )dy

= exp(β T Z)
∫ t

0
λ◦(y/θ )dy

= Λ◦(t/θ )exp(β T Z)

WhereΛ◦(t/θ ) is the cumulative baseline hazard function.
Based on these notations the survival function in equation (4) can be defined as

S(t/Z,β ,θ ) = exp[−Λ◦(t/θ )exp(β T Z)]

= S◦(t/θ )exp(β T Z) (5)

WhereS◦(t/θ ) is the baseline cumulative survival function that has an obvious relation with the baseline cumulative
hazard function as it is shown in the following expression:

S◦(t/θ ) = exp
(

−

∫ t

0
λ◦(y/θ )dy) = exp(−Λ◦(t/θ )

)

(6)

Therefore, the log-likelihood function in(2) can be rewritten as

l(S/D) =
m

∑
i=1

∆1
i log[S◦(ti−1/θ )exp(β T Z)− S◦(ti/θ )exp(β T Z)]+

m

∑
i=1

∆2
i log[S◦(ti/θ )exp(β T Z)]

+
m

∑
i=1

∆3
i log[1− S◦(ti/θ )exp(β T Z)] (7)

and hence, the desired estimates of the parameters can be obtained by maximizing the log-likelihood function given in
equation(7). The maximization procedure can be handled using an iterative numerical technique since no explicit form
of the maximum likelihood estimators can be found. In case oflarge number of covariates and hence many parameters
involved in the model, then it is necessary to be bear in mind that numerical maximization may produce estimates with
high level of errors. Thus, the proposed procedure might be used under some warnings unless an advanced maximization
procedure can be adopted.

The maximization procedure is basically depends on the estimated baseline survival functionS◦(t/θ ) which can be
obtained parametrically by choosing some well-known functions such as Weibull function or any other adequate
distribution, or assuming that the baseline survival function is to be piecewise constant which leads to the
semi-parametric approach which is discussed extensively by [9] and this technique is available in some statistical
softwares such asR. But it has a drawback which is that the baseline survival function is not continuous and it is only a
step function. Therefore, another technique might be employed such as Taylor series approximation to overcome the
drawback of discontinuity and hence get smoother baseline survival function.
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2.3 Taylor Series Approximation

Approximating functions using finite number of terms of their Taylor series is a common practice. However, this technique
will be employed in this article to get the best approximation of the baseline survival function from the observed data and
to avoid the drawbacks of the other proposed techniques under same circumstances. In Taylor series approximation the
optimal order can be determined using the likelihood ratio test.

In order to estimate the baseline survival function, it is sufficient to approximate the baseline hazard functionλ◦(t/θ )
and then the extraction of the baseline survival function can be obtained by equation (6). Furthermore, to a void the
negativity of the baseline hazard that might be raised, we will consider Taylor approximation of the logarithm of the
hazard function such that

ψ◦(t/θ ) = log(λ◦(t/θ )) = x◦+ x1t +
x2

2!
t2+ ...+

xq

q!
tq

Whereψ◦(t/θ ) denotes the Taylor series of orderq andθ = (x◦,x1, ...,xq) represents the baseline parameters vector to be
estimated. Thus, the baseline cumulative survival function can be obtained by

S◦(t/θ ) = exp
(

−

∫ t

0
λ◦(y/θ )dy

)

= exp
(

−

∫ t

0
exp[ψ◦(y/θ )]dy

)

= exp
(

−

∫ t

0
[x◦+ x1y+

x2

2!
y2+ ...+

xq

q!
yq]dy

)

(8)

Then the baseline survival functionS◦(t/θ ) can be involved in the log likelihood function defined in equation (7) and then
the parameters can be estimated by maximizing the log-likelihood function using maximum likelihood theory to make
statistical inference for parameters significance.

The optimal number of terms of Taylor series can be determined based on the following procedure (See [2]):

1.Fitting the likelihood function with only the first term ofTaylor series(i.e. q = 0) and getting the maximum
likelihood estimates of the parametersβ̂ and θ̂ = x̂◦, and denote the fitted value of the likelihood function as
h◦ = max[l(β̂ , θ̂ )]. Note that forq = 0 the baseline hazard function is the commonly used exponential hazard
function.

2.Fitting the likelihood function with one more order of Taylor series(i.e. q = 1) which is equivalent to the Gompertz
monotonic hazard function, where the parameters in such case areβ̂ andθ̂ = (x̂◦, x̂1) and similar to step(1), the fitted
value of the likelihood function represented byh1 = max[l(β̂ , θ̂ )].

3.Using an adequate significant level such asα = 5% and for degrees of freedom (df)of the Chi square distribution
equals to 1, then:
(a)If −2(h◦− h1) < χ2

1,(1−α) then the selected order of Taylor series isq = 0 and hence the maximum likelihood

estimates of the parameters areβ̂ andθ̂ = x̂◦.
(b)If the condition in(a) violated then we will get new estimates of the parameters atq = 2, and denote the new fitted

value of the likelihood function ash2 = max[l(β̂ , θ̂ )] and then follow to step(3) again usingh1 andh2 values.
Repeat this procedure for suitable values ofα until a stopping condition such as−2(hq∗−1− hq∗) < χ2

1,(1−α), where

the desired order of Taylor series is(q = q∗−1) and hence the desired parameters areβ̂ andθ̂ = (x̂◦, x̂1, ..., x̂q∗−1).
Note that choosing various values ofα this may affect the number of iterations in Taylor approximation, where smaller
values ofα may increase the number of iterations to get the optimal number of terms in Taylor approximation and
vice versa.

3 Simulation Study

In this section, the simulation study conducted based on thesimulated biomedical clinical trials. For each data set, the
simulation is performed based on the following procedure:

1.A random sample of one hundred observations (patients) are randomly generated and classified into two different
groups with probability equals to 0.5; placebo and drug treatment groups, where an indicator variablez is used such
thatz1 = 0 for placebo subset andz1 = 1 for drug treatment group.
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2.Another two continuous covariatesz2 and z3 are generated based on normal distribution with randomly selected
parameters (µ=2, σ2 = 1)

3.For simplicity, the failure time(t) for each patient is generated from exponential distribution with scale parameter
θ = exp(β◦+β1z1+β2z2+β3z3), where the initial values of the parameters vector is set to(β◦ = 0,β1 = 0.5,β2 =
0.5,β3 = 0.5). Note that under the exponential distribution assumption,the baseline hazard function is constant and it
is easy to show that it is equivalent to 1/exp(β◦+β1z1+β2z2+β3z3).

4.For censored observations, an interval is generated withleft and right endpoints (L andR). The right end point(R)
is obtained as theqth quantile of exponential distribution with the proposed scale parameter in(3), while for the left
endpoint(L) the 1− qth quantile is considered to generate this point. Theq value is set consequently to 0.7,0.8 and
0.9 to variate the censoring rate.

5.The censoring indicatorε is generated in the most common manner based on the generatedinformation in steps (3)
and (4) such that if the failure time is less thanL thent is left censoring time and the censoring indicator variableε is
set to 3, while if the failure time is greater thanR thent is right censoring timetR = NA and the censoring indicator
variable is set to 2, otherwiset is exact failure time and henceε = 1.

The proposed simulation algorithm is run 1000 times and for each data set; the proposed estimation technique for
survival function estimation is employed. The mean square error and the coverage probability for the estimated parameters
are also investigated from 100 bootstrapping samples for a range of censoring starting from 10% up to 60%. The simulation
is setup in theR software.

The simulation results is shown in table 1 below. This table contains the average of estimated parameters, the mean
square error (MSE) and the coverage probability(CP) considering the three simulated covariates under the various
censoring range.

Table 1: The average of the estimated parameters, mean square errorsand coverage probabilities.

Censoring Average of Mean Square Coverage Probability

Rate Parameters Error (MSE) (CP)

P = 10% β1 0.261 0.212 0.971

β2 0.137 0.231 0.945

β3 0.136 0.233 0.940

P = 20% β1 0.262 0.289 0.961

β2 0.139 0.476 0.922

β3 0.135 0.501 0.930

P = 30% β1 0.269 0.712 0.941

β2 0.149 0.722 0.921

β3 0.148 0.851 0.907

P = 40% β1 0.275 1.150 0.902

β2 0.144 3.351 0.851

β3 0.147 3.612 0.841

P = 50% β1 0.277 2.012 0.861

β2 0.147 6.321 0.824

β3 0.146 7.213 0.813

P = 60% β1 0.297 3.362 0.851

β2 0.156 8.256 0.802

β3 0.157 11.31 0.810

The results in the above table show the effect of the three covariates on the survival probability, where the effect of
treatment type (β1) has the highest impact on the estimation of the survival function as it can be easily explored from
the estimated parameters values. Furthermore, these results reveal the dramatic increasing of the mean square error asa
result of the increment in the censoring rate in the data set.The increment pattern of the mean square error for the three
parameters is more distinctive for high censoring rates (i.e more than 30%) which indicates that the proposed estimation
technique may produce distorted results of parameter estimation as a result of the high censoring rates in the data sets
under consideration, especially for the parameters belongs to the continuous covariates, where as it is shown in the table
that the mean square error forβ2 andβ3 belongs to the two continuous covariates have the highest errors compared to
β1. Consequently, a concordance of the conclusions can be found once the coverage probability is reviewed, where the
coverage probability of the parameters based on the pre-described maximum likelihood theory given in equation(7) are
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not much satisfactory when the censoring rate exceeds 30% especially for the parameters from the normal approximation,
however, this drawback might be avoided once we resort to an intensive bootstrapping approach, but this is not guaranteed
in the existence of heavy censoring in the data sets.

4 Applications to HIV Data Set

The HIV data from hemophiliacs study are fully described in [7]. In this study the data set described by Kim is used in
particular to detect the efficiency of the proposed technique for survival function estimation and for the existence of some
explanatory variables, where the population in this HIV study consisted of 257 individuals who had been treated in France
since 1978. By a sufficient follow up and by the end of the study, there were 188 individuals found to be infected with
the HIV virus as a result of receiving various amount of tainted blood. Furthermore, this group of patients were classified
into two subsets according to the amount of blood they received during the treatment for hemophilia ;lightly andheavily
treated groups, where the individuals in these two sets wereat risk for infection by HIV virus through the contaminated
blood factor that the individuals were received during their treatment.

The studies of HIV have provided many examples of doubly censoring where the exact infection time of HIV is
usually interval censoring and right censoring which is subject to death. However, the data set in this study consisted of
the observed intervals for HIV infection time assuming thatthe diagnosis of HIV equals to the right end point of the
observed intervals even thought it would be possible to consider the left end point or the midpoint of the intervals, right
censored times and two covariates, which they are the age indicator that indicates whether the age of the individuals at
the infected time point was below or above 20 years old, such that this indicator is set to 1 if the infection time was lower
than 20 and 0 otherwise, and the other covariate is the group indicator such that for lightly treated group it is 1 and 2 for
heavily treated group. For more details about this data set,see [7].

The analysis of the proposed data set started with the self consistent algorithm proposed by [13] for doubly censored
data to estimate the survival function and then the proposedtechnique for survival function approximation using Taylor
series will employed to this data set. The estimated survival functions based on Turnbull algorithm for the lightly and
heavily treated groups are shown in the following figure:

Fig. 1: The survival curve for lightly and heavily treated groups based on Turnbull algorithm
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From the above figure, it is noted that the estimated survivalfunctions are differ noticeably between the two groups and
hence the risk of developing HIV for the individuals in the heavily treated group is greater than the individuals in the
lightly group, and this result is already confirmed by Kimet al. (1993), and many others.
However, under the described situation and to begin with theTaylor series approximation, it is first assumed that the
entire set of individuals have the same distribution of the HIV infection time. The Taylor approach is employed on the
same data set considering the two covariates and the resultsare shown in the following table which is consisted of the
estimated parameters of the covariates as well as the standard error respectively, where the first parameterβ1 belongs to
the treatment covariate andβ2 belongs to the age covariate.

Table 2: The estimated parameters of the covariates for HIV data

Estimated value Standard error

β1 0.6891 0.3210

β2 0.0824 0.4982

The results indicate that there is a clear variation in the risk of developing HIV for the individuals in the two treatment
subsets and there seems a weak effect to the age factor on the HIV infection. However, the above results concordant with
the results in the previous discussions and studies. Thus, no contradiction with the proposed technique and hence it can
be employed in the survival function approximation using doubly censoring and the following figure shows the behavior
of the survival function under the given data set.

Fig. 2: The survival curve using Taylor series approximation

5 Conclusion

In this article, an approximation of the survival function has been investigated for doubly censoring time to event data.
The covariates imputed to the data set has been involved in the analysis by the means of Cox model, where the
cumulative baseline survival function has been extracted by Taylor series. the underlying technique may be distorted
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once the censoring rate exceeds 30% and as a rule of thumb thisis more reasonable since heavy censoring may distort
the datum and outcomes of any proposed estimation technique. So, it should be aware about the censoring rate before
going through this analytical approach.
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