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Abstract: We propose an effective method to realize a multiqubit adlem-phase gate with one qubit simultaneously contrglih
target qubits based on the dipole-dipole (atom-atom) actésn (DDI) and the qubit-cavity interaction (ACI) in a ¢gvQED. In our
scheme, the operation time of this phase gate is indepenflém numbeiN of qubits. On the other hand, the three operational steps
are required to realize thé target-qubit controlled-phase gate. This gate can bezeshih a time much shorter than radiative time and
lifetime of the cavity photon. Also, we give a discussion ba total operation time of the proposed gate and on the rdof
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1 Introduction In this paper, we present and demonstrate a method
for realizing a NTCP gatelf3 by using dipole-dipole
interaction (DDI) with one control qubit simultaneously

Over the past decade, various physical systems have be@ontrolling N target qubits in cavity QED by adding a

considered for building up quantum information strong resonant classical field. This gate can be realized in

processors]], 2]. The cavity QED with neutral atoms is a a time much shorter than radiative time and lifetime of the
very promising approach for quantum information cavity photon. Thus, the operation time required for the
processing, because a cavity can manipulate as a quantugate implementation is independent of the numidenf

bus the coupled qubits efficiently, and information can bequbits, this type of controlled gate with target qubits is

stored in certain atomic energy levels with long coherenceuseful in quantum information processing. For instance, it

time. So far, a large number of theoretical proposals forhas applications in entanglement preparatidi, 18],

realizing two-qubit gates in many physical systems haveerror correction 19], Grover search algorithm2p,21],

been proposed. Moreover, two-qubit controlled phasequantum  discrete  Fourier  transform 22[23],

gates have been experimentally demonstrated in, foPeutsch-Jozsa algorithn24,25], quantum dense coding

example, cavity QED 3,4], ion traps p,6], nuclear [26,27], and quantum cloning 2B,29.The unitary
magnetic resonance NMR7,B], quantum dots 9,10, operator representing this type of multiqubit gate is given

and superconducting qubit$T, 12]. Recently, Yang et al. ~ by: [3(]

proposed a scheme for implementing multiqubit tunable i

phase gate (NTCP gate) of one qubit simultaneously _ ol NN/

controlling n qubits selected fronN qubits (1 < n < N) Up = JI:L(IJ 2l =Dl=i){=alt=il), (1)

in a cavity [L3]. In ref. [14], the authors proposed a

method for realizing a multiqubit gate, the procedure will where the subscript 1 represents the control qubit 1,

become complicated as the number of qubits increasesvhile j represents the target quijitandl; is the identity

Furthermore, it is signicant to realize multiqubit gates operator for the qubit paifl, j), which is given byl; =

directly[15,16]. Srslr1Sj)(risj|, with r;s € {+,—}. From the operator of
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the Eq.(1.1), it can be seen that the operatdy induces  the conventional field, respectively!, a are the creation

a phase flip (from the- sign to the— sign) to the logical and annihilation to the cavity modey is intensity

state|—) of each target qubit when the control qubit 1 is qubit-cavity coupling, Q the Rabi frequency of the

initially in the state]—), and nothing happens otherwise. classical field, and™ is the force dipole-dipole coupling.
In the following, we will present a way for realizing Assuming thatwp = w  we have the following

NTCP gate by introducing a qubit-qubit interaction. We Hamiltonian in the interaction pictur@§, 33

calculated the evolution operator a three-step from the N-+1

Jaynes-Cummings model Hamiltonian, we used theH, = [g(e*i5ta+37 +ei5tasj+) +Q(e’s; +e*i¢Sj+)]
overall evolution operator to obtain a NTCP gate. We also j=1
calculated the total operation time of this gate, which is N+1
smaller than the total operation time calculated in the ref +r Z $ST, @)
13]. i,J)=1
(13 i#]

= Hi+Hp, (8)
2 Basic theory of the NTCP gate

with

We considefN + 1) qubits each having two levels, whose N+1 _
states are designated by a ground sgeand an excited  Hi = 5 Q(e?s; +e7?s)), 9)
state |ej), interacting with a single mode cavity =1
simultaneously, and driven by a conventional field. The N-+1 5t - N+1
qubits are very close together, then the qubit-qubitHin = Y [g(e"a’Sy +€%aS/)|+I Y §'S/, (10)
interaction should be included in the cavity QED. The =1 i!.J;.l
Hamiltonian of the whole system in the rotating wave . . 17
approximation (assuming= 1) [31,32] is given by whered = ap — wy is the detuning (for the statég) and

|e)) between the atomic transition frequeney and the

N+1 . , i
H— Z [0S + waa+a+Q(5Te"(‘*"+¢) +Sj‘e'(‘*"+¢)) frequency of the cavity mode,.

=

N-+1
+
+o@'s ras+r 3§, ) T Bow T s
i#
= Ho+H1+H2+Hs
@0 ©a o [0 1
with
N+1
_ . + lg> lg>

e J; Wi+ a8, ®) @) ) ®)

N+1 _ _
Hi=Q Z (ijre*'(“”‘f’) +57e'(‘*”¢’)), (4) Fig. 1: Representation of different detunings= wy — wy. In

=1 (A), the detuningd < 0. In(B), the detuningd’ > 0. We will use

N1 the first cas¢A) with ¢ = rrand the second ca$B) with ¢ =0
H,=g Z (ats +aSh), (5) to obtain the NTCP gate. We use the same symbplay, and

=i ] J w; for the pulse frequency, the atom transition frequency,thad

N1 cavity mode frequency. The two horizontal solid lines repre
Hy = I z S+5Ta (6) the qubit energy levels for the statgs> and|e > [13].

i,]=1

i#]

We will work on two special casesp(= mandd < 0
) and @ = 0 andd > 0). The operators of developments
that will get these two particular cases will be used in
Sec3 for obtained NTCP gate in the case of the
qubit-qubit interaction.

where ¢ the initial phase of the pulsé], is the free
Hamiltonian of the qubits and the cavity modt, is the
interaction Hamiltonian between the qubits and the
classical pulse; is the interaction Hamiltonian between
the qubits and the cavity mode, ahld is the interaction
Hamiltonian between qubitss, j, SJ-‘, and SJ+ are the

collective operators for thé€l,2,...,N + 1) qubits, where 2.1 Evolution operator in the case of ¢ = rand

Sj = 3(le)(ejl —1gi)(9i]).S" = le))(gil.S; = lgpeil 5«0

with |ej)(|gj)) is the excited state (ground state) of the

qubit, an, Wy, w,are the transition frequency between the Let us now consider theN + 1) qubits placed in a single-
two levels|g) and|e) of each qubit, the cavity mode, and mode cavity, where the first qubit as the controlling qubit
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and the otheN qubits as the target qubits. In the case of where

pulse phas@ = m and the negative detunin= (wp —
w,) < 0, the HamiltoniarH, becomes
N+1 _ _
Hi= Y [g(e'a’s] +€°as)) — Q(S] +5])]
=1
N+1
+T Yy S5 (11)
i,]=1
i#]
= H;+Hjpp (12)
with
N+1
Y Q(sf+§) (13)
=1
N+1 N-+1
Hi= Y [ge'®a’sy +€%s))|+I 5 §'s, (14)
j=1 i,]=1
i#i
S and SJr are the collective operators for the
(1,2,...,N+ 1) qubits. Define the new basid4,34,35]
) = S5 (1g7) + &), 1) = 5 (1gy) — le;))- Then,H
becomes
H = ,:‘Ztllg {e"‘“a*(oxr ;01 JF;o )+e| a(ox,+;0 ; 17):| 1s)
N-+1 1 1 N-+1
+I'|le Oyi + 20 — 20 )(Oxj — —-2Q zlo”
i#]
with

RSP 1 jot 4 1
Hy = J;g[e" a*(axjfzal +20 )+€ (UX,+20 201’)]

N+1

+I’I§1 UX.+;0 —;0 )(Oxj— 20'J +;0 ), (16)
i#]
Hy = —20QS,, an
whereayj = 3(|1+))(+il — [=))(=il), 6" = [+){=il,
o =|-j){+jl, and
N+1
S=S 0xj. (18)
N
By solving the Schrodinger equation
O ey, (19)
dt
with _
(b)) = e MW (1)), (20)
we obtain :
IO ), @D
dt
with
Hy = MitH et (22)

, N+1
H =

N1 1 ) 1

+ 210t g e dQt _ + 20t — 20t

+I‘|l§1crx.+ o & 20, e ) (O, 20'J & +20 e )-
i#]

In the strong driving regionQ > 0,9, ,when the
evolution timet =1 = 25,we can eI|m|nate the terms

oscillating fast. Then the HamlltonlatFII reduces to 36,

37

) _ , N+1
H =g(@"e®” +ae'®)Sc+ T Y ooy
i,]=1
i#]

(23)

The evolution operator for the Hamiltonidﬂ]’ can be
written as B8,39

U’(t) _ e—iA(t)S%e—iB(t)aS(e—iB*(t)a*s(e—ic(t)x’ (X = zir\ljill 05 Oyj).
i#]
(24)
By solving the Schrodinger equation
du’(t o
|dUdt( ) =HU (1), (25)

we obtain

1t
C(t):E/OI'dt:I't,

(t) = g/é‘“'dt’ = %(eicst —1),

=g /0t Bt )e o dt’ = %2 [t + %(e“‘“ - 1)] .(26)

Settingt =17 = —7, we haveB(t) = B*(t) = 0. Then,
the evolution operatdy’(t) become
, , N+1
U' (1) = e|/\S§r (:‘,—ll'orxiaxjr7 (27)
ij=1
i#]
where A = ’ng > 0, Then, we obtain the evolution

operator of the system as
U(ry) = e Mot/ (1y)

irozi0zjT
Y

_ _ N+1
— AQTSdATS; |—| e (28)
i,j=1
i#]
The evolution operatdd (1) will be needed in the first
step for realizing the NTCP gate.
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2.2 Evolution operator in the case of ¢ = 0 and

0>0 Qs 1
WAL O
We consider the positive detuning ca®e- 0 and¢ = 0,
where the atom-cavity coupling constant varies when the A SR EEREREE B
detuning & changes. We suppose that the qubit 1 is WA 900 0000 O

decoupled the cavity and the pulse. In this case, we will

adjusted the level spacing of qubit13.

Replace now the notatio2, 5, gandl by Q', &', ¢
andl”’, respectively, for distinguish th¢ = 0 andd > 0
from the case) = mandd < 0. In the following, and for
simplicity of this work, we use the same symbalg and
o, [see Figl]. Then, the Hamiltoniaki; can be written as

N+1 N-+1

=2 i)=2

i#]
(29)

S andS“jF are the operators for the qub{®s ..., N+ 1).

In the case 2’ > ¢, &, when the evolution time= 1 =
27, the HamiltoniarH, is

. . N+1
Hi=d@ e’ +ae®)S+r" 5 oo, (30)
i,]=2
i#]
and
H; =2Q'S, (31)
then the evolution operatal’ (1') is
. / . ! 2 N+1 . !
U/(Tl) — e AQT g INT glr't 0zi0z] (32)
ij=2
i#]
2 .
where A" = & >0, and § = 3} ox; with

0xj = 3(ST +S).Then, the evolution operatdy’(r;)

will be needed for the second step for realizing the NTCP

gate.

(e ¥tats; +é0tas )+ Q'(S +5 )+ Y S

Fig. 2: Proposed the control qubit (the red dot), thedentical
target qubits (the black dots), and a cavity, whereNtwubits are
very close together . The Rabi frequency for the pulse appiie
qubit 1 isQ,, while the Rabi frequency for the pulses applied to
qubits(2,3,...N+1) is Q.

3 Preparation of the NTCP gate

In this section, We will demonstrate how the NTCP gate
can be realized based on the evolution operatd(s),
U'(1)),andUq (7).

We considerN + 1 qubits moved to a cavity QED.
The operations for the NTCP gate Realization and the
evolutions operators after each step of operation are as
follows:

First Step: With a detuning < 0 [Fig.3(A;) and(Ay)],
we Apply a resonant pulse (wigh = 1) to each qubit. The

For realizing the NTCP gate, we will have the qubits Pulse Rabi frequency iQ. Thus,U(7) is the evolution
decoup|ed from the Cavity, and app|y|ng a resonant pu|5é)perat0rf0r the\l + 1 qubItS SyStem, Where the Interaction

to each qubit. Therefore, we assumed that the Rabfime?=—%

frequency of the pulse applied to qubit 1@ and the

T

Second étep: Apply a resonant pulse (wjth= 0) to

Rabi frequency of the pulse applied to qubits €ach of the qubit§2,3,...,N+ 1) with a detuning®’ > 0.

(2,..,N+1)is Q [see Fig2], where the initial phase for

Adjust the qubit transition frequency for qubits

each pulse i$ = 0. so, in the interaction picture, we have (2,3,...,N+1) [13], such that the cavity mode is coupled
the following interaction Hamiltonian for the qubit to qubits(2,3,...,N+1)[see Fig3 (B;)]. The pulse Rabi

system and the pulses as

The evolution operator for the Hamiltoniady, in the
evolution timer = — 2l is
UQ(T) — —ZiQ]_TUZ}le—iZQrTs(. (34)

The evolution operatolg (1) given here, will be
needed in the next section for realizing the NTCP gate.

frequency isQ’, andU’(1’) is the evolution operator for
the qubit system. Thus, adjust the transition frequency of
qubit 1 [13], such that qubit 1 is decoupled from the
cavity mode and the pulses applied to qubits
(2,3,..,N + 1) [seeFig3(B1)]. In addition, the
interaction timer’ = g—’,T.

We choosed = —4g (3 = 4g), where the reason for us
to setd = —4gis to get a shorter operation time. We notice
thatd satisfies the equation 8/ 52 = (2k+ 1), wherek is
an integer. So, whek= 0, é takes maximund = —4g. In
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this case, the operation time will be the shortest, wheee, th
equation 4?/6% = (2k+ 1) is the condition to implement

the NTCP gate given below. So, the combined time after

these two steps, is

/ T
T+T =— 35
+ g (35)
We suppose thatQ't = —Qt, A'T = A1, and
't = I'1, that can be achieved by adjusting thandd’
(changing thewy and w,), the Q and Q' (changing the
intensity of the pulses), thé and™’. ThenU (1 + 11)
becomes

, ) ) o N1
U (T—|— T ) _ e2|Qr(S<7S()e|)\ T(S)%fi) I_LeerGuGZj

. . N-+1
_ e—2|Qrazle—2|)\ 10218 I_LeerULlGLJ’ (36)
J:

with S~ S, = 0,1, £ —S? =1 +ZGZ 1S( (I is the identity
operator for qubitl), wher&, = Z S 0xj, with oy | =
(S +9).

The third step: In the case @f = 0, we applied the
Rabi frequency for the puls®; to qubit 1[see Fig3(Cy)],
and also, applied the Rabi frequency of the pulketo
qubits(2,...,N+1) [see Fig3(Cz)], then, we will obtained
the time evolution operatdiq (7) with T is evolution time
given above.

After this three step operation, the combined time
evolution operator of th&l 4 1 qubits system is

UQRT+T) =Ug(TU(T+T)
_ efziazlr(QJrQl).efZiQrS(r '\FLlEZiollazjr()\ (&7)
J:
With the conditions
A= 4)\N+% = —4ANg?/5+T /2,
Q1 =20-Q=-2¢°/5—-Q, (38)
Qr =2\ = —2¢%/3, (39)

which can be achieved by adjusting the Rabi frequenme
Q, Q;and ;,so the time evolution operattt (21 + 1')
becomes

N+1
U (2_[+ T,) _ I—Le—4i/\ 1(021+072420,1072) (40)
=
N+1
= [Ur(L)). (41)
n
Where  Up(L,j) = e 2A"1(0:1+02+20010)
According to the evolution operatbt(21 + ') above, on
the  basis |+1) = %2(|gl> ley))  and

|—1) =

1,s0

%2(|gl> — |e1)) of the Pauli operatooy 1 for qubit

the basis |+j) = J5(lgj) + le)) and

(A1 Qubir 1 Ay Qubits (2,3,...N+1)
Small detuning & Small detuning &
i e > -- g
! 1 s<0 le £ 5=0
lp; i el o ® :;r o @a
lz> le>
(B1) By
Large detuning A Small detuning &
= T la le> 870
@=0
o @a o 0 @a
lg> ——— le>
(Cy) (Cy) .
Large detuning A Large detuning A
le> le>
LA la
o=0 =0
©0 ®a w0 ©@a
lg> —— b

le>

Fig. 3: Representation of the three steps: The first sfapafhd
A), the second stepBf and By), and the third stepG; and
Cy), where the figure$As), (B1) and (Cy) correspond to qubit

1, and the other figure@\;), (B2) and(C;,) correspond to qubit
(2,3,...,N+1). in these figuresp,and &’ are small detuning
between the cavity mode frequenay, and the qubit transition
frequencyay, A = wy — wy is large detuning of the cavity mode,

¢ is the initial stage of the pulse, and the Rabi frequencies of
various Applied pulses a@, Q' Q;, andQ, [13].

=) = J5(9j) — lej)) of the Pauli operatoroy; for
qubits(2,3,...,N+ 1), we can obtain following evolutions
Upl+)|+)) = € 47 |41) [+9),

Upl+1)[—j) = [+2) =), (42)
Upl—1)[+j) = [—2)+),

Upl—1)[=j) = [=1)[=j)-

Where the termée?'? is omitted. By selecting
8AT = (2k+ 1), i.e., 168)%/5% = (2k+ 1) (with k being
an integer) ,we have

Vgl ) = —+0)1+),

Upl+0) =) = [+1)—j), (43)
Upl—2)l+i) = [-0)[+}),
Upl—2)|-3) = |-1)—).

Obviously, one can see that we obtain a NTCP gate.
Hence, it is clear that the NTCP gate can be realised after
the three-step process.

4 Discussion
Now, we give a brief discussion about our proposal.

Principal quantum numbers 50 and 51, the radiative time
is T = 3.0 x 10%s and the coupling strength is
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g = 2mx 50 kHz [1340], with —5 = & = 2g and  essential advantage of the scheme is that this gate can be
r=(2k+1)/6 (k =0,1,..,n) [3L,41. The total realized in a time much shorter than radiative time and
operation timeTop = T+ T + Ta + 4Tm is independent of  lifetime of the cavity photon. Therefore, the present
the number of target qubits, wheret, is the typical ime ~ scheme is simple and is feasible with cavity QED
required for adjusting the cavity mode frequency duringtechniques.

first Step above, and,, is the typical time required for

moving atoms into or out of the cavity. So, the direct
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