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1 Introduction

Throughoutw,χ andΛ denote the classes of all, gai
and analytic scalar valued single sequences, respectively.
We write w3 for the set of all complex triple sequences
(xmnk), wherem,n,k ∈N, the set of positive integers.Then,
w3 is a linear space under the coordinate wise addition and
scalar multiplication.

Let (xmnk) be a triple sequence of real or complex
numbers. Then the series∑∞

m,n,k=1 xmnk is called a triple
series. The triple series∑∞

m,n,k=1 xmnk is said to be
convergent if and only if the triple sequence(Smnk) is
convergent, where

Smnk =
m,n,k

∑
i, j,q=1

xi jq (m,n,k = 1,2,3, ...).

A sequencex = (xmnk) is said to be triple analytic if

sup
m,n,k

|xmnk|
1

m+n+k < ∞.

The vector space of all triple analytic sequences are
usually denoted byΛ3. A sequencex = (xmnk) is called
triple entire sequence if

|xmnk|
1

m+n+k → 0 asm,n,k → ∞.

The vector space of all triple entire sequences are
usually denoted byΓ 3. The spaceΛ3 andΓ 3 is a metric

space with the metric

d(x,y)= sup
m,n,k

{

|xmnk − ymnk|
1

m+n+k : m,n,k :1,2,3, ...
}

, (1)

for all x = {xmnk}andy = {ymnk} inΓ 3. Let
φ = {finite sequences} .

Consider a triple sequencex = (xmnk). The (m,n,k)th

section x[m,n,k] of the sequence is defined by
x[m,n,k] = ∑m,n,k

i, j,q=0xi jqδi jq for all m,n,k ∈N,

δmnk =























0 0 ...0 0 ...
0 0 ...0 0 ...
.
.
.
0 0 ...1 0 ...
0 0 ...0 0 ...























with 1 in the(m,n,k)th position and zero otherwise.
A sequencex = (xmnk) is called triple gai sequence if

((m+ n+ k)! |xmnk|)
1

m+n+k → 0 asm,n,k → ∞. The triple
gai sequences will be denoted byχ3.

Consider a triple sequencex = (xmnk). The (m,n,k)th

section x[m,n,k] of the sequence is defined by
x[m,n,k] = ∑m,n,k

i, j,q=0xi jqℑi jq for all m,n,k ∈ N ; whereℑi jq

denotes the triple sequence whose only non zero term is a
1

(i+ j+k)! in the(i, j,k)th place for eachi, j,k ∈ N.
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An FK-space(or a metric space)X is said to have AK
property if (ℑmnk) is a Schauder basis forX , or
equivalentlyx[m,n,k] → x.

An FDK-space is a triple sequence space endowed
with a complete metrizable; locally convex topology
under which the coordinate mappings are continuous.

If X is a sequence space, we give the following
definitions:
(i) X

′
is continuous dual ofX ;

(ii) Xα =
{

a = (amnk) :
∞
∑

m,n,k=1
|amnkxmnk|< ∞, for each x ∈ X

}

;

(iii) Xβ =
{

a=(amnk):
∞
∑

m,n,k=1
amnkxmnk is convergent, for eachx∈X

}

;

(iv) X γ =
{

a=(amn) : sup
m,n≥1

∣

∣

∣

∣

∣

M,N,K
∑

m,n,k=1
amnkxmnk

∣

∣

∣

∣

∣

< ∞, for eachx ∈ X

}

;

(v) LetX be anFK-space⊃ φ ; then

X f =
{

f (ℑmnk) : f ∈X
′
}

;

(vi) Xδ =
{

a=(amnk) : sup
m,n,k

|amnkxmnk|
1/m+n+k<∞, for eachx ∈ X

}

;

Xα , Xβ , X γ are calledα− (or Köthe-Toeplitz) dual of
X ,β−(or generalized-Köthe-Toeplitz) dual ofX ,γ−dual
of X , δ −dual of X respectively.Xα is defined by Gupta
and Kamptan [10]. It is clear thatXα ⊂ Xβ andXα ⊂ X γ ,
butXα ⊂ X γ does not hold.

2 Definitions and Preliminaries

A sequencex = (xmnk) is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k < ∞. The vector space of all triple
analytic sequences is usually denoted byΛ3. A sequence
x = (xmnk) is called triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n,k → ∞. The vector space of
triple entire sequences is usually denoted byΓ 3. A
sequencex = (xmnk) is called triple gai sequence if

((m+ n+ k)! |xmnk| )
1

m+n+k → 0 asm,n,k → ∞. The vector
space of triple gai sequences is usually denoted byχ3.
The spaceχ3 is a metric space with the metric

d(x,y) = sup
m,n,k

{

((m+ n+ k)! |xmnk − ymnk|)
1

m+n+k :

m,n,k : 1,2,3, ...
}

(2)

for all x = {xmnk} and y = {ymnk} in χ3.
Let p,q be semi norms on a vector spaceX . Thenp is

said to be stronger thatq if whenever(xmnk) is a sequence
such thatp(xmnk) → 0, then alsoq(xmnk) → 0. If each is

stronger than the others, thenp and q are said to be
equivalent.

A sequence spaceE is said to be solid or normal if
(αmnkxmnk)∈ E whenever(xmnk)∈ E and for all sequences
of scalars(αmnk) with |αmnk| ≤ 1, for all m,n,k ∈ N.

A sequence spaceE is said to be monotone if it
contains the canonical pre-images of all its step spaces.

A sequenceE is said to be convergence free if(ymnk)∈
E whenever(xmnk)∈ E andxmnk = 0 implies thatymnk = 0.

Let p = (pmnk) be a sequence of positive real numbers
with 0< pmnk < suppmnk = G and LetD = max(1,2G−1).
Then foramnk,bmnk ∈ C, the set of complex numbers for
all m,n,k ∈ N we have

|amnk + bmnk|
pmnk ≤ D{|amnk|

pmnk + |bmnk|
pmnk} , (3)

whereD = max
(

1,2H−1
)

,H = supm,n,k pmnk

By S (X) we denote the linear space of all sequences
x = (xmnk) with (xmnk) ∈ X and the usual coordinate wise
operations:αx = (αxmnk) andx+ y = (xmnk + ymnk) , for
eachα ∈ C. If λ = (λmnk) is a scalar sequence andx ∈
S (X) then we shall writeλ x = (λmnkxmnk)

Let U be the set of all sequencesu = (umnk) such that
umnk 6= 0 and complex for allm,n,k = 1,2,3, · · · .

Following Ruckle [11] and Maddox [12] we recall
that a functionf : [0,∞) → [0,∞) such that modulusf is
(i) f (x) = 0 if and only if x = 0, (ii)
f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0, (iii) f is
increasing, (iv) f is continuous from the right of 0. It
follows from (ii) and (iv) f must be continuous
everywhere on [0,∞) . For a sequence of moduli
f = ( fmnk) we give the following conditions: (v)
supm,n,k fmnk (t) < ∞ for all t ≥ 0, (vi) lim t→0 fmnk (t) = 0
uniformly in m,n,k ≥ 1. We remark that in case
fmnk = f (m,n,k ≥ 1) , where f is a modulus function, the
conditions (v) and (vi) are automatically fulfilled.

Let (X ,q) be a semi normed space over the fieldC of
complex numbers with the semi normq. The symbol
χ3

f (X) denotes the spaces of all triple gai sequences
defined overX . We define the following sequence space:

χ3
f (p,q,u) =

{

x ∈ S (X) :

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]pmnk
→ 0

asm,n,k → ∞
}

We get the following sequence spaces fromχ2
f (p,q,u)

on giving particular values top andu. Takingpmnk = 1 for
all m,n,k ∈ N we have

χ3
f (q,u) =

{

x ∈ S (X) :

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]

→ 0

asm,n,k → ∞
}
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If we takeumnk = 1, then we have

χ3
f (p,q) =

{

x ∈ S (X) :
[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]pmnk
→ 0

asm,n,k → ∞
}

If we take pmnk = 1 andumnk = 1 for all m,n,k ∈ N,
then we have

χ3
f (q) =

{

x ∈ S (X) :
[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]

→ 0

asm,n,k → ∞
}

In addition to the above sequence spaces, we have
χ3

f (p,q,u) = χ3
f (p), on taking umnk = 1 for all

m,n,k ∈ N, q(x) = |x| ,( fmnk) = f for all m,n,k ∈ N and
X = C. In this chapter we introduce the sequence spaces
χ3

f (p,q,u), using an modulus functionf and defined over
a semi normed space(X ,q), semi normed byq. We study
some properties of these sequence spaces and obtain
some inclusion relations.

Lemma 2.1.Let p andq be semi norms on a linear space
X . Then p is stronger thanq if and only if there exists a
constantM such thatq(x)≤ Mp(x) for all x ∈ X .

Remark 2.2.From the two above definitions it is clear that
a sequence spaceE is solid implies thatE is monotone.

3 Main Results

Theorem 3.1.If f = ( fmnk) be a sequence of moduli, then
χ3

f (p,q,u) are linear spaces over the set of complex
numbers.

Proof: It is routine verification. Therefore the proof is
omitted.

Theorem 3.2.χ3
f (p,q,u) are paranormed spaces with the

paranormg defined by

g(x)= sup
m,n,k

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]

.

Proof: Clearly g(x) = g(−x) and g(θ ) = 0, whereθ is
the zero sequence. It can be easily verified thatg(x+ y)≤
g(x)+g(y). Nextx → θ ,λ fixed impliesg(λ x)→ 0. Also
x → θ andλ → 0 impliesg(λ x)→ 0. The caseλ → 0 and
x fixed implies thatg(λ x)→ 0 follows from the following
expressions.

g(λ x) =

sup
m,n,k

umnk

[

fmnk

(

q
(

((m+ n+ k)! |λmnkxmnk|)
1/m+n+k

))]

.

g(λ x) =
{

|λ |1/m+n+k :

sup
m,n,k

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]

}

.

Hence χ3
f (p,q,u) is a paranormed space. This

completes the proof.
Theorem 3.3.Let f = ( fmnk) and T = (Tmnk) be a two
sequence of moduli. Then

χ3
f (p,q,u)

⋂

χ3
T (p,q,u)⊆ χ3

f+T (p,q,u)

Proof:The proof is easy, so omitted.
Remark 3.4.Let f = ( fmnk) be a sequence of moduliq1
andq2 be two semi norms onX , we have

(i) χ3
f (p,q1,u)

⋂

χ3
f (p,q2,u)⊆ χ3

f (p,q1+ q2,u)
(ii) If q1 is stronger than q2 then

χ3
f (p,q1,u)⊆ χ3

f (p,q2,u)
(iii) If q1 is equivalent to q2 then

χ3
f (p,q1,u) = Γ 3

f (p,q2,u)

Theorem 3.5. (i) Let 0 ≤ pmnk ≤ rmnk and
{

rmnk
pmnk

}

be

bounded. Thenχ3
f (r,q,u)⊂ χ3

f (p,q,u)

(ii) u1 ≤ u2 impliesχ3
f (p,q,u1)⊂ χ3

f (p,q,u2)

Proof: Let
x ∈ χ3

f (r,q,u) (4)

umnk

[

fmnk

(

q
(

((m+n+k)! |xmnk|)
1/m+n+k

))]rmnk
→0

as m,n,k → ∞ (5)

Let
tmnk = umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]rmnk

and λmnk = pmnk
rmnk

. Since pmnk ≤ rmnk, we have
0≤ λmnk ≤ 1. Take 0< λ < λmnk.

Defineumnk = tmnk(tmnk ≥ 1);umnk = 0(tmnk < 1); and
vmnk = 0(tmnk ≥ 1);vmnk = tmnk(tmnk < 1); tmnk = umnk +

vmnk; tλmnk
mnk + vλmnk

mnk . Now it follows that

uλmnk
mnk ≤ tmnk and vλmnk

mnk ≤ vλ
mnk (6)

i.e tλmnk
mnk = uλmnk

mnk + vλmnk
mnk ; tλmnk

mnk ≤ tmnk + vλ
mnk by (6)

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))rmnk
]λmnk

≤ umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]rmnk

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))rmnk
]pmnk/rmnk

≤ umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]rmnk
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umnk

[

fmn

(

q

(

((m+ n)! |xmn|)
1/m+n+k

ρ

))]pmnk

≤ umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]rmnk

But

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]rmnk
→ 0

as m,n,k → ∞.

By (5), we have

umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]pmnk
→ 0

as m,n,k → ∞.

Hence
x ∈ χ3

f (p,q,u) (7)

From (4) and (7) we getχ3
f (r,q,u) ⊂ χ3

f (p,q,u). This
completes the proof.
Proof (ii): The proof is easy, so omitted.
Theorem 3.6. The spaceχ3

f (p,q,u) is solid, hence is
monotone.
Proof: Let (xmnk) ∈ χ3

fmnk
(p,q,u) and (αmnk) be a

sequence of scalars such that|αmnk|
1/m+n+k ≤ 1 for all

m,n,k ∈N. Then

umnk

[

fmnk

(

q
(

((m+ n+ k)! |αmnkxmnk|)
1/m+n+k

))]pmnk

≤ umnk

[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]pmnk

for all m,n,k ∈ N

[

fmnk

(

q
(

((m+ n+ k)! |αmnkxmnk|)
1/m+n+k

))]pmnk

≤
[

fmnk

(

q
(

((m+ n+ k)! |xmnk|)
1/m+n+k

))]pmnk

for all m,n,k ∈ N.

This completes the proof.
Result 3.7.The spaceχ3

f (p,q,u) are not convergence free
in general.
Proof: The proof follows from the following example.
Example. Consider the sequences
(xmnk) ,(ymnk) ∈ χ3

f (p,q,u). Defined as

(xmnk) = 1
(m+n+k)!

(

1
m+n+k

)m+n+k
and

(ymnk) = 1
(m+n+k)!

(

m−n−k
m+n+k

)m+n+k
. Hence

umnk

[

fmnk

(

q
(

1
(m+n+k)

))]pmnk
→ 0 as m,n,k → ∞.

Which implies (xmnk) = 0. Also

umnk

[

fmnk

(

q
(

m−n−k
(m+n+k)

))]pmnk
→ 0 as m,n,k → ∞. But

(ymnk) 6→ 0. Hence the spaceχ3
f (p,q,u) are not

convergence free in general. This completes the proof.
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