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Abstract: We consider-Volterra quadratic stochastic operators definedan— 1)-dimensional simplex, wheré € {0,1,...,m}.
Under some conditions on coefficients of such operators we describe Lyapunov functions and apply them to obtain upper estimates for
the set ofw- limit points of trajectories. We describe a set of fixed pointg-vblterra operators.
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1. Introduction In [12], [13] we considered a class of nonlinear (quad-
ratic) operators which is calledVolterra operators and the
A quadratic stochastic operator (QSO) has meaning of &jifference of¢- Volterra quadratic operators from known
population evolution operator (see [6], [7], [8]), which ariseguadratic operators are discussed. Some invariant (in par-
as follows. Consider a population consistingmipecies.  ticular some fixed points) sets fé/\olterra operators are
Let 2 = (29,...,20,) be the probability distribution of  described. Also we described a family 6\olterra op-
species in the initial generations, afy; , the probabil-  erators each element of which has cyclic orbits generated
ity that individuals in theth and;jth species interbreed to py several vertices of the simplex. It is shown that the set
prOduce an individuat. Then the probablllty distribution of all /-\olterra operators is convex, Compact and its ex-
a’ = (24, ..., ) (the state) of the species in the first gen- tremal points are constructed. For 1-Volterra operators and
eration can be found by the total probability i.e. 2-\olterra operators defined on a two dimensional simplex
) m o 0 the limit behavior of all trajectories (orbits) are studied.
Ty = Z Pijrxizi, k=1,.,m. Q)

i,j=1

This means that the associatioh — z’ defines a map
V called the evolution operator. The population evolves by
starting from an arbitrary stat€, then passing to the state
2’ = V(2°) (in the next "generation”), then to the state
z” = V(V(29)), and so on. Thus states of the population

described by the following dynamical system In this paper we continue the investigationg-afolterra

20, o' =V (2%, 2" = V2(2°), " = V3(20), ... quadratic operators. Under some conditions on coefficients

of such operators we describe Lyapunov functions and ap-

Note thatV" defined by (1) is a non linear (quadratic) op- ply them to obtain upper estimates for the setveflimit
erator, and it is higher dimensionalit > 3. Higher di-  points of trajectories. We describe a set of fixed points of
mensional dynamical systems are important but there aréhe/-\Volterra operators. This paper also contains many re-
relatively few dynamical phenomena that are currently un-marks with comparisons éf\olterra operators and Volterra
derstood ([1], [2], [10]). ones.
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2. Definitions

The quadratic stochastic operator (QSO) is a mapping o
the simplex.

Sm_lz{mERm:xiZO,inzl} (2)

i=1

into itself, of the form

V. iC% = Z Pij,kxi‘rj7 k= ]., e, m, (3)
i,j=1

whereP;; ;, are coefficients of heredity and

Pijr >0, Pjr= Pji, Zpij,k =1, 4)

k=1
wherei, j, k = 1,....,m. Thus each quadratic stochastic
operatorl” can be uniquely defined by a cubic matfx=
(PiJ-,k)Z;’k:l with conditions (4). Note that each element
x € S™~!is a probability distribution oZ = {1, ..., m}.
The population evolves by starting from an arbitrary state
(probability distribution onE) z € S™~! then passing to
the staté//(x) (in the next "generation”), then to the state
V(V(x)) = V3(x), and so on.

For a givenz(?) € §™~! the trajectory (orbit)

{x(”)}, n=0,1,2,.. of (¥

under the action of QSO (3) is defined by
2D = V(:U(")), wheren =0,1,2, ...

One of the main problem in mathematical biology con-

sists in the study of the asymptotical behavior of the trajec-

tories. The difficulty of the problem depends on given ma-
trix P. For the brief history of (particularly) studied QSOs
see [11], [13].

The Volterra operators(see [3]-[5]) A Volterra QSO
is defined by (3), (4) and the additional assumption

Pk =0, it k& {i,j}, Vi,jke€E. ®)

The biological treatment of condition (5) is clear: The
offspring repeats the genotype of one of its parents. In [3]
the general form of Volterra QSO

Vie=(21,.,0T,) €S —

V(z) =o' = (z},...,2)) € §1

Moreover
Aki = —Q;k and |ak1‘ <1.

Fon [3],[4] the theory of QSO (6) was developed by us-
ing theory of the Lyapunov function and tournaments. But
non-\Volterra QSOs (i.e. which do not satisfy the condition
(5)) were not in completely studied. Because there is no
any general theory which can be applied for investigation
of non-\olterra operators.

In this paper we consider the following class of non-
\olterra operators.

(-Volterra QSO Fix ¢ € E and assume that elements
P;; 1, of the matrixP satisfy

Pjr=01if k¢ {ij} foranyk=1,...¢ i,j € E;7)
P;; >0 foratleastone paifi,j), i #k, j#k (8)
foranyk € {{+1,...,m}.
Definition 1.For any fixed! € FE, the QSO defined by (3),
(4), (7) and (8) is called-Volterra QSO.

Denote by), the set of all-Volterra QSOs.

Remarkl. The biological treatment of the condition (7) is
that only first¢ offsprings repeat the genotype of one of
their parents.

2. The condition (8) guarantees that (V,, = 0 for
any/{y # (.

3. Note that/-Volterra QSO is Volterra if and only if
{=m.

4. The class of-Volterra QSO for a giverd does not
coincide with a class of non-Volterra QSOs mentioned in
[11], [13].

3. Lyapunov functions of /-Volterra QSO

Letk € {1,...,¢} thenPy,, = 0fori < ¢, i # k and

> Puri=1

m
E Piri = Prgi +
i=1 i=+1

Using Pj; . = Pj; . we getfork =1, ..., ¢

m
!
xy, = 2k | Perprr +2 E Pz | =
i=1

i#k

zi | 1+ (Perp — Dok + Z(ngik,k —1)x;

i#k

is given
9 Denoteay; = 2P, — 1,k # i andag, = Prip — 1
. m then we obtain
Tk = Tk 1+Zla’“mi ’ 6) o =ap (L+ Y0 agwy), k=1,..,¢
where Vi w= ok (14 2000 akixs) + ©9)
Moy Pz, k=0+1,...,m.
agi = 2P, — 1 fori #k anda; =0,i € E. 2 o kT

%k
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Note that Definition 2.A continuous functiorp : intS™~! — R is
akr € [—1,0]; |agi| < 1; called a Lyapunov function for the dynamical system (9) if
ars + 4 = 2(Pps+ Puog) —2 <0, i,k € E.  (10) the limitlim,, .., ¢(x(™) exists for any initial point:°.

Remarkiote that for Volterra case (= m) one hasiy, = 710bviously, if limy, oo p(z™) = ¢, then w(xg) -

0 anday; + aix = 0 i.e fixed (see [3],[4]) but (10) shows ¢ (¢). Consequently, for an upper estimate.qf:”) we

that in our casel(< m) one hasuy, € [—1,0] anday; + should construct Lyapunov functions that are as large as
ax € [—2,0] i.e vary on the uncountable sets. In spite of POssible.

this generality, we show that methods of [3]-[5] work for Thegrem 11f 3k, € {1, ..., £} such thata,; < 0 for any
{-Volterra QSOs. i € Eandp = (p1, ....,pg) € Py thenyp,(z) = ai*...a}*
Lemma 1If Jko € {1,...,¢} ands < 0 such thata,,; < IS & Lyapunov function for (9).

o0 for anyi € E then

Ps={p=(p1,...;e) €S ":

4 m Pk
¢ op(Vz) = H xi’“ (1 + Z akizi) =
} £ . k=1 i=1

Proof Computep, (Vz):

Zalﬂ-pk <6, foranyie E
k=1

14 m Pk
Prooflt is easy to see that o) [ ] (1 + a/m“‘z‘) :
i=1

k) = (0,...,0,ef = 1,0,...,0) € F. k=1
Using Young’s inequality
Thus for sufficiently smalt we have
blfl...bgz < p1b1 + ... + peby,
{pestilp—e™| <} c Py
whereb; > 0 andp; > 0, Zlepi = 1 we obtain

where|p — e[| = max; [p; — €!*|. Indeede can be
chosen as follows. Take = (p1, ..., p¢) With pg,, = 1 — m /e
0
e, Xl pi =< then|lp - ek)|| < ¢ and ep(Va) < pp() <1 +) ( amm) Ii) :
i=1 \k=1
L 4
Z apiPr < { nax am} Z P+ ari(1 — ) < Sincep € Py we havezi:1 aripr < 0foranyi € E.
k=1 k#ko o Consequently(Vz) < ¢(x).
iyl
Theorem 2If ay; < 0foranyk = 1,...,r, (r < ¢) and
{ . r{r}axé} {ak;, 0} — ako,} €+ Qi <0 i=r+1,..,mthen
be{1,...,
k#kq

) r)=a1 4 ...+ 0, = (21,..., Tm) € iNtS™ 1
foranyi € E'if #(a) ! (@ )

is a Lyapunov function for (9). Moreov&r > o(z(™) <

0 — Qpyi
: +o0 for any trajectory{z(™}.

< mi .
‘ Izrélf'?l maxeeq1,....ey {agi, 0} — ki
k#kqg
Proof Computep(V x) according (9):
This completes the proof. putep (V) 909

Let{z(™}>2, be the trajectory of the poinf’ € S™ 1 ,(V2) =S 2} = o(z) + | apiwi | wp.  (11)
under operator (9). Denote hyz°) the set of limit points ; g ,; ;
of the trajectory. Sincéz(™} c S™~! andS™~! is com-

pact, it follows thatu(z°) # (). Obviously, ifw(2°) con- Sinceay, € [—1,0], axi + ai < 0 (see (10)), it follows

sists of a single point, then the trajectory converges, anéhat oo r
w(z?) is a fixed point of (9). However, looking ahead, we SN arwra =Y aai+
remark that convergence of the trajectories is not the typ- b1 im1 =1
ical case for the dynamical systems (9). Therefore, it is of
particular interest to obtain an upper bounddgr?), i.e., Z (ak; + air)zrz; < 0.
to determine a sufficiently "small” set containingz?). 1<k<i<r
Denote Therefore, by (11) we have
R e | (V) < pla)+ Y ( > k> 1. (12)
= k=1 \i=r+1
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Let
{ akz}

e
\

= min
ke{l,..., T}
ie{r+1,...,m}

sincea > 0, (12) gives us

(V) < oz —aZ(

p@)[1 — a+ ap(z)]. (13)

For anyz? € intS™! we havep(z°) < 1. Since
a < 1,itfollows 1 — a + ap(z) < 1. Therefore, it
follows from (13) that the inequality

pla™)L — a + ap(a™)] <

@)1 - o+ ap(@)”
holds along the trajectoryz(™ }. Thus,p(z(™) — 0 and
also> 2% [ p(z(™) < +o0.

Itis known (see [9]) that ifi,, andb,, are two bounded
sequences of nonnegative numbers ang if; < a,, +b,,
n=12,.. theLn follows fromb,, — 0 that {a,} is
dense inlima,, lima,]. Moreover, if>">° b, < +oo,
thenlim,,_, - a,, €Xists.

ST

+

p(z"t) <

RemarkWhen the functiong, andi, are extended from
intS™~1 to S™~! the expression® can arise, and we set
it equal to 1.

Now we shall describe Lyapunov functions of other
forms.

Theorem 41f there existp € {1, ...,
thata,; — aq; < 0foranyi € E then

fpq(x) =

¢} andg € E such

X
p —(r
—H T = (‘117 ey
q

Tp) € intS™ !

is a Lyapunov functions of (9). Moreovgy, (x) is mono-
tonically decreasing along the trajectorfr(™)}, where
20 € intS™ 1 andz® # V(zV).

Proof We have
fra (xl) =

1+ 2111 Apilq

m —1 m
L4300 agiti + Ligs32q - X2 = Pijqiv;
1Fq9,17F49

wherel,-, = 0 (resp. =1) ifg <

, (16)

{ (resp.q > ¥).

Below we use this fact to construct new Lyapunov func-C'€ary;

tions.

Theorem 3If conditions of Theorem 2 are satisfied then

Yp(x) =2t abr, r < bz = (zy1,...,7,) € intS" !
is a Lyapunov function of (9) for any = (p1,....,pr) €
St
ProofUsing Young'’s inequality, we get
Yp(a') < p(x) Z (1 + Zakﬂ?i) Pk =
k=1 i=1
x) (1 + Z (Z akixi> Pk) . (14)
k=1 \i=1

By conditions we have

T T T T m
Zzakipkxi < Zwi; Z Z agiprri < 0.

k=11i=1 i=1 k=1i=r+1

Hence by (14) we get

1/}13( )<wp <1+Zxk>.

Consequently, along any trajectofy(™ } we have
Up(a ) < 4y (2) (14 p())

wherep(2(™) = 37_, 2" According to Theorem 2,
the serie$">° , ¢(2(™)) converges, and so it follows from
(15) thatlim,, o, ¥, (=("™) exists along any trajectory.

(15)

m

>

i,j=1
i#4q,J#q

1{q>g}$;1 P qvixy > 0, foranyx € intS™ 1

Consequently, from (16) by condition of theorem we get
foa(@') < afpq(2), (7)
where

m
L4200 api

max <1
zeintsm—1 1 4 21 1 Qqi%;

o=

This implies fp, (z 1) < fye(z™),n > 0. Thus se-
quencequ(x(”)) is a monotonically decreasing. Since it
is bounded we conclude th#f, is a Lyapunov function.

RemarkThe Lyapunov functions mentioned in Theorems
1,2 and 4 are monotonically decreasing along any trajec-
tory. Note that under conditions of Theorem 4 we can also
construct the functiory f,(z) = f—z which is monoton-

ically increasing along any trajectory:(™} with 20 ¢
intS™=1. But the limitlim,, . f.,(z(™)) can be equal to
+o0.

4. Upper estimations ofw(z")

In this section we shall apply the Lyapunov functions de-
scribed in the previous section to obtain an upper bound of
w(x?). Denote byFix (V) the set of all fixed points of the
operator (9) i.e.

Fix(V)={z € S™ ' : V(x) = z}.

(© 2012 NSP
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Theorem 5If there existsk, € {1,...,¢} andé > 0 such  [3], [5] that for Volterra operators (see (6))df; # 0 (i #
thatay,; < —¢ for anyi € E then forz® ¢ Fix(V), 4) then for any non-fixed initial poinf® the setw(\%)
of all limit points of the trajectory{ \("™)} is subset of the
0 1 d boundary of simplex. But fof-\olterra operators, in gen-
wa®) c {z e st [z =0} eral, the limit set can be subset of the inside of simplex.
i=1 4. Itis known [3] that Volterra operators are homomor-
phisms. Consequently, for any initial poinf ¢ S™~!
the "negative” trajector{V—"(z%)},n = 0,1,2, ... ex-
ists. Moreover the negative trajectories always converge.
But such kind of result is not true fdr\Volterra operators.

ProofConsider Lyapunov functiop, (z) = Hle z? for

p € Ps. By proof of Theorem 1 we have
wp(Vz) < (1 —=90)pp(x), § > 0.

Iterating this inequality we obtain

5. The fixed points of the operator (9)
©p (™) < (1 = 0)"pp,(2°).

Itis easy to see that a verte¥) = (0, ...,0, 1;,0, ..., 0) of

Hence Sm=1is a fixed point ofV iff P, ; = 1. We consider the
P question of the existence of other fixed points.
lim (pp(x(n)) — lim H(xgn))pi —0 Forj € E denote
1 — OO n—oo i1

Xj = {a’,‘ c Sm—l : LU;C = V(l‘)k = Tk, k= 177]} .
This completes the proof. Note X, — Xy, — Fix(V) andX, C X,_,

As a corollary of Theorem 2 we have foranyj =1,..,m — 1. _ _
N o Itis easy to see that € X, if and only if
Theorem 6Suppose conditions of Theorem 2 are satisfied.

Ifie{l,..,r} thenz{™ — 0, at the rate of a geometric ;. Zakil‘i =0, k=1,..0°0 (18)

progression as — ooz. P
This Theorem gives the estimatiarfz?) c S™~ "1, Setsupp,z = {i € {1,...,¢} : x; # 0} then equations

Where(Sm*)T*1 is the face ofS™~! spanned by(th)e ver- (18) are equivalent to the following

ticese"tY) = (0,...,0,e,41 = 1,0,...,0),..., &™) =

(0,...,0,1). ( o ) supp,x N supp,Az = 0, (19)
If in Theorem 4 we consider more stronger condition whereA = (a;;);" _; is m x m matrix witha;; defined in

i.e.ap; — agq < 0instead ofu,; — aq; <0, foranyi € E. (10).

Then(\:l\/)e get (17) Wltm < 1. In this ca?s) it follows that Lemma 21f 2,y € X, andsupp,z = suppyy then Az +

fpq(2'™) — 0. Using the fact tha® < =, < 1, we get (1 - \)y € X, forany € [0, 1].

a:;(,") — 0. This enables us to get a more precise estimate

for w(z®) : itis a subset of the simpleg™ " with z,, =0  ProofBy (19) andsupp,z = supp,y we have

wherep € {1, ..., ¢} such that there exists= ¢(p) € F

which satisfies conditions of Theorem 4. supp,a N (suppg Az U supp, Ay) = 0.
By these results and results of [12] we make following

remarks.

Remarkl. For \olterra operators the estimatg¢z®) c supp(Az + (1 = A)y) Nsupp,(AAz + (1 — A)Ay) C
S™~—r=1 can be improved to the estimation

Sincesupp, (Au+ (1 — A)v) C supp,u Usupp,v we have

supp,z N (supp, Az U supp,Ay) = 0.
m—r—1
Hencelz + (1 — M)y € X,.
w($0) C 6sm—r—1 — {SU e Sm—r—l . H T = 0} ( )y 4
i=1 Forp,q,r € EputA = (apr — app)(agr — aqq) —

(see [3]). In general, if < m then such an improvement (@pr = apg)(aqr = dgp);

is impossible.
2_. If Z <m— 2_then E-yoltgrra operators can have AL = Qgrlpg — pragq; Do = Gpragp — Qgrapy.
cyclic trajectories this is quite different behavior from the
behavior of Volterra operators, since Volterra operators haveheorem 7If
no cyclic trajectories. (@) p,q,r € E'suchthaf{p,q,r}N{¢+1,...,m} con-
3. One of the main goal by introducing the notion of tains at most one element, say
¢-Volterra operators was to give an example of QSO which  (b) P;; x = 0foranyi,j € {p,q,r},k € {{+1,...,m}\
has more rich dynamics than Volterra QSO. Itis well knowr{p, ¢, };
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X

Example. Considerm = 5, ¢/ = 2 and the following
2-\olterra operator

S 5 . . .
n==nn (1 +2 i alixi) ’ U.A. Rozikovis a professor in
;L 1 5 Institute of Mathematics, Tashkent,
T2 =12 ( + i a2ixi> ’ Uzbekistan. He has graduated the
2l =z (1 + Z?:1 aBimi) Samarkand State University (1993).

P55 c 21
T F55,375 He got Ph.D (1995) and Doctor

o = 24 (1 LY a4ixi) I (22) of sciences in physics and math-
) ) ematics (2001) degrgaes from the
Pry y27 + 2P12 47172 + Pag 475, Institute of Mathematics, Tashkent.
, 5 He is known for his works on the
Ts =I5 (1 + i “51“1') + theory of Gibbs measures of mod-
Py3 522 + 2Py3 57123 + 2Po3 5073, els on trees of statistical mechanics. He developed a con-

) - _tour method to study the models on trees and described
_Itis easy to see that the operator (22) satisfies condigomplete set of periodic Gibbs measures. Rozikov has (with
tions (@) and (b) of Theorem 7 with= 1,¢ = 2,7 = 4. £ Mukhamedov) an important contribution to non-Archimedea
Condition (c) of Theorem 7 is necessary and sufficient for(p-adic) theory of phase transitions and dynamical sys-
the existence and uniqueness of solution to system (21}emg He has important results on non- Volterra quadratic
One can check th_at the operator (22) satisfies the ConditiOBperators. N. Ganikhodjaev and Rozikov gave a construc-
(c), for example, itP11,1 = Pa22 = a, P21 = Pi22 = {ion of a quadratic operator which connects phases of the
b, Pias = Payy = ¢, with a # 2bandc > 1/%- Inthis  nodels of statistical mechanics with models of genetics.
case the unique fixed point in the interior ofSt,, is The result allows use thermodynamics in physical biol-
ogy. His recent works devoted to evolution algebras of
sex-linked populations. He was invited to several leading
universities and research centers in the UK, France, Italy,

. 1—-2¢c 1—-2¢c a+2b—2
T \a+20—4¢’ a+20—4¢’ 7 a+2b—4c¢’ '
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