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Abstract: In this article, a common fixed point theorem for a pair of seHipping is establish id-metric space using (CLR) property.
Our establish theorem extend, generalize and improveaityibe of results of the literature in the settingdemetric space.
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1 Introduction 3) di(x1,y1) < di(x1,z1) +di(z,y1) forall xq,y1,21 €

In 1922, Banach established a fixed point result in  Thend; is ad-metric onXy and(Xo,d;) is ad-metric
complete metric space for a contraction mapping, whichspace.
is one of the most important result of functional analysis. Example. SupposeXo = R*. A functiond; : Xo x X —
As a part of study of denotational semitics and data flowR+ u {0} defined by
network Mathews ] generalized Banach contraction
principle in partial metric space (pms). d1(X0,Y0) = Xo+Yo forall xo,Yo € Xo.

Hitzler [2], initiated the idea of dislocated metric
(d-metric) space and established fixed point theorem ofPefinition. SupposeS, and To be self-mappings oiXo
Banach type in such a space. Results on fixed point fowhich is non-empty then

compatible and weakly compatible mappings introduced 4 A pointxo € Xo is called fixed point off if Toxo = Xo.
by Jungck in B,4] are established in5[6]. In [7], Aamri 2.A pointxo € Xo is known as coincidence point &

and El-Moutawakil initiated the idea of property (E.A), andTy if Syxo = ToXo and we saidiy = SyXo = ToXo iS
while Sintunavarat and Kuman in8][ introduced the a point of coincidence.

concept of (CLR) property. In the above mentioned 3 A 'ngintx, e X, is known as fixed point of bot& and
concepts the later one is superior then the previous one. To if SoXo = ToXo =
- . o 0 Xo = loXp = Xp-

Gregus 9] established a result on fixed point in o _ _
Banach space. Several authors generalized such a theordpgfinition. Mappings § and To of a d-metric space
in different spaces (seel(,11,12)). Using the idea of (Xo,do) are known to be compatible if
weakly compatible, (CLR) property and property (E.A)

there we have proved fixed point theorem of Gregous type lim do(SoToXn, ToSoxn) =0
in d-metric space. For the support of our constructed
results an example is provided. when there exists a sequenfeq} in Xo such that

||m S)Xn B ||m TOXn == to
. . . n—-o0 n—oo
2 Preliminaries
for sometg in Xg.
Definition. [2]. Considerd; : X x Xg — RT U {0} be a  Definition. MappingsS and To on a d-metric space

function on a non-empty se§ satisfying (Xo,dp) are said to be weakly compatible if they commute
1) di(x1,y1) = di(y1,%1) = 0 impliesx; = ys; at all of their coincidence points i.e Byug = Toup for
2) da(x1,y1) = da(y1,%a); someup € Xo thenSTouo = ToSpUo.
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Definition. [7]. MappingsS and Ty on ad-metric space 3 Main Results

(Xo,dp) are said to satisfy property (E.A) if there exists a

sequencéty} in Xo such that Theorem. SupposeS and Tp be weakly compatible
mappings ord-metric spacéXo,dp) satisfying

1.5 andTy satisfy (CLR) property;
for sometg in Xo. 2.d5 (So%o, Soyo) < ady(Toxo, Toyo) +

Example. ConsideXy = [0, 1] with d-metric given by 5 max{ 62(Soxo, Toxo) B(Sovo ToYo)} N

||m &)tn = ||m Totn = to
n—oo n—oo

fole:y0) =07+ Yo forallzo o € Ko { BT Toy) St T cf oy o)
max X07 ) XOa XO I I l
The self-mappingS andTy on Xp are defined by Y 01100, To¥0), % ° 0 (=¥, To¥o
0,1] for all Xo,yo € Xo, a,3,y >0 for 2(a+B+y) <1 and
12 p > 1. Theng andTp have a fixed point which is unique

if %o € (3,1] and common to both of the mappings.
and Proof. SinceS andTp hold (CLR) property therefore there
Toxo — { é !f X € [017 %] exists a sequendgn} in Xp such that
2l x0e(z1 lim Soln = 1im Toln = Tolo (1)

for a sequenck = 3 — 1 in Xo with n > 2 hold property e n=ree
(E.A)as 1 for anyug in Xo.

lim Sty = lim Toty = = € Xo. To show thaSyup = Toug for this suppose

n—oc0 n—co 2
Also § andTy are weakly compatible as they commute at dg(SoIn, Solp) < adg(ToIn,Touo)+

% which is the only coincidence point & and Ty but not

compatible because 5 max{d(';’(soln, |n),d§(S)uO,Touo)}+
r!'_ﬂl} do(SoTotn, ToSotn) # O.

p p p
Definition. [8]. MappingsSy and Tp on ad-metric space ymax{do (Toln, Toto), do (S(’I“’Toln)’do(SOUO’TOUO)}'
(Xo,dp) are said to satisfy (CLR) property if there exists a

sequencét,} in Xo such that Taking limit n — c and using {) we have
r!mo Soth = rl]i_r;floTOtn = Tolo dg(T0Uo, Souo) < Gdg(ToUo,ToUo)—i—
for someug in Xo. B max{dg(Touo, Touo), df' (Souo, ToUo)}+
Example. SupposeXg = Rt U0, with d-metric space on
Xolis given by ymax{ dg(TOUo,ToU0), dg(TOUo, ToUo)7 dg(SoUo, ToUo) } .
do(X0,Yo) = Xo+Yo forall xo,¥o € Xo. @)

Mappin andTy are given b
PPINgsy oared Y df(Touo, Toulo) < d§(Touo, Soto) + df' (Souio, Tou)-

Xo
Soxo =7 and ToXo=2Xo V Xo € Xo. Using symmetric property we have
Suppose a sequente= df (Touo, Touo) < 2d(Tolo, Solio)- ()
,!i_rIl,S(n = Amen =to. Using @) in (2) we have
ThusS, andTo hold (CLR) property. dd (Touo, Sotio) < 2(a + B+ y)df (Tolo, Soo)

Remark. It is clear from Jungckd] definition that two _ o
self-mappings are said to be non-compatible if there existvhich create a contradiction becaus@2- 3 +y) < 1.

at least one sequenég,} in X such that Therefore, the above inequality is hold only if
) . d5(Touo,SoUo) = O using symmetric  property

BecauseS) and Tp are mappings which are weakly
but limn_,. d(STXn, TSX,) either not equal to zero or does compatible thus
not exist. Therefore, two non-compatible mappings satisfy

property (E.A). Sup = Touo = SoToUp = ToSUo.
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Therefore
SSouo = ToSpuo = SoTolo. (4)

Now to prove thatSup is the fixed point ofS and Tp
common to both of them. Assume

dd (Souio, SSouo) < ardd (Touo, ToSouo) +
B maX{dg(S)Uo,ToUo% df (SoSouio, TOSOUO)}+
ymax{ df (Tolo, ToSolo), df (Sotlo, Touo),

dg(SoSoUo,TOSoUo)}-

Using @) and the fact thafup = Toug we have
d5 (Solio, SoSotio) < ardf(Souio, SoSotio)+
pma] df(Soto, Sto). (St ot | +
ymes] (S, ooto) S, o).
dc?(sosouo,s)souw}- (5)

Since

d& (Souo, Soio) < df (Sotio, SoSoUlo) + A (SoSoto, Sollo).-

By symmetric property we have

df (Sotio, Sotio) < 20 (Sollo, SoSolio)- (6)
Similarly we can show that
db(SoSolio, SoSollo) < 2d§(Sotlo, oSotlo)-  (7)

Using 6) and (7) in (5) we have
df (Solio, SoSolo) < (a + 2(B + ) df (Sollo, SoSoo)

which is a contradiction thereford(Syuo, S Souo) = 0
also by symmetric properwg(S)S)uo,Souo) = 0 implies
SSUg = Sup. Also by @) ToSup = Sup. ThusSug is
the fixed point ofSy and Ty which is common to both of
them.

Unigueness.Supposelp # Vg be differen fixed points
of S and Tp and common to both of theses mappings.
Using (2) we get

dd (uo, Vo) = df(Soo, Sovo) < adf(Touo, Tovo)+
B max{dg(souo,Touo), dg(SoVo,ToVo)}Jr

vmax{dé’(Touo, Tovo), d} (Souo, Toup), df (Sovo, Tovo)}

< ady(uo,vo) + B max{dg(uo, Up), dg(vo,vo)}+

ymax{dg(uo,vo),dg(uo,uo),dg(vo,vo)}.
Again since
d} (o, o) < 2d§(uo,vo) and df (vo,Vo) < 2d8(uo, Vo).
Hence the above inequality takes the form
dd(uo,vo) < (a +2(B+ y))dE(uo, vo)

which create again a contradiction which implies
dg(uo,vo) = 0 and using symmetric property we get
dg(vo, Upg) = O impliesug = vp. Thus fixed point o5 and
To is unique.

The following corollaries are deduced from the above
theorem.
Corollary . SupposeSy and Tp be mappings which are
weakly compatible onl-metric spacéXy, dp) satisfying

1.5 andTy hold (CLR) property;
2.do(So%0, Soyo) < ado(ToXo, ToYo) +

Bmax{dO(SOXmTOXO)adO(SOYOaTOYO) +

ymax{ do(ToxXo, Toyo), do(SoXo, ToXo), do(Soyo, Toyo) };

for all Xo,yo € Xo, a,B,y >0 for 2(a + B +y) < 1. Then
S and Tp have fixed point which is unique and common
to both of the mappings.

Corollary. ConsiderSy and Tp be mappings which are
weakly compatible om-metric spacéXp, dp) satisfying

1.5 andTy hold (CLR) property;
24§ (Soxo, Soyo) < ardf(Toxo, Toyo) +

B max{dg(S)Xo, ToXo), df (Soyo, ToYo) }?

for all xo,y0 € Xo, a,3 >0 for 2(a +3) <1 andp >

1. Theng and Ty have fixed point which is unique and
common to both of the mappings.

Corollary. Supposesy and Top be mappings oml-metric
spacgXp, dp) which are weakly compatible satisfying

1.5 andTy hold (CLR) property;
2.7 (Soxo, Soyo) < adf(Toxo, Toyo);

for all xg,yo0 € Xo, a > 0 for 2a < 1 andp > 1. ThenS
and Ty have fixed point which is unique and common to
both of the mappings.

Example. ConsiderXy = [0,1] with d-metric on Xy is
given by

do(X0,Y0) = Xo+Yo forall xo,yo € Xo.
The self-mappingSy andTy are defined by

SXo % and Toxg = X forall xg € Xo.
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ClearlylS) and Ty satisfy (CLR) property by selecting
{ln} =75

lim Sln = lim Tl = to.
n—o0 n—oo
Also § andTy are weakly compatible because
S0=To0 = FTe0= TpFO.

1
d5(Soxo, Soyo) = %erzo < 6(X0+YO) = ad} (X0, Yo)-

Thus all the conditions of last corollary are satisfied for

% < a < 1 having 0 is the fixed point d& and Ty which
is unique and common to both the mappings.

Now we prove a common fixed point theorem for a pair

2.do(So%0, Soyo) < ado(ToXo, ToYo) +
B maX{dO(S)XO,TOXO)adO(S)YO,TOYO)};

3.5(Xo) € To(Xo);

for all xp,Yo € Xo, a,8 > 0 for 2(a + ) < 1. If To(Xp) is
a closed subspace &§. ThenS and Ty have fixed point
which is uniqgue and common to both the mappings.
Corollary . ConsiderS and Tp be mappings oml-metric
spaceXp, dp) which are weakly compatible satisfying

1.5 andTyp hold property (E.A);

2.do(Sox0, SoYo) < ado(ToxXo, Toyo);
3.5(Xo) C To(Xo);

of weakly compatible mappings using property (E.A) with for all Xo,Yo € Xo, a > 0 for 2a < 1. If To(Xo) is a closed

additional condition of closeness of the subspace.
Theorem. ConsiderS and Tp be mappings oml-metric
spacegXp, dp) which are weakly compatible satisfying

1.5 andTgp hold property (E.A);
2.d5 (So%0, Soyo) < adf(Toxo, Toyo) +

BmaX{dé’(Soxo,Toxo),dé’(Soyo,Toyo) +

Vmax{dg(TomeOYO),dg(S)Xo,ToXo)7dg(S))’o7TOYO)};

for all xo,y0 € Xo, a,B,y >0 for 2(a +B+Yy) < 1 and
p > 1. If To(Xo) is a closed subspace ¥§. ThenS andTy

have fixed point which is unique and common to both the

mappings.
Proof. BecauseSy and Top hold property (E.A), so there
must exists a sequenék, } in Xo such that

lim Sln = lim Tolp, =tp for somety € Xo.
n—oo n—o0

subspace 0Ky. ThenS and Ty have fixed point which is
unigue and common to both the mappings.

4 Conclusion

Our constructed theorems extend, generalize and improve
the results established by Greg#, [Fisher and Sessa
[10Q], Jungck L] and Diwan and GuptalP] in the frame

work of d-metric space. In case of (CLR) property
completeness (closeness) of the space or subspace is not
necessary. Moreover, in case of using (CLR) property
containment of ranges of the involved mappings is not
necessarily required.
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