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Abstract: We propose an effective method to realize a multiqubit controlled-phase gate with one qubit simultaneously controlling N
target qubits based on the dipole-dipole (atom-atom) interaction (DDI) and the qubit-cavity interaction (ACI) in a cavity QED. In our
scheme, the operation time of this phase gate is independentof the numberN of qubits. On the other hand, the three operational steps
are required to realize theN target-qubit controlled-phase gate. This gate can be realized in a time much shorter than radiative time and
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1 Introduction

Over the past decade, various physical systems have been
considered for building up quantum information
processors [1,2]. The cavity QED with neutral atoms is a
very promising approach for quantum information
processing, because a cavity can manipulate as a quantum
bus the coupled qubits efficiently, and information can be
stored in certain atomic energy levels with long coherence
time. So far, a large number of theoretical proposals for
realizing two-qubit gates in many physical systems have
been proposed. Moreover, two-qubit controlled phase
gates have been experimentally demonstrated in, for
example, cavity QED [3,4], ion traps [5,6], nuclear
magnetic resonance NMR [7,8], quantum dots [9,10],
and superconducting qubits [11,12]. Recently, Yang et al.
proposed a scheme for implementing multiqubit tunable
phase gate (NTCP gate) of one qubit simultaneously
controlling n qubits selected fromN qubits(1 < n < N)
in a cavity [13]. In ref. [14], the authors proposed a
method for realizing a multiqubit gate, the procedure will
become complicated as the number of qubits increases.
Furthermore, it is signicant to realize multiqubit gates
directly[15,16].

In this paper, we present and demonstrate a method
for realizing a NTCP gate [13] by using dipole-dipole
interaction (DDI) with one control qubit simultaneously
controlling N target qubits in cavity QED by adding a
strong resonant classical field. This gate can be realized in
a time much shorter than radiative time and lifetime of the
cavity photon. Thus, the operation time required for the
gate implementation is independent of the numberN of
qubits, this type of controlled gate withN target qubits is
useful in quantum information processing. For instance, it
has applications in entanglement preparation [17,18],
error correction [19], Grover search algorithm [20,21],
quantum discrete Fourier transform [22,23],
Deutsch-Jozsa algorithm [24,25], quantum dense coding
[26,27], and quantum cloning [28,29].The unitary
operator representing this type of multiqubit gate is given
by: [30]

Up =
N+1

∏
j=2

(I j −2|−1〉|− j〉〈−1|〈− j|), (1)

where the subscript 1 represents the control qubit 1,
while j represents the target qubitj, andI j is the identity
operator for the qubit pair(1, j), which is given byI j =
∑rs |r1s j〉〈r1s j|, with r,s ∈ {+,−}. From the operator of
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the Eq.(1.1), it can be seen that the operatorUp induces
a phase flip (from the+ sign to the− sign) to the logical
state|−〉 of each target qubit when the control qubit 1 is
initially in the state|−〉, and nothing happens otherwise.

In the following, we will present a way for realizing
NTCP gate by introducing a qubit-qubit interaction. We
calculated the evolution operator a three-step from the
Jaynes-Cummings model Hamiltonian, we used the
overall evolution operator to obtain a NTCP gate. We also
calculated the total operation time of this gate, which is
smaller than the total operation time calculated in the ref
[13].

2 Basic theory of the NTCP gate

We consider(N +1) qubits each having two levels, whose
states are designated by a ground state|g j〉 and an excited
state |e j〉, interacting with a single mode cavity
simultaneously, and driven by a conventional field. TheN
qubits are very close together, then the qubit-qubit
interaction should be included in the cavity QED. The
Hamiltonian of the whole system in the rotating wave
approximation (assuminḡh = 1) [31,32] is given by

H =
N+1

∑
j=1

[ω0Sz, j +ωaa+a+Ω(S+j e−i(ωt+ϕ)+ S−j ei(ωt+ϕ))

+g(a+S−j + aS+j )]+Γ
N+1

∑
i, j=1
i6= j

S+i S−j , (2)

= H0+H1+H2+H3

with

H0 =
N+1

∑
j=1

ω0Sz, j +ωaa+a, (3)

H1 = Ω
N+1

∑
j=1

(S+j e−i(ωt+ϕ)+ S−j ei(ωt+ϕ)), (4)

H2 = g
N+1

∑
j=1

(a+S−j + aS+j ), (5)

H3 = Γ
N+1

∑
i, j=1
i6= j

S+i S−j , (6)

whereϕ the initial phase of the pulse,H0 is the free
Hamiltonian of the qubits and the cavity mode,H1 is the
interaction Hamiltonian between the qubits and the
classical pulse,H2 is the interaction Hamiltonian between
the qubits and the cavity mode, andH3 is the interaction
Hamiltonian between qubits,Sz, j, S−j , and S+j are the
collective operators for the(1,2, ...,N + 1) qubits, where
Sz, j =

1
2(|e j〉〈e j| − |g j〉〈g j|),S+j = |e j〉〈g j|,S−j = |g j〉〈e j|

with |e j〉(|g j〉) is the excited state (ground state) of the
qubit, ω0,ωa,ω ,are the transition frequency between the
two levels|g〉 and|e〉 of each qubit, the cavity mode, and

the conventional field, respectively.a+,a are the creation
and annihilation to the cavity mode,g is intensity
qubit-cavity coupling, Ω the Rabi frequency of the
classical field, andΓ is the force dipole-dipole coupling.
Assuming that ω0 = ω we have the following
Hamiltonian in the interaction picture [26,33]

HI =
N+1

∑
j=1

[g(e−iδ ta+S−j + eiδ taS+j )+Ω(eiϕS−j + e−iϕS+j )]

+Γ
N+1

∑
i, j=1
i6= j

S+i S−j , (7)

= H1+HI1, (8)

with

H1 =
N+1

∑
j=1

Ω(eiϕS−j + e−iϕS+j ), (9)

HI1 =
N+1

∑
j=1

[g(e−iδ ta+S−j + eiδ taS+j )]+Γ
N+1

∑
i, j=1
j 6= j

S+i S−j , (10)

whereδ = ω0−ωa is the detuning (for the states|g〉 and
|e〉) between the atomic transition frequencyω0 and the
frequency of the cavity modeωa.

Fig. 1: Representation of different detuningsδ = ω0 −ωa. In
(A), the detuningδ < 0. In (B), the detuningδ ′ > 0. We will use
the first case(A) with ϕ = π and the second case(B) with ϕ = 0
to obtain the NTCP gate. We use the same symbolsω, ω0, and
ωa for the pulse frequency, the atom transition frequency, andthe
cavity mode frequency. The two horizontal solid lines represent
the qubit energy levels for the states|g > and|e > [13].

We will work on two special cases: (ϕ = π andδ < 0
) and (ϕ = 0 andδ > 0). The operators of developments
that will get these two particular cases will be used in
Sec.3 for obtained NTCP gate in the case of the
qubit-qubit interaction.

2.1 Evolution operator in the case of ϕ = π and
δ < 0

Let us now consider the(N +1) qubits placed in a single-
mode cavity, where the first qubit as the controlling qubit
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and the otherN qubits as the target qubits. In the case of
pulse phaseϕ = π and the negative detuningδ = (ω0 −
ωa)< 0, the HamiltonianHI becomes

HI =
N+1

∑
j=1

[g(e−iδ ta+S−j + eiδ taS−j )−Ω(S−j + S+j )]

+Γ
N+1

∑
i, j=1
i6= j

S+i S−j (11)

= H1+HI1 (12)

with

H1 = −
N+1

∑
j=1

Ω(S+j + S−j ), (13)

HI1 =
N+1

∑
j=1

[g(e−iδ ta+S−j + eiδ taS+j )]+Γ
N+1

∑
i, j=1
j 6= j

S+i S−j , (14)

S−j , and S+j are the collective operators for the
(1,2, ...,N + 1) qubits. Define the new basis [15,34,35]
|+ j〉 = 1√

2
(|g j〉+ |e j〉), |− j〉 = 1√

2
(|g j〉− |e j〉). Then,HI

becomes

HI =
N+1

∑
j=1

g

[

e−iδ t a+(σx, j −
1
2

σ+
j +

1
2

σ−
j )+ eiδ ta(σx, j +

1
2

σ+
j − 1

2
σ−

j )

]

(15)

+Γ
N+1

∑
i, j=1
i 6= j

(σx,i +
1
2

σ+
i − 1

2
σ−

i )(σx, j −
1
2

σ+
j +

1
2

σ−
j )−2Ω

N+1

∑
j=1

σx, j ,

with

HI1 =
N+1

∑
j=1

g[e−iδ t a+(σx, j −
1
2

σ+
j +

1
2

σ−
j )+ eiδ ta(σx, j +

1
2

σ+
j − 1

2
σ−

j )]

+Γ
N+1

∑
i, j=1
i 6= j

(σx,i +
1
2

σ+
i − 1

2
σ−

i )(σx, j −
1
2

σ+
j +

1
2

σ−
j ), (16)

H1 = −2ΩSx , (17)

whereσx, j =
1
2(|+ j〉〈+ j| − |− j〉〈− j|), σ+

j = |+ j〉〈− j|,
σ−

j = |− j〉〈+ j|, and

Sx =
N+1

∑
j=1

σx, j. (18)

By solving the Schrodinger equation

i
d|Ψ(t)〉

dt
= HI|Ψ (t)〉, (19)

with
|Ψ(t)〉= e−iH0t |Ψ ′(t)〉, (20)

we obtain

i
d|Ψ ′(t)〉

dt
= H

′
I |Ψ ′(t)〉, (21)

with

H
′
I = eiH1tHI1e−iH1t , (22)

where

H
′
I =

N+1

∑
j=1

g

[

a+e−iδ t(σx, j −
1
2

σ+
j e2iΩ t +

1
2

σ−
j e−2iΩ t)+aeiδ t(σx, j +

1
2

σ+
j e2iΩ t − 1

2
σ−

j e−2iΩ t)

]

+Γ
N+1

∑
i, j=1
i 6= j

(σx,i +
1
2

σ+
i e2iΩ t − 1

2
σ−

i e−2iΩ t)(σx, j −
1
2

σ+
j e2iΩ t +

1
2

σ−
j e−2iΩ t).

In the strong driving region 2Ω ≫ δ ,g,Γ ,when the
evolution time t = τ = π

2δ ,we can eliminate the terms

oscillating fast. Then the HamiltonianH
′
I reduces to [36,

37]

H
′
I = g(a+eiδ t + ae−iδ t)Sx +Γ

N+1

∑
i, j=1
i6= j

σxiσx j. (23)

The evolution operator for the HamiltonianH
′
I can be

written as [38,39]

U
′
(t) = e−iA(t)S2

x e−iB(t)aSxe−iB∗(t)a+Sxe−iC(t)X , (X = ∑N+1
i, j=1
i6= j

σxiσx j).

(24)
By solving the Schrodinger equation

i
dU

′
(t)

dt
= H

′
IU

′
(t), (25)

we obtain

C(t) =
1
2

∫ t

0
Γ dt

′
= Γ t,

B(t) = g
∫

eiδ t′dt
′
=

g
iδ

(eiδ t −1),

A(t) = ig
∫ t

0
B(t

′
)e−iδ t

′
dt

′
=

g2

δ

[

t +
1
iδ

(e−iδ t −1)

]

. (26)

Settingt = τ =− 2π
δ , we haveB(t) = B∗(t) = 0. Then,

the evolution operatorU ′(t) become

U
′
(τ1) = eiλ S2

xτ
N+1

∏
i, j=1
i6= j

e−iΓ σxiσx jτ , (27)

where λ = −g2

δ > 0, Then, we obtain the evolution
operator of the system as

U(τ1) = e−iH0τU ′(τ1)

= e2iΩτSx eiλ τS2
x

N+1

∏
i, j=1
i6= j

e−iΓ σz,iσz, jτ , (28)

The evolution operatorU(τ) will be needed in the first
step for realizing the NTCP gate.
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2.2 Evolution operator in the case of ϕ = 0 and
δ > 0

We consider the positive detuning caseδ > 0 andϕ = 0,
where the atom-cavity coupling constant varies when the
detuning δ changes. We suppose that the qubit 1 is
decoupled the cavity and the pulse. In this case, we will
adjusted the level spacing of qubit 1 [13].

Replace now the notationΩ , δ , g andΓ by Ω ′
, δ ′

, g′

andΓ ′
, respectively, for distinguish theϕ = 0 andδ > 0

from the caseϕ = π andδ < 0. In the following, and for
simplicity of this work, we use the same symbolsω0, and
ωa [see Fig.1]. Then, the HamiltonianHI can be written as

H
′
I =

N+1

∑
jˆ=2

[g
′
(e−iδ ′

ta+S−j +eiδ ′
taS+j )+Ω

′
(S−j +S+j )]+Γ ′

N+1

∑
i, j=2
i6= j

S+i S−j ,

(29)
S−j andS+j are the operators for the qubits(2, ...,N+1).

In the case 2Ω ′ ≫ g
′
,δ ′

, when the evolution timet = τ ′
=

2π
δ ′ , the HamiltonianH ′

I1 is

H ′
I1 = g′(a+eiδ ′t + ae−iδ ′t)S′x +Γ ′

N+1

∑
i, j=2
i6= j

σxiσx j, (30)

and
H ′

1 = 2Ω ′S′x, (31)

then the evolution operatorU ′(τ ′) is

U ′(τ1) = e−2iΩ ′τ ′S′x e−iλ ′τ ′S′2x
N+1

∏
i, j=2
i6= j

eiΓ ′τ ′σz,iσz, j , (32)

where λ ′ = g2

δ ′ > 0, and S′x = ∑N+1
j=2 σx, j, with

σx, j =
1
2(S

+
j + S−j ).Then, the evolution operatorU

′
(τ1)

will be needed for the second step for realizing the NTCP
gate.

For realizing the NTCP gate, we will have the qubits
decoupled from the cavity, and applying a resonant pulse
to each qubit. Therefore, we assumed that the Rabi
frequency of the pulse applied to qubit 1 isΩ1 and the
Rabi frequency of the pulse applied to qubits
(2, ...,N +1) is Ωr [see Fig.2], where the initial phase for
each pulse isϕ = 0. so, in the interaction picture, we have
the following interaction Hamiltonian for the qubit
system and the pulses as

HΩ = 2Ω1σz,1+2ΩrS
′
x. (33)

The evolution operator for the HamiltonianHΩ in the
evolution timeτ =− 2π

δ is

UΩ (τ) = e−2iΩ1τσz,1e−i2ΩrτS′x . (34)

The evolution operatorUΩ (τ) given here, will be
needed in the next section for realizing the NTCP gate.

Fig. 2: Proposed the control qubit (the red dot), theN identical
target qubits (the black dots), and a cavity, where theN qubits are
very close together . The Rabi frequency for the pulse applied to
qubit 1 isΩ1, while the Rabi frequency for the pulses applied to
qubits(2,3, . . .N +1) is Ωr .

3 Preparation of the NTCP gate

In this section, We will demonstrate how the NTCP gate
can be realized based on the evolution operatorsU(τ),
U

′
(τ ′

),andUΩ (τ).
We considerN + 1 qubits moved to a cavity QED.

The operations for the NTCP gate Realization and the
evolutions operators after each step of operation are as
follows:

First Step: With a detuningδ < 0 [Fig.3(A1) and(A2)],
we Apply a resonant pulse (withϕ = π) to each qubit. The
pulse Rabi frequency isΩ . Thus,U(τ) is the evolution
operator for theN+1 qubits system, where the interaction
timeτ =− 2π

δ .
Second Step: Apply a resonant pulse (withϕ = 0) to

each of the qubits(2,3, ...,N +1) with a detuningδ ′ > 0.
Adjust the qubit transition frequency for qubits
(2,3, ...,N +1) [13], such that the cavity mode is coupled
to qubits(2,3, ...,N + 1) [see Fig.3 (B2)]. The pulse Rabi
frequency isΩ ′, andU ′(τ ′) is the evolution operator for
the qubit system. Thus, adjust the transition frequency of
qubit 1 [13], such that qubit 1 is decoupled from the
cavity mode and the pulses applied to qubits
(2,3, ...,N + 1) [see Fig.3 (B1)]. In addition, the
interaction timeτ ′

= 2π
δ ′ .

We chooseδ =−4g (δ ′
= 4g), where the reason for us

to setδ =−4g is to get a shorter operation time. We notice
thatδ satisfies the equation 16g2/δ 2 =(2k+1), wherek is
an integer. So, whenk = 0, δ takes maximumδ =−4g. In
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this case, the operation time will be the shortest, where, the
equation 4g2/δ 2 = (2k+1) is the condition to implement
the NTCP gate given below. So, the combined time after
these two steps, is

τ + τ
′
=

π
g

(35)

We suppose thatΩ ′τ ′
= −Ωτ, λ ′τ ′

= λ τ, and
Γ ′τ ′

= Γ τ, that can be achieved by adjusting theδ andδ ′

(changing theω0 and ωa), the Ω and Ω ′ (changing the
intensity of the pulses), theΓ and Γ ′. ThenU(τ + τ1)
becomes

U(τ + τ
′
) = e2iΩτ(Sx−S′x)eiλ τ(S2

x−S′2x )
N+1

∏
j=2

eiΓ τσz,1σz, j

= e−2iΩτσz,1e−2iλ τσz,1S′x
N+1

∏
j=2

eiΓ τσz,1σz, j , (36)

with Sx −S′x = σz,1, S2
x −S′2x = I+2σz,1S′x (I is the identity

operator for qubit1), whereS′x = ∑N+1
j=2 σx, j, with σx, j =

1
2(S

+
j + S−j ).
The third step: In the case ofϕ = 0, we applied the

Rabi frequency for the pulseΩ1 to qubit 1[see Fig.3(C1)],
and also, applied the Rabi frequency of the pulseΩr to
qubits(2, ...,N+1) [see Fig.3(C2)], then, we will obtained
the time evolution operatorUΩ (τ) with τ is evolution time
given above.

After this three step operation, the combined time
evolution operator of theN +1 qubits system is

U(2τ + τ
′
) = UΩ (τ)U(τ + τ

′
)

= e−2iσz,1τ(Ω+Ω1).e−2iΩrS′xτ
N+1

∏
j=2

e−2iσz,1σz, jτ(λ− Γ
2 ).(37)

With the conditions

λ = 4λ N +
Γ
2
=−4Ng2/δ +Γ/2,

Ω1 = 2λ −Ω =−2g2/δ −Ω , (38)

Ωr = 2λ =−2g2/δ , (39)

which can be achieved by adjusting the Rabi frequencies
Ω , Ω1and Ωr,so the time evolution operatorU(2τ + τ ′)
becomes

U(2τ + τ
′
) =

N+1

∏
j=2

e−4iλ τ(σz,1+σz,2+2σz,1σz,2) (40)

=
N+1

∏
j=2

UP(1, j). (41)

Where Up(1, j) = e−2iλ ′′τ(σz,1+σz, j+2σz,1σz, j).

According to the evolution operatorU(2τ + τ ′
) above, on

the basis |+1〉 = 1√
2
(|g1〉 + |e1〉) and

|−1〉= 1√
2
(|g1〉− |e1〉) of the Pauli operatorσx,1 for qubit

1,so the basis |+ j〉 = 1√
2
(|g j〉 + |e j〉) and

Fig. 3: Representation of the three steps: The first step (A1 and
A2), the second step (B1 and B2), and the third step (C1 and
C2), where the figures(A1),(B1) and (C1) correspond to qubit
1, and the other figures(A2),(B2) and(C2) correspond to qubit
(2,3, ...,N + 1). in these figures,δ ,and δ ′ are small detuning
between the cavity mode frequencyωa, and the qubit transition
frequencyω0, ∆ = ω0−ωa is large detuning of the cavity mode,
ϕ is the initial stage of the pulse, and the Rabi frequencies of
various Applied pulses areΩ ,Ω ′,Ω1, andΩr [13].

|− j〉 = 1√
2
(|g j〉 − |e j〉) of the Pauli operatorσx, j for

qubits(2,3, ...,N+1), we can obtain following evolutions

Up|+1〉|+ j〉 = e−8iλ τ |+1〉|+ j〉,
Up|+1〉|− j〉 = |+1〉|− j〉, (42)

Up|−1〉|+ j〉 = |−1〉|+ j〉,
Up|−1〉|− j〉 = |−1〉|− j〉.

Where the term ei2λ τ is omitted. By selecting
8λ τ = (2k+ 1)π , i.e., 16g2/δ 2 = (2k+1) (with k being
an integer) ,we have

Up|+1〉|+ j〉 = −|+1〉|+ j〉,
Up|+1〉|− j〉 = |+1〉|− j〉, (43)

Up|−1〉|+ j〉 = |−1〉|+ j〉,
Up|−1〉|− j〉 = |−1〉|− j〉.

Obviously, one can see that we obtain a NTCP gate.
Hence, it is clear that the NTCP gate can be realised after
the three-step process.

4 Discussion

Now, we give a brief discussion about our proposal.
Principal quantum numbers 50 and 51, the radiative time
is Tr = 3.0 × 10−2s and the coupling strength is
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g = 2π × 50 kHz [13,40], with −δ = δ ′
= 2g and

Γ = (2k+1)/δ (k = 0,1, ...,n) [31,41]. The total
operation timeTop = τ + τ ′

+ τa +4τm is independent of
the number of target qubitsN, whereτa is the typical time
required for adjusting the cavity mode frequency during
first Step above, andτm is the typical time required for
moving atoms into or out of the cavity. So, the direct
calculation shows that the time required to implement the
NTCP gate with atoms is Top = 15µs
(with τa = τm = 1µs), which is much shorter thanTr. In
recent experiments, the decay time of the cavity field (the
lifetime of the cavity photon) wasTc = 1.0× 10−3s [31,
41], which is much longer than the total operation time
Top.

Furthermore, to implement the NTCP gate, we must
precisely control dipole-dipole interaction (DDI) between
the atoms. In recent years, the (DDI) has been studied as
an emergence of collective scattering [42], entanglement
of two artificial two-level atoms with degenerate
two-photon transitions [43], nanoparticle ensembles [44].
The DDI depends upon three following factors: (i) the
length of the cavity, (ii) the positions of the atoms and
(iii) the polarization of dipoles. In order to achieve the
tight localization required for DDI, the atoms must be
trapped and cooled. Moreover, the dipolar interaction
energy of the tightly trapped atoms can be much larger
than the photon scattering rate and the atoms are cooled
simultaneously by a one-dimensional cooling field [45,
46]. The DDI could be used for quantum computation by
using an experimental apparatus that was realizable with
presently available technology [45,46]. Based on the
above technology, therefore, the dipole-dipole coupling
strength between the atoms can be adjusted to satisfy the
conditionΓ = (2k+1)/δ (k = 0,1, ...,n).

5 Conclusion

In conclusion, we have proposed a simple scheme for
realizing NTCP gate in a cavity QED with a single mode
and a standing-wave pattern along the cavity axis by
using atom-atom DDI and ACI. In our scheme, we have
applied an inhomogeneous field to distinguish between
theN +1 qubits. The scheme is insensitive to the thermal
field. Furthermore, the gate operation time is independent
of the number of qubits, and the qubit definitions are the
same, which makes the work easier. In addition, the
operation time can be controlled by adjusting the
frequency between the|g j〉 and |e j〉. Thus, the gate
operation is independent of the initial state of the cavity
mode. However, we have presented an effective method
for obtained a NTCP gate in a cavity QED, we have
calculated an evolution operator with the three steps in the
case of the DDI and ACI. Finally, we have applied the
overall evolution operator to working basis of the qubit 1
and the qubitsj ( j = 2, . . . ,N + 1) for find the logical
gate. this gate can be realized in a time much shorter than
radiative time and lifetime of the cavity photon. The

essential advantage of the scheme is that this gate can be
realized in a time much shorter than radiative time and
lifetime of the cavity photon. Therefore, the present
scheme is simple and is feasible with cavity QED
techniques.
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