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Abstract: An analytical model for the crosswind integrated concentrations released from a source in an inversion layer is 

formulated by considering the wind speed as a linear profile of vertical height and eddy diffusivity as a power law profile 

of vertical height, the separation of variables technique is used to solve the advection–diffusion equation. The analytical 

model is compared with data collected from nine experiments conducted at Inshas, Cairo (Egypt). The model shows a good 

agreement between observed and calculated concentration. 
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1 Introduction 

As a result of the huge development and the big progress in 

industry there are more requests on the energy sources that 

reduces air pollution, Furthermore Air pollutants released 

from various sources affect directly or  indirectly man  and  

his  environment. In nature, transport of pollutants occurs in 

through the combination of advection and diffusion. The 

concentration of a contaminant released into the air may 

therefore be described by the advection diffusion equation 

(ADE) which is a second order differential equation of 

parabolic type [1]. 

Essa et al. solved the ADE in two dimensional spaces (x-z) 

depending on time using Laplace transform to find cross 

wind integrated normalized concentration [1]. An analytical 

solution of two dimensional ADE for a semi-infinite 

medium (half plane) with one-dimensional flow using a 

double integral expression is studied by [2].   

In this study we derived the solution of the ADE in one 

dimension which depends on time using the separation of 

variables technique to evaluate the cross wind integrated of 

pollutants per emission rate, taking the eddy diffusivity kz 

is expressed as a function of power law  in the vertical 

height “z”. Comparison between estimating model and the 

observed from nine experiments at Inshas site, Cairo-Egypt 

[3].  

2 Mathematical Description 

The dispersion of pollutants in the atmosphere is governed 

by the basic atmospheric diffusion equation. Under the 

assumption of incompressible flow, atmospheric diffusion 

equation based on the Gradient transport theory can be 

written in the rectangular coordinate system as:  

x y z

C C C C C C C
u v w K K K S R

t x y z x x y y z z

             
           

               
(1) 

 

where C(x, y, z) is the mean concentration of a pollutant 

(Bq/m3), (µg/m3) and (ppm); in which t is the time, S and R 

are the source and removal terms, respectively; (u, v, w) 

and (kx, ky, kz) are the components of wind and diffusivity 

vectors in x , y and w directions , respectively , in an 

Eulerian frame of reference. 

The following assumptions are made in order to simplify 

equation (1): 

1) We are going to study Eq. (1) in case, when the 

components of wind (u, v, w) tends to zero  

2) Source and removal (physical / chemical) pollutants 

are ignored so that S=0 and R=0. 

3) Under the moderate to strong winds, the transport 

due advection dominates over that due to 

longitudinal diffusion: x

C C
u k

x x x

   
  

   
. 

4) Taking the cross wind integration of Eq. (1) in which 

C is the cross wind concentration. 

With the above assumptions, equation (1) reduces to: 
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( , , ) ( , , )
z

C t z h C t z h
K

t z z

   
  

   
 (2)  

Under the following boundary conditions: 

( , , ) ( ) 0sC t z h z z at t              (3)  

Where (…) is Dirac's delta function, and h is the mixing 

height. 

 The eddy diffusivity 
z

k is expressed as a functions 

of power law of z as: 

; 1; 0mk z m
z

     (4)  

 

Where , m are turbulence parameters and depend on 

atmospheric stability. 

 ( , , )C t z h is finite z   

Eq. (2) can solve analytically by putting the solution C  in 

the form: 

C(t,z,h)=S(t).R(z,h)  (5)  

We are going to prove that the above solution exists in view 

of the condition that, there exist orthogonal eigen-functions 

which can be made a bases. 

Now let introducing Eq. (5) in Eq. (2) to lead: 

( ) ( , )
( , ) ( ) 0mS t R z h

R z h S t z
t z z


   

  
   

  (6)  

the above equation is simplified to give: 

1 ( ) ( , )

( ) ( , )

mS t R z h
z

S t t R z h z z

   
  

   
 (7)  

Each side of Eq. (7) is thus a constant which assumed to be

 , hence: 

1 ( )

( )

S t

S t t






 (8)  

And. 

( , )

( , )

m R z h
z

R z h z z




  
 

  
        (9)  

 

Eq. (8) is first order differential equation in t, and has a 

general solution, namely: 

( ) tS t ce         (10)  

In which c is constant. 

      In order to solve the second order differential equation 

Eq. (9), one can study the different cases of  , which has 

three cases: 

Case I: 0   

Then we can write 
2p 

for some positive real p. Then 

Eq. (9) can be written as: 

2 2
2 2

2

( , ) ( , )
( , ) 0 : 0md R z h dR z h p

z mz z R z h
dz dz




     (11)  

Which reduces to modified Bessel's equation; namely [4]: 

2
2

2 2* * *
* * *2

* *

2
0

(2 )

d R dR pz
z z n R

dz dz m 

  
     

   

  (12)  

On changing the independent and dependent variables by 

means of the substitutions: 

2

2
*

* *

        

        ( , ) ( , )

m

n

z z

and

R z h z R z h

 
 









 (13)  

Eq. (12) has a solution which is a linear combination of 

modified Bessel's functions of first kind  

*2

(2 )
n

pz
I

m 

 
 

 
 and second kind 

*2

(2 )
n

pz
K

m 

 
 

 
of order n where [14]: 

 
1 !

; 0 1
2 ! !

m n
n n or m

m r n r


  

 
 (15)  

Then the general solution ( , )R z h  of Eq. (11) for 0   

can be written as: 

1

* *2
2 2

( , ) ( ) ( )
(2 ) (2 )

m

n n

pz pz
R z h z A h I B h K

m m 

     
     

      

     (16)  

Consequently, and by virtue of Eq. (10) the solution of Eq. 

(5), can be expressed as: 

2
1

* *2
2 2

( , , ) ( ) ( )
(2 ) (2 )

m

p t

n n

pz pz
C t z h e z A h I B h K

m m 

     
     

      

 (17)  

 

At this point, we are going to find the constants ( )A h  and

( )B h . By virtue of properties of modified Bessel's 

functions ( )nI z  and ( )nK z , in which nI  tends to  as 

z  , and  nK  tends to 0 as z   and hence C  is 

finite  at z  , then ( ) 0A h  , and Eq. (17) becomes: 

2
1

*2
2

( , , ) ( )
(2 )

m

p t

n

pz
C t z h e z B h K

m 

  
  

 
 (18)  
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From properties of ( )n jK p z , namely: 

2 2

2 2

0

( ) [ ]
( ) ( ) 0

2sin [ ]

n n n

j i j i

n j n i

j i

p p p p
zK p z K p z dz i j

n p p





 
  


 (19)  

Which make the functions ( )n jK p z not orthogonal, and 

since the functions 

2
jp t

e not orthogonal, then the solution 

C  cannot expand as a linear combination of orthogonal 

eigen functions when 0  , which imply that  cannot 

greater than zero. 

Case II: 0   

In the case of 0   and by virtue of Eq. (10), S(t) is 

constant. Consequently from Eq. (5) C is independent on 

time t, and therefore it cannot satisfies the boundary 

conditions as given by Eq. (3). 

On the other hand from Eq. (9), at the case of  0   make 

the solution is zero at 0z  , therefore 0   and 0z 

we have no solution and 0  , 0z  the solution is zero, 

so   cannot be zero. 

Case III: 0   

     At this case   written as: 

2 ; 0jp p   
 (20)  

The solution ( )S t  becomes: 

2

( ) p tS t ce 
 (21)  

and Eq. (9) can be expressed as: 

2 2
2 2

2

( , ) ( , )
( , ) 0 ; 0md R z h dR z h p

z mz z R z h
dz dz




     (22)  

 

Which after employing the transformation as given by Eq. 

(13), and Eq. (14), becomes: 

2
2

2 2* * *
* * *2

*

( , ) ( , ) 2
( , ) 0

(2 )

d R z h dR z h pz
z z n R z h

dz dz m 

  
     

   

 (23)  

 

Eq. (23) is Bessel's equation, and its general solution is a 

linear combination of independent Bessel's functions of 

first kind nJ  and nJ , of order n, where n is given by Eq. 

(15). 

There from the Solution ( , )R z h  of Eq. (22) for 0   

can be written as: 

1

* *2
2 2

( , ) ( ) ( )
(2 ) (2 )

m

n n

pz pz
R z h z A h J B h J

m m 





    
     

      

  (24)  

 

Consequently, and by virtue of Eq. (21) the solution of Eq. 

(5) for 0  , can be expressed as: 

2

2 2
1 2 2

2
2 2

( , , ) ( ) ( )
(2 ) (2 )

m m
m

p t

n n

pz pz
C t z h e z A h J B h J

m m 

 






    
     
             

  (25)  

 

Now, we are going to study the Newman boundary 

condition, namely: 

( , , )
0 0,z

C t z h
K at z z h

z


  


    (26) 

Upon introducing the above condition at 0z  , in Eq. (25) 

and by virtue of the two relations [4] 

    1( ) ( ) ( ) ( )n n n n

n n n nx J x x J x and x J x x J x
x x

  

  
       

One gets: 

2

1
1 2

2
2

1 ( )
2

0

(2 )
( )

( )

( , , )
0

( 1)
(2 )

( ) . .
! (1 1)

n

n n

n rp t m
r

z r

r

m p
A h

n

C t z h
K e p

zz
mp

B h
r n r











  






  
  

     
       

    
         

  
    



 

(27)  

 

The first bracket in the right hand side of the above 

equation not equal zero at 0z   although the second term 

equal zero which implies that ( ) 0A h  , then Eq. (25) 

becomes: 

2

2
1 2

2
2

( , , ) ( )
(2 )

m
m

p t

n

pz
C t z h B h e z J

m 








 
 
  
 

 (28)  

Again upon introducing the boundary condition as given by 

Eq. (26) in the above equation at z h , one get: 

2

2

2
1 2

2

2
1 2
2

1

( , , ) 2
0 ( ) ( )

(2 )

2
( ) ( )

(2 )

m
m

p t

z z n

z h

z h

m

p t

n

z h

C t z h pz
K K B h e z J

z z m

pz
p B h e z J

m

























 
    

   
  

 


 

Upon introducing Eq. (20) in which 0p  , and since 

0  from Eq. (4), one gets: 

http://www.naturalspublishing.com/Journals.asp


 70                                                                                                                                        A. Marrouf et al.:Analytical solution of one … 
 

 

 

© 2016 NSP 

Natural Sciences Publishing Cor. 
 

2

2

1

2
( ) 0
(2 )

m

n

ph
J

m 



  


                           (29)  

On putting in the above equation 
jp p we have the 

Eigenvalue equation, namely: 

2

2

1 0

2
( ) 0 ; ; 0, 0

(2 )

m

j

n j j

p h
J j p

m 



       


 (30)  

 

By using the relation, namely: {if  is the rout of 

( ) 0J l    then [5]: 

2 2 2
2 2 2

0 1 1

0

( ) ( )
( ) ( ) ( )

2 2 2

h

j i

i i i

i j

xJ l J l dx l l l
J l J l J l

 

  

 
   




 
 





} (31) 

 Then from Eq. (30) we have the Eigen function
2

22
( )
(2 )

m

i
n

p z
J

m 






which satisfying orthogonally relation 

namely:  

22

1 22

0

2

2 2
2

12

222
( ) ( )

(2 ) (2 ) (2 )

0

22
( ) ;

(2 ) (2 )

mm
h m

ji
n n

m

m

i
n

p zp zz
J J dz

m m m

i j

p hh
J i j

m m

  

 





 





 


  






 



 (32) 

 

Therefore, we can expand ( , , )C t z h as a linear 

combination with expansion coefficient i  as: 

2
1 2

2
0

1

2
( , , ) ( )

(2 )

m
m

i
i n

i

p z
C t z h z J

m
 










 


  (33)  

 

in which 0 corresponding to 0 0p 
which is the trivial 

solution of Eq. (30) and can be determined by multiplying 

the above equation with 
22 1

( )
2

nm



 
 and integrating 

from 0 to h after invoking the boundary condition at t=0 as 

given by Eq. (3) together with Eq. (30), we get: 

0

1

h
                                                                             (34)  

Which the summation in Eq. (33) vanish by virtue of the 

integration namely [5]: 

1

1

0

1
( ) ( ) 1

c

n

n nx J x dx J x n
c

 




    (35)  

Which is equivalent to : 

2
2

2
2 2

0

2

2

12

2

2 1
( ) ( )

2

( ) ; 1

n
m

mh

n i
n

m

i
nm

i

p zm
z J dz

p h
J n

p h

 






 

 
   





 




  



 

(36)  
 

To find 0i i  , multiplying Eq. (33) by 

2
1 2

2
2

( )
2

m
m

i
n

p zm
z J

 







 and integrating from 0 to h, we 

get: 

3

2

2

2

(2 )
m

i m

i
n

m h

p h
J














 
 
 
 
 

 (37)  

Introducing Eq. (34) and Eq. (37) in Eq. (33) to get: 

2

2

2

1 3

2 2
2

1 2

( )
1

( , , ) (2 )

( )

m

i
m m n

p t

m
i

i
n

p z
J

C t z h z m h e
h

p h
J







  







    

(38) 

Let us now evaluate ( , , )C t z h  at surface of ground. 

23

2
20

1 2

1
( , , ) (2 )

( )

m p t

mz
i

i
n

e
C t z h m h

h
p h

J


 






     (39)  

At 1 0m n    : 
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2

0
1

0

1
( ,0, ) 1

( )

p t

z
i

i

e
C t h

h h
J p








 
 
  
 
 
 


 (40)  

In which 

2

22

(2 )

m

jp h

m 




 is given as 

2

2

1

2
( ) 0
(2 )

m

n

ph
J

m 



  


 

3 Source Data 

The diffusion data for the estimating were gathered during 
135I isotope tracer nine experiments in moderate wind with 

unstable conditions at Inshas, Cairo. During each run, the 

tracer was released from source has height 43m for twenty 

four hours working, where the air samples were collected 

during half hour at a height 0.7m. We collected air samples 

from 92m to 184m around the source in AEA, Egypt. The 

study area is flat, dominated by sandy soil with poor 

vegetation cover. The air samples collected were analyzed 

in Radiation Protection Department, NRC, AEA, Cairo, 

Egypt using a high volume air sampler with 220V /50Hz 

bias [7]. Meteorological data have been provided by the 

measurements done at 10 and 60 m. Table 1 gives the data 

information about the diffusion tests and the wind vectors. 

In addition, it contains values of vertical velocity scale (w*) 

and mixing height (zi). The data from these nine unstable 

test runs have been utilized for the following analysis. 

Table 1. Meteorological data of the nine convective test runs at Inshas site in March and May 2006. 

Run  

no. 

Working  

hours 

Release rate  

(Bq) 

Wind speed 

(m s-1) 

Wind direction 

(deg) 

W*  

(ms-1) 
Zi (m) 

P-G stability  

class 

1 48 1028571 4 301.1 2.27 600.85 A 

2 49 1050000 4 278.7 3.05 801.13 A 

3 1.5 42857.14 6 190.2 1.61 973 B 

4 22 471428.6 4 197.9 1.23 888 C 

5 23 492857.1 4 181.5 0.958 921 A 

6 24 514285.7 4 347.3 1.3 443 D 

7 28 1007143 4 330.8 1.51 1271 C 

8 48.7 1043571 4 187.6 1.64 1842 C 

9 48.25 1033929 4 141.7 2.1 1642 A 

 

4 Model parameters 

For the concentration computations, we require the 

knowledge of wind speed, wind direction, source strength, 

the dispersion parameters, mixing height and the vertical 

scale velocity. Wind speeds are greater than 3m/s most of 

the time even at 10m level. Further the variation wind 

direction with time is also visible. Thus in the present 

study, we have adopted dispersion parameters for urban 

terrain which are based on power law functions. The 

analytical expressions depend upon downwind distance, 

vertical distance and atmospheric stability. The atmospheric 

stability has been calculated from Monin-Obukhov length 

scale (1/L) [6] based on friction velocity, temperature, and 

surface heat flux. 

5 Results and Discussion 

The concentration is computed using data collected at 

vertical distance of a 30m multi-level micrometeorological 

tower. In all a test runs were conducted for the purpose of 

computation. The concentration at a receptor can be  

 

computed in the following way: 

Applying formula (38) which contains eddy diffusivities as 

function with power law at y = 0.0 for half hourly 

averaging. 

Table 2. Observed and predicted concentrations for Run 9 

experiments 

Test 
Downwind 

distance (m) 

Vertical 

distance 

(m) 

Observed 

conc. 

(Bq/m3) 

Predicted 

conc. 

(Bq/m3) 

1 100 5 0.025 0.051 

2 98 10 0.037 0.031 

3 115 5 0.091 0.070 

4 135 5 0.197 0.160 

5 99 2 0.272 0.234 

6 184 11 0.188 0.138 

7 165 12 0.447 0.339 

8 134 7.5 0.123 0.107 

9 96 5.0 0.032 0.034 

As an illustration, results computed from these approaches 

are shown in Table 2, for nine typical tests conducted at 

Inshas site, Cairo-Egypt [6]. This Table shows that the 

observed and predicted concentrations for 135I using Eq. 

http://www.naturalspublishing.com/Journals.asp
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(38) with power law of eddy diffusivities and the wind 

speed in linear form of “z” are very near to each other of 
135I. 

Fig. 1 shows the variation of predicted and observed 

concentration of 135I with the downwind distance. One gets 

good agreement between observed and predicted 

concentration. 

Fig. 2 shows that the predicted concentrations which are 

estimated from Eq. (38) are a factor of two with the 

observed concentration.   

 

 

Fig. 1. Maximum computed concentrations compared with 

observed maximum value for each test run. 

 

Fig. 2.  Diagram of Predicted model for Eq. (38) with 

corresponding observation. Solid lines indicate one to one 

and dashed lines a factor of two. 

6 Statistical methods 

Now, the statistical method is presented and              

comparison among analytical, statically and    observed 

results will be offered [15]. The following standard 

statistical performance measures that characterize the 

agreement between prediction (Cp=Cpred) and observations 

(Co=Cobs): 

1- Normalized mean square error (NMSE): It is an 

estimator of the overall deviations between predicted 

and observed concentrations.  Smaller values of 

NMSE indicate a better model performance. It is 

defined as: 

po

2

po

CC

)CC(
NMSE




 

2- Fractional bias (FB):  It provides information on the 

tendency of the model to overestimate or 

underestimate the observed concentrations.  The 

values of  FB  lie between  -2  and  +2  and  it has a 

value of zero  for an ideal model. It is expressed as: 

)CC(5.0

)CC(
FB
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po




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3- Correlation coefficient (R): It describes the degree of 

association between  predicted and observed 

concentrations and is given by: 

po

ppoo

σσ

)C)(CC(C
R




 

4- Fraction  within a factor of  two  (FAC2) is defined 

as:  

        FAC2= fraction of the data for which  

         0.5 ≤ (Cp/Co) ≤ 2                                                                                                                   

Where σp and σo are the standard deviations of Cp and Co 

respectively. Here the over bars indicate the average over 

all measurements (Nm). A perfect model would have the 

following idealized performance: NMSE = FB = 0 and 

COR = FAC2 = 1.0 

Table (3): Comparison between averages predicted 

isotopes for 135I and observed concentrations. 

Statistical functions 
135I 

NMSE FB COR FAC2 

Predicated 

Concentrations model 
0.32 0.38 0.94 0.76 

From the statistical method of Table (3), we find that the 

predicted concentrations for 135I lie inside factor of 2 with 

observed data. Regarding to NMSE, FB and COR the 

predicted concentrations for 135I are better with observed 

data. 
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7 Conclusions 

In this paper, we have formulated a mathematical model for 

dispersion of air pollutants in moderated winds. The 

diffusion in vertical height direction and advection along 

the mean wind are taking into account. The eddy diffusivity 

is assumed to be power law in the vertical height “z”.  

The analytical model is compared with data collected from 

nine experiments conducted at Inshas, Cairo (Egypt). One 

gets the predicted concentrations are in a best agreement 

with the corresponding observation. 
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