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Abstract: Based on progressively Type-II censored samples, the maximum likelihood (ML) and Bayes estimators for the parameters
as well as some lifetime parameters (reliability and hazardfunctions) of the exponentiated Frchet (EF) distribution are derived. The
confidence interval of the parameters are obtained based on an asymptotic distribution of maximum likelihood estimators. Further; we
consider delta method and bootstrap method to construct approximate confidence intervals for reliability and hazard functions. The
Bayes estimators of the unknown parameters cannot be obtained in closed form. Markov chain Monte Carlo (MCMC) method hasbeen
used to compute the approximate Bayes estimates and also to construct the highest posterior density (HPD) credible intervals. The
results of Bayes estimators are obtained under both the balanced squared error loss (BSEL) and balanced linear-exponential (BLINEX)
loss. A practical example consisting of data represents a relief time of arthritic patients reported by Wu et al. [1] was used for illustration,
Finally; some numerical results using simulation study concerning different sample sizes and different progressive censoring schemes
were reported.

Keywords: Exponentiated Frchet distribution; Progressively Type-II censored samples; Approximate confidence intervals; Bayesian
and non-Bayesian estimations; Gibbs and Metropolis sampler; Bootstrap; Graphical method; Monte Carlo simulation.

1 Introduction

The extrem value distribution is well suited to characterize random variables of large features. Thus it is important for
modeling the statistical behavior of materials propertiesfor a variety of engineering applications. It has been used widely
in meteorology, hydrology, ocean engineering, pollution studies, strength of materials. It essentially involves three types
of extreme value distributions, Types I, II and III. The Fréchet distribution is one of three kinds of general extreme value
distribution (the Gumbel (TypeI), Fréchet (Type II) and Weibull (Type III)). The Fréchet distribution has applications
ranging from accelerated life testing through to earthquakes, floods, horse racing, rainfall, queues in supermarkets,sea
currents, wind speeds, and track race records. Kotz and Nadarajah [2] gave some applications in their book. Exponentiated
Fréchet (EF) distribution has been introduced by Nadarajah and Kotz [3] as a generalization of the standard Frèchet
distribution. The probability density function (pdf) and cumulative distribution function (cdf) for the two parameters EF
distribution ( EF(α,θ )), respectively, are

f (x) = θαx−(α+1)exp(−x−α)(1−exp(−x−α))θ−1,x > 0, (1)

F(x) = 1− (1−exp(−x−α))θ , x > 0, α,θ > 0, (2)

whereα andθ are shape parameters.
The reliability and hazard functions at some timet, are given respectively, by

S(t) = F̄(t) = (1−exp(−t−α))θ , (3)
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H(t) = θαt−(α+1)exp(−t−α)(1−exp(−t−α))−1, t > 0. (4)

It is common practice in a life testing experiment to terminate the experiment before all the units have failed. The
observations obtained in such situation are called censored samples. Type-I and type-II censoring schemes are the two
most popular censoring schemes which have been used in practice, see for example, Singh et al. [4] and Kundu [5].
Unfortunately, none of these censoring schemes allows the removal of any experimental units during the experiment.
Type-I and type-II progressive censoring schemes allow theremoval of experimental units during the experiment. Due to
this flexibility progressive censoring scheme has receivedconsiderable attention in the applied statistics literature for the
last few years. A type-II progressively censored experiment can be briefly described as follows. Consider an experiment,
in which n identical units are put on a test and supposem < n is fixed before the experiment. At the time of the first
failure sayX1:m:n, R1 surviving units are randomly removed. Similarly, at the time of the second failure, sayX2:m:n, R2
surviving units are removed and so on. The test continues until the m−th failure sayXm:m:n at which time all the
remainingRm = n− m − R1 − ...− Rm−1 units are removed. In this censoring scheme,Ri, and m are pre-fixed. The
resultingm ordered values which we denote byX1:m:nX2:m:n, ...,Xm:m:n, are referred to as progressively Type-II censored
order statistics. As a special case, this scheme includes the conventional Type-II right censoring scheme (when
R1 = R2 = ... = Rm−1 = 0 andRm = n−m) and complete sampling scheme (whenn = m andR1 = R2 = ...= Rm = 0).
For more details about progressive censoring schemes, the readers may refer to Balakrishnan and Aggarwala [6] and
Balakrishnan [7]. Some recent studies on progressive Type II censoring havebeen carried out by many authors including
Rastogi and Tripathi [8], Ahmed [9], Huang and [10], and Wu [11].
Although extensive work has been done on the statistical inference of the unknown parameters of different parametric
models based on progressively censored observation in the frequentist setup, not that much work has been done in the
Bayesian inference, specially for exponentiated Fréchet(EF) distribution.
This paper considers the progressive Type-II right censoring scheme, when the lifetime follows two parameters EF
distribution. First we provide the maximum likelihood estimators of the unknown parameters. It is observed that the
maximum likelihood estimators do not have explicit forms. They can be obtained by solving a non-linear equations.
Because the exact distributions of the MLE are not easy derived, we propose to use the asymptotic distributions of the
MLE to construct the approximate confidence intervals. We also, propose two bootstrap confidence intervals. The Bayes
estimates are obtained under the assumptions of independent gamma priors for the two shape parameters. We use the
Gibbs sampling procedure to compute the Bayes estimates andthe highest posterior density (HPD) credible intervals.
Different methods are compared using Monte Carlo simulations and for illustrative purposes we analyze one real data
set.
The rest of the paper is organized as follows: In Section 2, the MLE of the unknown parameter are obtained. Different
confidence intervals are presented in Section 3 and 4. Bayesian analysis is provided in Section 5. One real data set has
been analyzed in Section 6. In Section 7 we provide a simulation study in order to give an assessment of the performance
of the estimation methods. Finally we conclude the paper in Section 8.

2 Maximum likelihood estimation (MLE)

Let (X1:m:n,X2:m:n, ...,Xm:m:n), (1≤ m ≤ n) be a progressively type II censored sample observed from a life test involving
n units taken from the EF(α,θ ) distribution and (R1,R2, ...,Rm) being the censoring scheme. Then the joint probability
density function of (X1:m:n,X2:m:n, ...,Xm:m:n), see Aggarwala and Balakrishnan [12], is

fX1,m,n,...,Xm,m,n(x1,m,n, ...,xm,m,n) = A
m

∏
i=1

fXi,m,n(xi,m,n)
[
1−FXi,m,n(xi,m,n)

]Ri , (5)

where A = n(n−1−R1)(n−2−R1−R2)...(n−∑m−1
i=1 (Ri +1)).

Utilizing Eqs. (1) and (2), the likelihood function ofα andθ is given by

L(α,θ |x) = A
m

∏
i=1

αθx−(1+α)
i,m,n exp(−x −α

i,m,n)(1−exp(−x −α
i,m,n))

θ(1+Ri)−1, (6)

and the corresponding log likelihood function is

ℓ= logL(α,θ |x) = logA+m logα +m logθ +
m

∑
i=1

(θ (1+Ri)−1) log(1−exp(−x −α
i,m,n))

−
m

∑
i=1

[
x−α

i,m,n +(α +1) logxi,m,n

]
. (7)
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Consequently, likelihood equations ofα andθ are obtained as

∂ℓ
∂α

=
m
α
+

m

∑
i=1

(
x−α

i,m,n −1
)

logxi,m,n −
m

∑
i=1

(θ (1+Ri)−1)x −α
i,m,n exp(−x −α

i,m,n) logxi,m,n[
1−exp(−x −α

i,m,n)
] = 0, (8)

and
∂ℓ
∂θ

=
m
θ
+

m

∑
i=1

(1+Ri) log(1−exp(−x −α
i,m,n)) = 0 (9)

It follows, from Equation (9), that

θ̂ML =− m

∑m
i=1(1+Ri) log(1−exp(−x −α

i,m,n))
, (10)

andα̂ML is the solution of

m
α
+

m

∑
i=1

(
x−α

i,m,n −1
)

logxi,m,n −
m

∑
i=1

{(
− m(1+Ri)

∑m
i=1(1+Ri) log(1−exp(−x −α

i,m,n))

)
−1

}
x −α

i,m,n exp(−x −α
i,m,n) logxi,m,n

(1−exp(−x −α
i,m,n))

= 0. (11)

Newton-Raphson iteration is employed to solve (11) to obtain the estimatêαML, once we obtain̂αML, the maximum
likelihood estimators ofθ (θ̂ML) can be obtained from (10). The initial values for the parameters are obtain by using
graphical techniques, see Balakrishnan and Kateri [13]. We rewrite Equation (11) in the form.

1
α

=
1
m




m

∑
i=1

(
1− x−α

i,m,n

)
logxi,m,n +

m

∑
i=1

{(
− m(1+Ri)

∑m
i=1(1+Ri) log(1−exp(−x −α

i,m,n))

)
−1

}
x −α

i,m,n exp(−x −α
i,m,n) logxi,m,n

(1−exp(−x −α
i,m,n))


 . (12)

We denote the right-hand side of Equation (12) byH1(α,x), and we can show that, for a given samplexi, i = 1,2, ...,m

H1(α,x) is a monotone increasing function of with a finite and positive limit asα → ∞. Since
1
α

is strictly decreasing with

a right limit ∞ at 0, it would then follow that the plots of
1
α

andH1(α,x) would intersect exactly once at the value ofα,

and the resulting value can be used as a starting value for theNewton–Raphson iterative method. Then, using invariance
property of maximum likelihood estimation, the MLEs of the reliability and hazard functions are obtained, respectively,
from (3) and (4) after replacingα andθ by their MLEsα̂ML andθ̂ML as

ŜML(t) = (1−exp(−t−α̂ML))θ̂ML , (13)

and
ĤML(t) = α̂MLθ̂MLt−(α̂ML+1)exp(−t−α̂ML)(1−exp(−t−α̂ML))−1. (14)

3 Variances and covariances of the MLE

We obtain approximate confidence intervals (CI) of the parametersα andθ based on the asymptotic distribution of the
maximum likelihood estimator of the parameters. The asymptotic variances and covariances of the MLE for parameters
α andθ are given by the elements of the inverse of the Fisher information matrix. The observed information matrix ofα
andθ , denoted byI−1 is

I−1 =




− ∂ 2L
∂α2 − ∂ 2L

∂α∂θ
− ∂ 2L

∂θ∂α
− ∂ 2L

∂θ 2




−1

(α̂ ,θ̂)

=

[
var(α̂) cov(α̂, θ̂ )

cov(α̂, θ̂ ) var(θ̂ )

]
, (15)
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where, the second partial derivatives of the log-likelihood function are

∂ 2ℓ

∂θ 2 =− m
θ 2 , (16)

∂ 2L
∂θ∂α

=
∂ 2L

∂α∂θ
=

m

∑
i=1

exp(−x −α
i,m,n) log( 1

(xi,m,n)
)(1+Ri)x

−α
i,m,n

1−exp(−x −α
i,m,n)

, (17)

and
∂ 2L
∂α2 =− m

α2 −
m

∑
i=1

x−α
i,m,n log2 xi,m,n −

m

∑
i=1

(θ (1+Ri)−1)u(xi,m,n,α)
[
1−exp(−x −α

i,m,n)
]2 , (18)

where
u(xi,m,n,α) = x −α

i,m,n exp(−x −α
i,m,n) log2 xi,m,n

[(
x −α

i,m,n −1
)[

1−exp(−x −α
i,m,n)

]
+ x −α

i,m,n

]

The asymptotic normality of the MLE can be used to compute theapproximate confidence intervals for parameters.
Therefore,(1− γ)100% confidence intervals for parametersθ andα become

θ̂ ∓Zγ/2

√
var(θ̂ ) and α̂ ∓Zγ/2

√
var(α̂), (19)

whereZγ/2 is the percentile of the standard normal distribution with right-tail probabilityγ/2.
Furthermore; to construct the asymptotic confidence interval of the reliability and hazard functions, we need to find
Var(Ŝ(t)) andVar(Ĥ (t)). In order to find the approximate estimates of the variance ofŜ(t) andĤ (t), we use the delta
method see Greene [14]. The delta method is a general approach for computing confidence intervals for functions of
maximum likelihood estimates. It takes a function that is too complex for analytically computing the variance, createsa
linear approximation of that function and then computes thevariance of the simpler linear function that can be used for
large sample inference, for details, see Greene [14]. Let

Ǵ1 =

(
∂S (t)
∂α

,
∂S (t)

∂θ

)
and Ǵ2 =

(
∂H (t)

∂α
,

∂H (t)
∂θ

)
, (20)

where

∂S (t)
∂α

=−θ (1−exp(−t−α))θ−1 exp(−t−α)t−α log(t),
∂S (t)

∂θ
= (1−exp(−t−α))θ log(1−exp(−t−α)), (21)

and
∂H (t)

∂α
= t−(1+2α)θ [tα−(tα−1)α log(t)]

exp(−t−α )−1 + exp(−2t−α )t−(1+2α)θα log(t)
(1−exp(−t−α ))2

,
∂H (t)

∂θ
=

αt−α−1exp(−t−α)

1−exp(−t−α)
. (22)

Then the approximate estimates ofVar(Ŝ)andVar(Ĥ) are given, respectively, by

V̂ar(Ŝ)≃
[
Ǵ1I−1G1

]
(α ,β )=(α̂ML,β̂ML)

andV̂ar(Ĥ)≃
[
Ǵ2I−1G2

]
(α ,β )=(α̂ML,β̂ML)

. (23)

Thus,

(
Ŝ(t)− S (t)

)
√

V̂ar(Ŝ)
∼ N (0,1) and

(
Ĥ (t)−H (t)

)
√

V̂ar(Ĥ)
∼ N (0,1)

asymptotically. Theses results yields the approximate confidence intervals forS (t) andH (t) as

Ŝ(t)∓Z γ
2

√
V̂ar(Ŝ) andĤ (t)∓Z γ

2

√
V̂ar(Ĥ). (24)

4 Bootstrap confidence intervals

It is evident that the confidence intervals based on the asymptotic results do not perform very well for small sample size.
So, we propose two confidence intervals based on the parametric bootstrap methods: (i) percentile bootstrap method (we
call it Boot-p) based on the idea of Efron [15] and (ii) bootstrap-t method (we refer to it as Boot-t) basedon the idea of
Hall [16]. We illustrate briefly how to estimate C.I.’s ofα, θ , S(t) andH(t), using both methods.

(i) Boot-p method
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1.Generate a bootstrap sample of sizem, {x∗1, ...,x
∗
m} from EF(α̂, θ̂ ) by using{x1, ...,xm}. Based on{x∗1, ...,x

∗
m} , compute

the bootstrap estimate ofα, θ , S(t) andH(t), sayα̂∗, θ̂ ∗, Ŝ∗(t) andĤ∗(t), using (10-14)
2.Repeat step1B times, to obtain̂α∗(i), θ̂ ∗(i), Ŝ∗(i)(t) andĤ∗(i)(t), i = 1,2, ...,B .

3.For i = 1,2, ...,B , arrangeα̂∗(i), θ̂ ∗(i), Ŝ∗(i)(t) and Ĥ∗(i)(t), in ascending order and obtain̂α∗[i], θ̂ ∗[i], Ŝ∗[i](t) and
Ĥ∗[i](t).

The approximate 100(1− γ)% confidence interval ofg = (α,θ ,S(t),H(t)), is given by
(

ĝ∗[B γ/2]
Bp , ĝ∗[B (1−γ/2)]

Bp

)
, (25)

(ii) Boot-t method

1.Same as in Boot-p method, first generate bootstrap sample{x∗1, ...,x
∗
m}.

2.Based on{x∗1, ...,x
∗
m} compute the bootstrap estimate ofα, θ , S(t) andH(t) using 10- 14, saŷα∗, θ̂ ∗, Ŝ∗(t) andĤ∗(t)

and following statistics

T ∗
1 =

√
m(ĝ∗− ĝ)√
Var(ĝ∗)

, whereg = α,θ ,S(t),H(t). (26)

3.Repeat step 2, B times.
4.LetKi(x) = P(T ∗

i ≤ x) be the cumulative distribution function ofT ∗
i , i = 1,2,3,4. For a givenx define

ĝBt(x) = ĝ+m−1/2
√

Var(ĝ)K−1
i (x), i = 1,2,3,4. (27)

The approximate 100(1− γ)% confidence interval ofg = α, θ ,S(t) andH(t) are given by
[
ĝBt(

γ
2
), ĝBt(1−

γ
2
)
]
. (28)

5 Bayes Estimation

This section presents Bayes estimates of the parametersθ , α, S(t) andH(t). It is assumed here that the parametersθ
andα are independent and follow the gamma prior distributions. we consider these prior because, it is flexible in nature
and mathematical ease. We can obtain non-informative priorfor gamma prior by taking the value of hyper-parameters are
equal to zero. Therefore, the prior density functions ofθ andα becomes

π1(θ |a1,b1) =
b

a1
1

Γ (a1)
θ a1−1e−b1θ , θ > 0, (29)

and

π2(α|a2,b2) =
b

a2

2

Γ (a2)
αa2−1e−b2α , α > 0. (30)

Here, a1, b1, a2 and b2 are chosen to reflect prior knowledge aboutα andθ .
Based on(29) and(30) the joint posterior density ofθ andα given the data is

q(θ ,α|x
¯
) =

ℓ(x|̄θ ,α)×π1(θ |a1,b1)×π2(α|a2,b2)∫ ∞
0

∫ ∞
0 ℓ(x|̄θ ,α)×π1 (θ |a1,b1)×π2(α|a2,b2)dθdα

,

= kθ m+a1−1αm+a2−1e[−b1θ−b2α ]
m

∏
i=1

x−(1+α)
i e[−x−α

i ]
(

1− e[−x−α
i ]
)θ(1+Ri)−1

, (31)

where

k−1 =

∫ ∞

0

∫ ∞

0
θ m+a1−1αm+a2−1e[−b1θ−b2α ]

m

∏
i=1

x−(1+α)
i e[−x−α

i ]
(

1− e[−x−α
i ]
)θ(1+Ri)−1

dθdα. (32)

In order to make the statistical Bayesian inferences more practical and applicable, we often need to choose an asymmetric
loss function. A number of asymmetric loss functions proposed for use, one of the most popular is the LINEX loss
function. This loss function was introduced by Varian [17] and several others; among of them Basu and Ebrahimi [18],
Soliman et al.[19] and Abd Ellah [20]. Recently, A more generalized loss function called the balanced loss function (see
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Jozani et al. [21]).
Under the balanced squared error loss (BSEL) function ( see Ahmed [9] ) the Bayes estimate of a functiong≡ g(θ ,α)=α,
θ , S(t) or H(t), is given by

ĝBS = ω ĝML +(1−ω)

∫ ∞

0

∫ ∞

0
gq(θ ,α|x

¯
)dθdα, (33)

Also, based on the balanced linear-exponential (BLINEX) loss function ( see Ahmed [9] ), the Bayes estimate of the
functiong is given by

ĝBL =
−1
c

log

[
ωe−cĝML +(1−ω)

∫ ∞

0

∫ ∞

0
e−cgq(θ ,α|x

¯
)dθdα

]
, (34)

whereĝML is the MLE ofg andq(θ ,α|x
¯
) is as given by(30). For more details of balanced loss function see Soliman et

al. [22].
Unfortunately,(33) and(34) can not be obtained in simple closed form for generalg = g(θ ,α). Therefore, we propose
the use of MCMC approximation for obtaining the Bayes estimator of g.

5.1 Bayesian estimation using MCMC

In this area we consider the MCMC method to generate samples from the posterior distributions and then compute the
Bayes estimates ofθ andα under progressively Type-II censored EF distribution. A wide variety of MCMC schemes are
available and it can be difficult to choose among them. An important sub-class of MCMC methods are Gibbs sampling
and more general Metropolis-within-Gibbs samplers; see, for example, Smith and Roberts [23], Gilks et al. [24], Robert
and Casella [25], Soliman et al. [22] and Recently, Mahmoud et al. [26]. We propose using the Gibbs sampling procedure
to generate a sample from the posterior density functionl(θ ,α|x

¯
) and in turn compute the Bayes estimates and also

construct the corresponding credible intervals based on the generated posterior sample. In order to use the method of
MCMC for estimating the parameters of EF distribution, namely, θ andα. From(31) the posterior can be obtained up to
proportionality by multiplying the likelihood with the prior and this can be written as

hθ ,α(θ ,α|x
¯
) ∝ θ m+a1−1αm+a2−1exp[−b1θ − b2α]

×
m

∏
i=1

x−(1+α)
i exp[−x−α

i ]
(
1−exp[−x−α

i ]
)θ(1+Ri)−1

. (35)

The posterior is obviously complicated and no closed form inferences appear possible. We, therefore, propose to consider
MCMC methods, namely the Gibbs sampler, to simulate samplesfrom the posterior so that sample-based inferences can
be easily drawn. From(35), the marginal posterior density ofθ is proportional to

hα(α|θ ,x
¯
) ∝ αm+a2−1exp[−b2α]

m

∏
i=1

x−(1+α)
i exp[−x−α

i ]

×
(
1−exp[−x−α

i ]
)θ(1+Ri)−1

. (36)

Similarly, the full posterior conditional distribution for α as the following

hθ (θ |α,x
¯
) ∝ θ m+a1−1exp

[
−θ

(
b1−

m

∑
i=1

(Ri +1) log(1−exp[−x−α
i ])

)]
. (37)

It can be seen that Equation(37) is a gamma density with shape parameter (m + a1) and scale parameter(
b1−∑m

i=1 (Ri +1) log(1−exp[−x−α
i ])

)
and, therefore, samples ofθ can be easily generated using any gamma

generating routine. However, in our case, the conditional posterior distribution ofα equation(36) cannot be reduced
analytically to well known distributions and therefore it is not possible to sample directly by standard methods, but the
plot of it show that it is similar to normal distribution. So to generate random numbers from this distribution, we use the
Metropolis-Hastings method with normal proposal distribution.
The following steps illustrate the process of the Metropolis–Hastings algorithm within the Gibbs sampling to simulate
the posterior samples:

Step1:Start with an (α(0),θ (0))
Step2:Seti = 1.
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Table 1: Relief time (in hours) for 50 arthritic patients
0.70 0.84 0.58 0.50 0.55 0.82 0.59 0.71 0.72 0.61
0.62 0.49 0.54 0.36 0.36 0.71 0.35 0.64 0.84 0.55
0.59 0.29 0.75 0.46 0.46 0.60 0.60 0.36 0.52 0.68
0.80 0.55 0.84 0.34 0.34 0.70 0.49 0.56 0.71 0.61
0.57 0.73 0.75 0.44 0.44 0.81 0.80 0.87 0.29 0.50

Step3:Generateθ (i) from Gamma(m+ a1,b1+∑m
i=1 (Ri +1) log(1−exp[−x−α

i ])).

Step4:Using Metropolis-Hastings, generateα(i) from hα with the N(α(i−1),Var(α)) proposal distribution.

Step5:ComputeS(i) = (1−exp(−t−α(i)
))θ (i)

andH(i) = θ (i)α(i)t−(α(i)+1)exp(−t−α(i)
)(1−exp(−t−α(i)

))−1.
Step6:Seti = i+1.
Step7:Repeat steps 3−6 N times.

Note that in step 4, we used Metropolis-Hastings algorithm with N(α(i−1),Var(α)) proposal distribution as follows:

a-Generate a proposalα∗ from N(α(i−1),Var(α)).

b-Evaluate the acceptance probabilitiesρα = min
[
1, hα (α∗|θ ( j) ,x

¯
)

hα (α( j−1)|θ ( j),x
¯
)

]
.

c-Generate au from a Uniform(0,1) distribution.
d-If u ≤ ρα , accept the proposal and setα( j) = α∗, else setα( j) = α( j−1).

In order to guarantee the convergence and to remove the affection of the selection of initial value, the firstM simulated
variates are discarded. Then the selected sample areα(i) andθ (i) , i = M +1, ...,N, for sufficiently largeN, forms an
approximate posterior sample which can be used to develop the Bayesian inference.

step 8:Obtain the Bayes estimates ofθ , α, S(t) andH(t) as follows:
An approximate Bayes estimate under MCMC ofg under BSEL function is

ĝBS = ω ĝ(θ ,α)ML +
(1−ω)

N −M

N

∑
i=M+1

g(θ (i),α(i)). (38)

Also; the approximate Byes estimate under MCMC of theg under BLINEX loss is then given by

ĝBL =
−1
c

log

(
ωe−cĝ(θ ,α)ML +

(1−ω)

N −M

N

∑
i=M+1

e−cg(θ (i),α(i))

)
(39)

Substituting, from(37) and(38) by g(θ ,α) = α, θ , S(t) andH(t), the the approximate Byes estimate under MCMC
of α, θ , S(t) andH(t) under bothbSEL andbLINEX loss functions can be obtained.

Step9:To compute the credible intervals ofg, asg(1) < ... < g(N),. Then the 100(1− γ)% symmetric credible intervals of
g become

(g(N γ/2), g(N(1−γ/2))). (40)

Substituting, from(40) by g(θ ,α) = α, θ , S(t) andH(t), the 100(1− γ)% symmetric credible intervals ofα, θ , S(t)
andH(t) can be obtained.

6 Application to real life data

In this section, we consider a real-life data set and illustrate the methods proposed in the previous sections. The data set
is given by Wingo [27] and used recently by Wu et al. [1]. and it represents a clinical trial describe a relief time (in hours)
for 50 arthritic patients. The data are given in Table 1.

Before progressing further, we have examined the goodness-of-fit of the previous data to EF distribution graphically.
We have computed the Kolmogorov-Smirnov (KS) distance between the empirical and the fitted distribution functions. it
is 0.11 and the associated p-value is 0.53. Since the p-value is quite high, we cannot reject the nullhypothesis that the
data is coming from the EF distribution. We plot both the empirical and the estimated survival functions in Fig.1 and we
found that the EF fits the data very well.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


394 A.A. Soliman et al.: Bayesian estimation from exponentiated frechet...

Fig. 1: Empirical survival function (bold line) and the fitted survival function (dotted lines) for Wu et al. [1].

Now, we consider the case when the data are progressively type-II censored with the sample sizen = 50 andm = 45
with the censoring scheme (R1 = 5, Ri = 0, i = 2, ...m), we obtained the following data:

0.29 0.29 0.34 0.35 0.36 0.36 0.36 0.44 0.46 0.46 0.49 0.49 0.50 0.52 0.54
0.55 0.55 0.56 0.58 0.59 0.59 0.60 0.60 0.61 0.61 0.62 0.64 0.68 0.70 0.70
0.71 0.71 0.71 0.72 0.73 0.75 0.75 0.80 0.80 0.81 0.82 0.84 0.84 0.84 0.87

By using the graphical method introduced by Balakrishnan and Kateri [13], the initial values of the parametersθ andα
have been obtained to beθ = 7.138 andα = 1.543. Using thus initial values, the MLEs ofα andθ , are computed to be
θ̂ML = 7.1899 andα̂ML = 1.5525. Witht = 0.33, from (3) and (4) the MLEs ofS(t) andH(t) becomeŜ (t) = 0.9734 and
Ĥ (t) = 0.7082.

Based on the large sample inference property and assume the regularity conditions are satisfied, the 95% confidence
interval (CIs) for the parametersθ andα are obtained. Furthermore, we used delta method to obtain the 95% CIs for the
S(t) andH(t). We also obtain the 95% Boot-p and Boot-t confidence intervals, the results are displayed in Table (2).

Table 2: 95% confidence and credible intervals ofα, θ , S(t = 0.33) andH(t = 0.33).
α θ

Interval Length Interval Length
MLE (1.3480, 1.7569) 0.4089 MLE (4.8123, 9.5675) 4.7552

Boot-p (1.3558, 1.8977) 0.5418 Boot-p (6.1068, 9.4177) 3.3109
Boot-t (1.3326, 1.8307) 0.4981 Boot-t (5.8461, 8.8354) 2.9893

MCMC (1.3359, 1.7373) 0.4014 MCMC (5.0739,9.7938) 4.7199
S(t) H(t)

MLE (0.9433, 1.0036) 0.0603 MLE (0.1323, 1.2841) 1.1518
Boot-p (0.9219, 0.9975) 0.0756 Boot-p (0.1181, 1.4776) 1.3594
Boot-t (0.9291, 0.9956) 0.0666 Boot-t (0.1847, 1.3100) 1.1253

MCMC (0.9251, 0.9917) 0.0666 MCMC (0.2745,1.3812) 1.1067

Under assumption that these data are from EF distribution. We run the Gibbs sampler with MH algorithm to generate
a Markov chain with 11,000 observations. Discarding the first 1000 values as ‘burn-in’ and taking every tenth variate
as iid observations, starting from 1001. This is done to minimize the auto correlation among the generated deviates.
The convergence is monitored using trace plots. We used the non-informative priors forα and θ , that is, when the
hyperparameters are 0 (a1 = a2 = b1 = b2 = 0). The marginal posterior density estimates of the parameters, reliability and
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Fig. 2: Histogram and kernel density estimates ofα , θ , S(t) andH(t) from Example 1.

hazard functions and their histograms based on samples of size 10,000 are shown in Fig. 2 using the Gaussian kernel. It
is evident from the estimates that all the marginal distributions are almost symmetrical. We can take the posterior meanas
the best estimate for symmetric distribution and the posterior mode for a skewed distribution. A traceplot is a plot of the
iteration number against the value of the draw of the parameter at each iteration. Fig. 3 display 10,000 chain values for the
two parametersθ andα as well as reliabilityS(t) and hazardH(t) functions, with their sample mean and 95% credible
intervals. The plots syndicate a good mixing performance. Interval estimates of the unknown concentrations are easily
obtained from the percentiles of the posterior distributions. Table 2 lists the 95% probability intervals for the parameters,
reliability and hazard functions. The result of Bayes MCMC estimates relative to both balanced squared error loss function
(BSEL) and balanced LINEX loss function (BLINEX) with different values of the shape parameter (c) of LINEX loss
function and various values ofω for the parametersθ andα as well as reliabilityS(t = 0.33) and hazardH(t = 0.33) are
displayed in Table 3.

7 Simulation study and comparisons

In previous sections we proposed several estimators for unknown parametersθ , α, S(t) andH(t). In this section, the
performance of all estimators is evaluated and compared in terms of their MSE values. Bayes estimators are evaluated
under the prior assumptions thatθ , α follow Gamma(a1,b1) and Gamma(a2,b2) distributions, respectively. Approximate
expressions for all Bayes estimators are obtained using theMCMC method in Section 5. Applying the algorithm of
Balakrishnan and Sandhu [28]. to generate a progressive Type II censored sample from theEF distribution as following
steps:

(1).For given values of the prior parametersa1,b1,a2,b2 we generated random values forθ and α from the gamma
distribution whose density functions given by Equations (29) and (30).

(2).Using the results forθ andα from step (1), we generated a progressive Type II censored sample of sizem from the
EF distribution based on algorithm of Balakrishnan and Sandhu [28], using the inverse cdf,

xi =
{

ln
[
1− (1−Ui)

− 1
θ
]}− 1

α
, i = 1,2, ...,m.

(3).Compute the estimates as the following:
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Fig. 3: MCMC output ofα , θ , S(t) andH(t). Dashed lines ( ... ) represent the posterior means and soledlines (—) represent lower, and upper bounds 95%

probability interval.

(a) Usingx1,x2, ...,xm from step 2, the MLE ofθ andα, sayθ̂ML andα̂ML were computed by solving Equations (10)
and (11) numerically. Substituting thêθML andα̂ML into (3) and (4), we obtain the MLEs of the reliability and
hazard rate functions, saŷSML(t) andĤML(t) at somet.

(b) Using algorithms, given in Sections 4, We computed the bootstrap estimates and 95% credible intervals ofθ , α,
S(t) andH(t) based on 1000 bootstrap samples.

(c) We computed the Bayes estimates and 95% credible intervals of θ , α S(t) and H(t) according to the hybrid
algorithm discussed in Subsection 5.1, based on 10,000 MCMC samples, using Eqs. (38), (39) and (40).

(4).We repeated the previous steps 1,000 times, and computed the means and the MSEs for different censoring sizesm
and censoring schemes where

MSE=
1

1000

1000

∑
i=1

[
g
(

λ̂
)i
− g(λ0)

]2

andg(λ0) are true values and theg
(

λ̂
)i

are theith estimates ofg(λ0) evaluated at̂λ .
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Table 3:MLE and Bayes MCMC estimates under BSEL and BLINEX for Wu et al. [1].
parameters MLEs ω BSEL BLINEX

c =−1 c = 0.0001 c = 1
α 1.5525 0 1.5437 1.5492 1.5437 1.5382

0.3 1.5464 1.5502 1.5464 1.5425
0.9 1.5516 1.5522 1.5516 1.5510

θ 7.1899 0 7.1747 8.0616 7.1747 6.5312
0.3 7.1792 7.8698 7.1792 6.6876
0.9 7.1884 7.3201 7.1884 7.1007

S(t) 0.9734 0 0.9690 0.9691 0.9690 0.9688
0.3 0.9703 0.9704 0.9703 0.9702
0.9 0.9730 0.9730 0.9730 0.9730

H(t) 0.7082 0 0.7558 0.8042 0.7558 0.7138
0.3 0.7415 0.7764 0.7415 0.7121
0.9 0.7130 0.7182 0.7130 0.7088

Table 4.Average mean of the different estimators and the corresponding MSEs ofθ andα , whenω = 0

n m MLE Boot-p Boot-t MCMC
BSEL BLINEX

Scheme c =−4 c = 4
40 35 (5,340) θ 1.5372 1.5674 1.5229 1.4509 1.5849 1.3449

0.0864 0.0978 0.0886 0.0552 0.0789 0.0649
α 1.0260 1.0663 1.0459 1.0248 1.0532 0.9964

0.0169 0.0225 0.0192 0.0154 0.0192 0.0124
(170,5,170) θ 1.5502 1.5817 1.5376 1.4633 1.5950 1.3578

0.0750 0.0866 0.0765 0.0462 0.0687 0.0547
α 1.0321 1.0730 1.0533 1.0286 1.0553 0.9995

0.0195 0.0262 0.0222 0.0174 0.0214 0.0137
(340,5) θ 1.5236 1.5549 1.5109 1.4415 1.5683 1.3386

0.0824 0.0929 0.0850 0.0537 0.073 0.0647
α 1.0370 1.0793 1.0595 1.0329 1.0599 1.0032

0.0200 0.0270 0.0231 0.018 0.0220 0.0142
40 18 (22,170) θ 1.5878 1.6881 1.5895 1.4122 1.6449 1.2511

0.1614 0.2211 0.1702 0.0685 0.1322 0.1005
α 1.0317 1.0772 1.0529 1.0262 1.065 0.9897

0.021 0.0281 0.0237 0.0174 0.0241 0.0143
(90,22,80) θ 1.6403 1.7885 1.66 1.4338 1.6802 1.2673

0.2135 0.3432 0.2363 0.0689 0.1649 0.0925
α 1.0419 1.0956 1.0765 1.0115 1.0452 0.9779

0.0241 0.0339 0.0298 0.0179 0.0229 0.0157
(170,22) θ 1.6381 1.8171 1.6634 1.4202 1.6751 1.2528

0.2489 0.4435 0.2588 0.0744 0.1838 0.1005
α 1.0555 1.1205 1.0986 1.015 1.0526 0.9777

0.0264 0.0407 0.0266 0.0183 0.024 0.0157
50 45 (5,440) θ 1.5244 1.5458 1.5120 1.4587 1.5632 1.3713

0.0631 0.0695 0.0643 0.0442 0.0586 0.0509
α 1.0244 1.0560 1.0408 1.0236 1.0462 1.0010

0.0136 0.0175 0.0152 0.0125 0.0151 0.0102
(220,5,220) θ 1.5192 1.5415 1.5097 1.4548 1.5583 1.3694

0.0602 0.0661 0.0617 0.0429 0.0557 0.0501
α 1.0312 1.0631 1.0478 1.0291 1.0505 1.0061

0.0143 0.0185 0.0161 0.0132 0.0159 0.0108
(440,5) θ 1.5433 1.5671 1.5326 1.4747 1.5789 1.3873

0.0657 0.0731 0.0664 0.0444 0.0622 0.0482
α 1.0286 1.0605 1.0459 1.0264 1.0477 1.0037

0.0143 0.0184 0.0161 0.0132 0.0156 0.0109
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Table 5. Average mean of the different estimators and the corresponding MSEs of S(t) and H(t) whenω = 0.

n m MLE Boot-p Boot-t MCMC
BSEL BLINEX

Scheme c =−4 c = 4
40 35 (5,340) S(t) 0.1866 0.1827 0.1964 0.2097 0.2153 0.2043

0.0034 0.0033 0.0036 0.0031 0.0035 0.0029
H(t) 0.5135 0.5438 0.5173 0.4825 0.5003 0.4664

0.0128 0.0171 0.0139 0.0086 0.0102 0.0079
(170,5,170) S(t) 0.1807 0.1765 0.1896 0.205 0.2107 0.1995

0.0024 0.0024 0.0024 0.0021 0.0023 0.0019
H(t) 0.5188 0.5509 0.5246 0.4866 0.5053 0.4699

0.0094 0.0137 0.0103 0.0059 0.0073 0.0054
(340,5) S(t) 0.1866 0.182 0.1954 0.2099 0.2158 0.2044

0.0028 0.0027 0.003 0.0026 0.0030 0.0024
H(t) 0.5147 0.5475 0.521 0.4829 0.5013 0.4662

0.0134 0.0183 0.0147 0.0086 0.0104 0.0077
40 18 (22,170) S(t) 0.1817 0.1738 0.1975 0.2244 0.2353 0.2145

0.005 0.0046 0.005 0.0045 0.0055 0.0037
H(t) 0.5348 0.5955 0.5467 0.4721 0.5053 0.445

0.0264 0.0426 0.0302 0.0113 0.0156 0.0103
(90,22,80) S(t) 0.1734 0.1614 0.1839 0.2239 0.2362 0.2126

0.0062 0.0059 0.0057 0.0049 0.0061 0.0041
H(t) 0.5637 0.6573 0.597 0.4762 0.5188 0.443

0.0411 0.0804 0.0535 0.0127 0.0195 0.0112
(170,22) S(t) 0.1742 0.1662 0.1939 0.2274 0.2407 0.2153

0.0069 0.0227 0.0060 0.0053 0.0067 0.0044
H(t) 0.5732 0.6931 0.6171 0.4747 0.5249 0.4382

0.0528 0.1199 0.0623 0.0133 0.0229 0.0116
50 45 (5,440) S(t) 0.1865 0.1834 0.1938 0.2049 0.2094 0.2006

0.0021 0.0021 0.0022 0.002 0.0022 0.0018
H(t) 0.5073 0.5301 0.5102 0.4838 0.4975 0.4712

0.008) 0.0103 0.0085 0.0057 0.0065 0.0053
(220,5,220) S(t) 0.1859 0.1825 0.1923 0.2045 0.2089 0.2002

0.0020 0.0020 0.0021 0.0019 0.0021 0.0018
H(t) 0.5098 0.5337 0.5142 0.4857 0.5001 0.4726

0.0084 0.0108 0.0090 0.0059 0.0069 0.0055
(440,5) S(t) 0.1823 0.1789 0.1889 0.2013 0.2059 0.1971

0.0024 0.0024 0.0025 0.0021 0.0023 0.0020
H(t) 0.5174 0.5423 0.522 0.4917 0.5064 0.4781

0.0105 0.0137 0.0112 0.0072 0.0085 0.0064
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Table 6. Average mean of the different estimators and the corresponding MSEs ofθ andα

n m MCMC (ω = 0.3) MCMC (ω = 0.9)
BSEL BLINEX BSEL BLINEX

Scheme c =−4 c = 4 c =−4 c = 4
40 35 (5,340) θ 1.4768 1.5716 1.3866 1.5286 1.5425 1.5071

0.0622 0.0802 0.0596 0.0822 0.0852 0.0743
α 1.0248 1.0454 1.0047 1.0258 1.0289 1.0228

0.0154 0.0184 0.0134 0.0167 0.0171 0.0163
(170,5,170) θ 1.4893 1.5828 1.3998 1.5415 1.5552 1.5204

0.0526 0.0710 (0.0496) 0.0712 0.0742 0.0636
α 1.0286 1.0486 1.0087 1.0316 1.0345 1.0286

0.0174 0.0208 0.0149 0.0192 0.0196 0.0186
(340,5) θ 1.4661 1.5573 1.3791 1.5154 1.5288 1.4949

0.0601 0.0755 0.0589 0.0786 0.0811 0.0708
α 1.0329 1.0532 1.0127 1.0364 1.0394 1.0333

0.0180 0.0214 0.0154 0.0197 0.0202 0.0192
40 18 (22,170) θ 1.4649 1.6329 1.308 1.5703 1.5952 1.5084

0.0853 0.1422 0.0823 0.1473 0.1581 0.097
α 1.0278 1.0554 1.0013 1.0311 1.0352 1.027

0.0184 0.0229 0.0156 0.0206 0.0212 0.0199
(90,22,80) θ 1.4957 1.6735 1.3262 1.6196 1.6459 1.5404

0.0955 0.1853 0.0758 0.1918 0.2095 0.1043
α 1.0206 1.0444 0.9952 1.0389 1.0423 1.0346

0.0195 0.0232 0.0167 0.0234 0.024 0.0224
(170,22) θ 1.4856 1.6713 1.3114 1.6163 1.6439 1.5274

0.1056 0.2137 0.0828 0.2224 0.2441 0.1105
α 1.0272 1.0538 0.9982 1.0515 1.0554 1.0463

0.0202 0.0247 0.0169 0.0253 0.0261 0.0242
50 45 (5,440) θ 1.4784 1.5527 1.4071 1.5178 1.5287 1.5029

0.0486 0.0592 0.0474 0.0606 0.0624 0.0565
α 1.0236 1.0398 1.0077 1.0243 1.0266 1.0219

0.0125 0.0145 0.0109 0.0134 0.0137 0.0131
(220,5,220) θ 1.4741 1.5465 1.4045 1.5127 1.5233 1.4983

0.0468 0.0564 0.0463 0.0579 0.0595 0.0542
α 1.0291 1.0451 1.0133 1.0309 1.0332 1.0285

0.0132 0.0154 0.0116 0.0141 0.0144 0.0138
(440,5) θ 1.4953 1.5695 1.4236 1.5364 1.5472 1.5213

0.0494 0.0626 0.0458 0.063 0.0651 0.0584
α 1.0264 1.0421 1.0109 1.0283 1.0306 1.026

0.0132 0.0152 0.0116 0.0141 0.0144 0.0139
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Table 7. Average mean of the different estimators and the corresponding MSEs ofS(t) andH(t)

n m MCMC (ω = 0.3) MCMC (ω = 0.9)
BSEL BLINEX BSEL BLINEX

Scheme c =−4 c = 4 c =−4 c = 4
40 35 (5,340) S(t) 0.2027 0.2071 0.1988 0.1889 0.1896 0.1883

0.0031 0.0033 0.0029 0.0033 0.0034 0.0033
H(t) 0.4918 0.5045 0.4794 0.5104 0.5122 0.5082

0.0096 0.0110 0.0086 0.0123 0.0126 0.0120
(170,5,170) S(t) 0.1977 0.2021 0.1937 0.1832 0.1839 0.1826

0.0020 0.0022 0.0019 0.0023 0.0024 0.0023
H(t) 0.4963 0.5095 0.4834 0.5156 0.5175 0.5134

0.0067 0.0079 0.0059 0.0090 0.0092 0.0087
(340,5) S(t) 0.2029 0.2073 0.1989 0.1889 0.1896 0.1883

0.0026 0.0028 0.0024 0.0027 0.0028 0.0027
H(t) 0.4924 0.5056 0.4795 0.5115 0.5134 0.5092

0.0097 0.0113 0.0085 0.0128 0.0131 0.0123
40 18 (22,170) S(t) 0.2116 0.2205 0.2041 0.186 0.1876 0.1847

0.0042 0.0047 0.0038 0.0047 0.0047 0.0047
H(t) 0.4909 0.5151 0.4673 0.5285 0.5322 0.5229

0.0143 0.0189 0.0112 0.0242 0.0253 0.0216
(90,22,80) S(t) 0.2087 0.2191 0.2001 0.1785 0.1805 0.177

0.0047 0.0052 0.0044 0.0058 0.0057 0.0059
H(t) 0.5025 0.5351 0.4709 0.555 0.5601 0.5456

0.0182 0.0269 0.0126 0.0369 0.0392 0.0312
(170,22) S(t) 0.2114 0.2227 0.202 0.1795 0.1818 0.1779

0.0051 0.0057 0.0048 0.0064 0.0063 0.0065
H(t) 0.5043 0.5432 0.4678 0.5634 0.5695 0.5505

0.0206 0.0343 0.0131 0.0469 0.0504 0.0358
50 45 (5,440) S(t) 0.1993 0.2027 0.1963 0.1883 0.1888 0.1878

0.0020 0.0021 0.0019 0.0021 0.0022 0.0021
H(t) 0.4909 0.5005 0.4814 0.505 0.5064 0.5034

0.0062 0.0070 0.0057 0.0077 0.0079 0.0075
(220,5,220) S(t) 0.1989 0.2023 0.1958 0.1877 0.1883 0.1873

0.0019 0.002 0.0018 0.0022 0.0023 0.0021
H(t) 0.4930 0.5030 0.4831 0.5074 0.5088 0.5057

0.0065 0.0073 0.0059 0.0080 0.0082 0.0078
(440,5) S(t) 0.1956 0.199 0.1925 0.1842 0.1847 0.1837

0.0021 0.0022 0.0021 0.0024 0.0025 0.0024
H(t) 0.4994 0.5099 0.4891 0.5148 0.5163 0.5131

0.0080 0.0091 0.0071 0.0101 0.0103 0.0098
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Table 8. Expected width and coverage probabilities of the 95% ?confidence intervals forθ , α , S(t) and
H(t) based on different methods, whenω = 0 andt = 2.5.

n m Scheme MLE Boot-p Boot-t MCMC

40 35 (5,340) θ 1.0659(0.950) 1.1491(0.930) 1.1144(0.940) 0.9421(0.955)
α 0.4811(0.965) 0.5403(0.930) 0.4774(0.955) 0.4612(0.970)

S(t) 0.2043(0.900) 0.2005(0.905) 0.2432(0.950) 0.2038(0.930)
H(t) 0.3865(0.925) 0.4341(0.905) 0.4220(0.940) 0.3518(0.925)

(170,5,170) θ 1.0584(0.950) 1.1380(0.940) 1.1069(0.935) 0.9390(0.955)
α 0.4738(0.950) 0.5355(0.890) 0.4720(0.935) 0.4566(0.965)

S(t) 0.2055(0.915) 0.2004(0.930) 0.2406(0.965) 0.2054(0.970)
H(t) 0.3979(0.955) 0.4488(0.945) 0.4298(0.970) 0.3616(0.960)

(340,5) θ 1.0424(0.945) 1.1332(0.935) 1.0946(0.930) 0.9258(0.960)
α 0.4788(0.925) 0.5419(0.870) 0.4751(0.915) 0.4602(0.930)

S(t) 0.2071(0.915) 0.2034(0.925) 0.2437(0.955) 0.9258(0.960)
H(t) 0.3950(0.945) 0.4495(0.915) 0.4296(0.965) 0.4602(0.930)

40 18 (22,170) θ 1.4923(0.96) 1.7279(0.94) 1.5329(0.95) 1.1891(0.972)
α 0.5512(0.966) 0.6127(0.94) 0.5473(0.966) 0.5305(0.966)

S(t) 0.2794(0.906) 0.2636(0.926) 0.3567(0.974) 0.279(0.97)
H(t) 0.5584(0.962) 0.694(0.918) 0.6207(0.972) 0.4626(0.962)

(90,22,80) θ 1.5481(0.952) 1.9433(0.908) 1.5554(0.944) 1.2083(0.958)
α 0.5185(0.938) 0.5954(0.90) 0.5281(0.934) 0.5019(0.948)

S(t) 0.2936(0.904) 0.2699(0.906) 0.3537(0.966) 0.2961(0.96)
H(t) 0.6662(0.956) 0.9036(0.894) 0.7214(0.968) 0.5148(0.954)

(170,22) θ 1.5911(0.94) 2.1339(0.902) 1.5669(0.934) 1.2131(0.944)
α 0.5561(0.938) 0.6455(0.903) 0.5643(0.912) 0.5299(0.966)

S(t) 0.3062(0.902) 0.279(0.892) 0.3654(0.972) 0.3072(0.952)
H(t) 0.7325(0.956) 1.0834(0.896) 0.7808(0.978) 0.5428(0.956)

50 45 (5,440) θ 0.9341(0.925) 0.9884(0.925) 0.9708(0.920) 0.8480(0.955)
α 0.4256(0.950) 0.4689(0.910) 0.4232(0.955) 0.4116(0.955)

S(t) 0.1820(0.945) 0.1790(0.940) 0.2088(0.965) 0.1814(0.965)
H(t) 0.3361(0.940) 0.3673(0.940) 0.3602(0.965) 0.3128(0.940)

(220,5,220) θ 0.9201(0.960) 0.9784(0.935) 0.9515(0.950) 0.8380(0.980)
α 0.4230(0.950) 0.4659(0.900) 0.4201(0.930) 0.4100(0.955)

S(t) 0.1832(0.945) 0.1806(0.945) 0.2056(0.985) 0.1827(0.975)
H(t) 0.3428(0.980) 0.3761(0.920) 0.3639(0.980) 0.3189(0.975)

(440,5) θ 0.9326(0.950) 0.9921(0.925) 0.9686(0.935) 0.8480(0.970)
α 0.4195(0.945) 0.4600(0.890) 0.4164(0.930) 0.4064(0.945)

S(t) 0.1813(0.915) 0.1784(0.915) 0.2048(0.965) 0.1813(0.960)
H(t) 0.3489(0.960) 0.3847(0.895) 0.3711(0.960) 0.3236(0.955)

Note: The number outside the bracket is the expected width and the number in the bracket is the coverage probability.
Our computational results for the means and MSE are computedin the above steps for the case of unknownθ andα,
where the values of the hyperparameters used are(a1,b1) = (4,4) and (a2,b2) = (4,4) yielding θ = 1.4985 and
α = 0.9864 (as true values). Also we computed the true values ofS(t) andH(t) asS(t) = 0.1893 andH(t) = 0.48798 at
t = 2.5. We computed the Bayes estimates and 95% credible intervals based on 11000 MCMC samples and discard the
first 1000 values as ‘burn-in’. In addition, for the case of balanced loss functions, three different choices such as
0,0.3,0.9 for ω are taken into consideration. For the case of BLINEX loss functions, two different choices such as−4, 4
for c. The MSE values of all estimators are evaluated using Monte Carlo simulations based on 1000 generations of
sample of sizem (m = 35,18,45) from a sample of sizen (n = 40, 50) and different censoring schemesRi. We will
denote, for example, the scheme: (n = 25, m = 5, Ri =(0,0,0,0,20)), by (40,20). Tables 4, 5, 6 and 7 display the
estimated average mean of MLE, Boot-p, Boot-t and the Bayes estimates relative to BSEL and BLINEX loss functions
of the parametersθ , α, S(t) andH(t) and its corresponding MSEs for different censoring schemes. From these tables,
comparing the MLE, and approximate Bayes estimators, we observe that Bayes estimators provides the smallest MSE’s.
Thus, the Bayes estimates relative to BSEL and BLINEX loss functions are better than their corresponding ML
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estimates, for most cases ofn and m. Also, when the effective sample sizes (n,m) are increase the MSEs of the all
estimates based on Type-II censored data are decrease. Furthermore; we computed the 95% C.I.’s forθ , α, S(t) andH(t)
based on the asymptotic distributions of the MLE. We furthercompute Boot-p, and Boot-t C.I.’s, and the HPD credible
intervals (MCMC intervals). In Table 8, we presented the average confidence credible lengths, and the corresponding
coverage percentages. The nominal level for the C.I.’s or the credible intervals is 0.95 in each case. From these tables, we
observe that the coverage probabilities of the asymptotic confidence intervals, delta method, bootstrap confidence
intervals and credible intervals based on MCMC forθ , α, S(t) andH(t) are close to the desired level of 0.95. We also
observe that the HPD intervals provide the smallest averageconfidence credible lengths for different censoring schemes.
It is clear from the Tables 4− 8, whenω goes to one all results of Bayes estimates under both BSEL andBLINEX
functions forα, θ , S(t) andH(t) are equal to corresponding MLEs. From Tables 4−7, we observe that when the value
of the shape parameter (c) of LINEX loss function increase the MSEs of the Bayes estimates using the BLINEX loss
function are decrease.

8 Conclusions

Based on progressively censored samples, this paper considers estimation of unknown parametersθ andα as well as
reliability and hazard functions of an exponentiated Fréchet distribution. We proposed MLEs and Bayes estimators for
these unknown parameters. Bayes estimates are computed under different loss functions such as balanced squared error
and balanced LINEX. The Bayes estimate ofθ andα, and the corresponding credible interval can be obtained using
the Gibbs sampling with Metropolis–Hastings technique. Wehave compared the MLEs and different Bayes estimators
in terms of the MSEs for different censoring schemes. We havealso compared the confidence intervals obtained using
asymptotic distribution of the MLEs, bootstrap methods andcredible intervals obtained from the posterior distribution
function. We found that Bayes estimates are superior than the corresponding MLEs.
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