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1 Introduction

The theory of homology was given by Poincaré [16] and
many different homology theories (e.g. simplicial
homology, singular homology,̌Cech homology, etc.) were
developped by many mathematicians (e.g. Alexander,
Čech, Eilenberg, Vietoris, etc.). Eilenberg and Steenrod
[8] formally defined the features of homology theory by
giving a set of certain axioms which a homology theory
should satisfy. Simplicial homology was defined for the
simplicial complexes and the homology groups depend
only on the geometric realization of the simplicial
complex.

Arslan et al. [2] introduce the digital simplicial
homology groups ofn-dimensional digital images. In the
work of [6] the concept of the simplicial homology
groups of digital images and the earlier definiton of Euler
characteristics of digital images have been expanded and
some certain minimal simple closed surfaces have been
studied to compute their simplicial homology groups. In
addition to those works, Karaca and Ege [7] investigate
the Eilenberg-Steenrod axioms for the simplicial
homology groups of digital images. They state the
universal coefficient theorem for digital images and
conclude that the Künneth formula for the simplicial
homology doesn’t hold and the Hurewicz theorem need
not be hold in digital images.

For each dimensionn, the singular homology counts
the n-dimensional holes of a space. The resulting
homology groups are the same for all homotopically
equivalent spaces. The construction of the singular
homology can be applied to all topological spaces and is
preserved by the continuous functions. Thus, according to
the category theory, homology group becomes a functor
from the category of topological spaces to the category of
graded abelian groups.

In this paper we define the digital standard
n-simplexes and introduce the digital singular homology
groups in digital spaces topologized by the Khalimsky
topology. Then we’ll compute the digital singular
homology groups of some basic digital spaces up to the
dimension 2 and investigate that the digital singular
homology theory in digital spaces is a functor from the
category KDTC of KD-topological category to the
category Ab of abelian groups.

2 Preliminaries

Let Z be the set of integers andX ⊂ Z
m for some positive

integerm. Let κ indicates some adjacency relation for the
members ofX. The generalization of the adjacency is as
follows [5]. Let l ,m be positive integers, 1≤ l ≤ m and
two distinct pointsp = (p1, . . . , pm) andq = (q1, . . . ,qm)
in Z

m, p and q are kl -adjacent if there are at mostl
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distinct coordinatesj for which |p j −q j | = 1, and for all
other coordinatesj, p j = q j . That is, two pointsp andq
in Z are 2-adjacent ifq= p±1. Two pointsp andq in Z

2

are 8-adjacent if they are distinct and differ by at most 1
in each coordinate; they are 4-adjacent if they are
8-adjacent and differ in exactly one coordinate. Two
points p and q in Z

3 are 26-adjacent if they are distinct
and differ by at most 1 in each coordinate; they are
18-adjacent if they are 26-adjacent and differ in at most
two coordinates; they are 6-adjacent if they are
18-adjacent and differ in exactly one coordinate. We call
the pair(X,κ) as adigital image.

Let κ be an adjacency relation defined onZ
m andp be

a point inZm. Then the point inZm which isκ-adjacent to
p is called aκ-neighborof p [11]. Let (X,κ) be a digital
image inZm. ThenX is κ-connected[14] if and only if
for every pair of different pointsp andq in X, there is a
sequence{p0, p1, . . . , ps} of points of X such that
p = p0, q = ps and pi and pi+1 are κ-adjacent where
i ∈ {0,1, . . . ,s−1} [11]. In this case, we call the sequence
asκ-path between the pointsp andq in X. Let ℓκ(p,q)
denote the length of a shortestκ-path betweenp andq. If
there is noκ-path between the pointsp and q, take
ℓκ(p,q) = ∞. Then, let

Nκ(p,ε) := {q∈ X : ℓκ(p,q)≤ ε}∪{p}

whereε ∈ N [9].

For eachm∈ Z, define the sets

B(m) =

{
{m}, if m is odd
{m−1,m,m+1}, if m is even.

Fig. 1: The illustration ofB(m)

Then the collection

B = {B(n) : n∈ Z}

is a basis for a topology onZ and the topology generated
by this basis is called Khalimsky digital line topology
[12]. Note that the product topology onZm for m> 1 is
the topology generated by the basis

B = {
m

∏
i=1

B(ni) : eachB(ni) is a basis inZ}.

Let (X,κ) be a digital image inZm. Then X has the
subspace topology inherited fromZm where the basis of

the subspace topology is

B = {X∩
m

∏
i=1

B(ni) : eachB(ni) is a basis inZ}.

We will denote such spaces by(Xm,κ ,τX).

If (Xm1,κ1,τX) is a space andx is a point in(Xm,κ ,τX),
then a neighbourhood ofx is a subsetOx of X that
includes an open setU containingx. Let (Xm1,κ1,τX) and
(Ym2,κ2,τY) be spaces and let

f : (Xm1,κ1,τX)→ (Ym2,κ2,τY)

be a function. Then we say thatf is continuous at x[10],
if for all open subsetsOf (x) of Y containing f (x), the
preimage of the open setOf (x) is an open subset ofX
containingx.

Definition 2.1. [10] Let f : (Xm1,κ1,τX) → (Ym2,κ2,τY) be
a function. If

1. f is continuous atx and
2. for anyNκ2( f (x),ε) ⊂Y, there isNκ1(x,δ ) ⊂ X such

that f (Nκ1(x,δ ))⊂ Nκ2( f (x),ε), whereε,δ ∈ N,

then we say thatf is KD-(κ1,κ2) continuous function at
x ∈ X. Moreover if f is KD-(κ1,κ2) continuous at any
point in X, the we callf as aKD-(κ1,κ2) continuous.

A KD-(κ1,κ2)-continuous bijective function is
KD-(κ1,κ2)-isomorphism [10], if the inverse of f is
KD-(κ2,κ1)-continuous.

Let S be a set of nonempty subsets of a digital image
(X,κ). We call the memberss of S as thesimplicesof
(X,κ) [18] if the following two statements hold:

1. if p andq are two distinct points ofS, then they are
κ-adjacent,

2. if s∈ Sand /06= t ⊂ s, thent ∈ S.

If the number of elements ofS is n+ 1, then S is
called ann-simplex.

Let (K,κ) be a finite collection of digitaln-simplices
ranging over 0≤ n≤ d for some integerd. Then(K,κ) is
calleda finite digital simplicial complex[2] if

i) Sbelongs toK, then every face ofSalso belongs toK,
ii) S andP in K, thenS∩P is either empty or a common

face ofSandP.

The dimension ofK is the biggest integern such thatK
has ann-simplex.

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 2, 131-140 (2015) /www.naturalspublishing.com/Journals.asp 133

3 Digital Singular Homology Groups

Forn≥ 0 let e0 = (0, ...,0) and for 1< i ≤ n, let

ei = (i1, i2, ..., in)

be the point inZn where components ofei are defined by

im =

{
1, if m≤ i
0, if m> i.

For example inZ2,

e0 = (0,0), e1 = (1,0), e2 = (1,1)

and inZ3,

e0 =(0,0,0), e1=(1,0,0), e2 =(1,1,0), e3=(1,1,1).

We denote the digital standardn-simplex by

∆n = [e0,e1, ...,en].

Example 3.1.

• Forn= 0, the Khalimsky topology on∆0 = [e0] is

τ∆ 0 = { /0,∆0}.

• Forn= 1, the Khalimsky topology on∆1 = [e0,e1] is

τ∆ 1 = { /0,∆1,{e1}}.

• Forn= 2, the Khalimksy topology on∆2 = [e0,e1,e2] is

τ∆ 2 = { /0,∆2,{e2},{e1,e2}}.

• Forn= 3, the Khalimsky topology on∆3 = [e0,e1,e2,e3]
is

τ∆ 3 = { /0,∆3,{e3},{e2,e3},{e1,e2,e3}}.

Fig. 2: ∆ 0, ∆ 1, ∆ 2 and∆ 3

We give a linear ordering of its vertices, called
orientation. In that case, let

e0 < e1 < ... < en

be the orientation of∆n = [e0,e1, ...,en]. Under this
orientation, the induced orientation of its faces defined by
orienting the ith face in the sense

(−1)i [e0, ..., êi , ...,en]

whereêi means that it is deleted and−[e0, ..., êi , ...,en] is
the ith face with orientation opposite to the one with the
vertices ordered ase0 < e1 < ... < en. Then the boundary
of ∆n is

∪n
i=1[e0, ..., êi , ...,en]

and the oriented boundary of∆n is

∪n
i=1(−1)i[e0, ..., êi , ...,en].

Definition 3.2.Let (Xm,κ ,τX) be a digital space. Adigital
singular n-simplexin X is a KD-(3n − 1,κ)-continuous
map

σn : ∆n → X.

Forn≥ 0, letSn(X) denote the free abelian group with
basis of all digital singularn-simplexes in a digital space
X and define

S−1(X) = 0.

The elements ofSn(X) are calledthe digital singular
n-chainsin X.

Let εi := εn
i : ∆n−1 → ∆n to be a map taking the

vertices{e0,e1, ...,en−1} to the vertices{e0, ..., êi , ...,en}
and preserving the orderings.

Note that the superscriptn indicates that the target of
εn

i is ∆n. We callεi asith face map.

For instance, there are 4 face maps

ε3
i : ∆2 → ∆3,

such that

• ε0 : [e0,e1,e2] 7→ [e1,e2,e3]
• ε1 : [e0,e1,e2] 7→ [e0,e2,e3]
• ε2 : [e0,e1,e2] 7→ [e0,e1,e3]
• ε3 : [e0,e1,e2] 7→ [e0,e1,e2].

Definition 3.3. Let (Xm,κ ,τX) be a space. Ifσn : ∆n → X
is a singular digitaln-simplex, then its boundary is

∂n(σn) =
n

∑
j=0

(−1) jσnεn
j ∈ Sn−1(X)

and if n= 0, define

∂0(σn) = 0.

By the linearity of∂n, note that for eachn≥ 0, there is
a unique homomorphism

∂n : Sn → Sn−1(X)

with

∂n(σn) =
n

∑
j=0

(−1) jσnεn
j

for every singular digitaln-simplexσn in X.
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Definition 3.4.The homomorphisms

∂n : Sn(X)→ Sn−1(X)

are calledboundary operators. For each digital space
(Xm,κ ,τX), a sequence of free abelian groups and
homomorphisms

...
∂n+1

// Sn(X)
∂n

// Sn−1(X)
∂n−1

// ...
∂2

// S1(X)

∂1
// S0(X)

∂0
// 0

called the digital singular complexof the digital space
(Xm,κ ,τX) and it is denoted byS∗(X).

Lemma 3.5.If k< j, then face maps satisfy

εn+1
j εn

k = εn+1
k εn

j−1.

Theorem 3.6.For all n≥ 0, we have∂n∂n+1 = 0.

Proof. It suffices to show that∂n∂n+1(σ) = 0 for the
generatorsσ ∈ Sn+1(X).

∂n∂n+1(σ) = ∂n(
n+1

∑
j=0

(−1) jσεn+1
j )

=
n

∑
k=0

(−1)k
n+1

∑
j=0

(−1) jσεn+1
j εn

k

= ∑
j ,k

(−1) j+kσεn+1
j εn

k

= ∑
j≤k

(−1) j+kσεn+1
j εn

k + ∑
k< j

(−1) j+kσεn+1
j εn

k

= ∑
j≤k

(−1) j+kσεn+1
j εn

k + ∑
k< j

(−1) j+kσεn+1
k εn

j−1

In the second sum of the right-hand side of the equation,
takep= k andq= j −1. Then

∂n∂n+1(σ) = ∑
j≤k

(−1) j+kσεn+1
j εn

k

+ ∑
p≤q

(−1)p+q+1σεn+1
p εn

q .

We see that each termσεn+1
j εn

k occurs twice. From
the opposite signs of these sums terms cancel in pairs.�

Definition 3.7. In a digital space(Xm,κ ,τX), the group of
the digital singularn-cylesis the kernel of the boundary
operator∂n

Zn(X) := Kernel∂n

and the group of the digital singularn-boundariesis the
image of the boundary operator∂n+1 in X is

Bn(X) := Image∂n+1.

Note that as∂n∂n+1 = 0, for every digital space
(Xm,κ ,τX) andn≥ 0, we have

Bn(X)⊂ Zn(X)⊂ Sn(X).

Definition 3.8. For eachn ≥ 0, the nth digital singular
homology groupof a digital space(Xm,κ ,τX) is

Hn(X) :=
Zn(X)

Bn(X)
=

Kernel∂n

Image∂n+1
.

The cosetzn + Bn(X) where zn ∈ Zn(X) is called the
homology classof zn and it is denoted byzn.

Theorem 3.9.Let X = {x} be a one point space inZm.
Then for alln> 0,

Hn(X) = 0.

Proof. SinceX is a one point space, there will be only one
digital singularn-simplex

σn : ∆n → X

which is the constant map for alln≥ 0. Therefore

Sn(X)∼= Z

Computing the boundary operations

∂n(σn) =
n

∑
i=0

(−1)iσnεi =
n

∑
i=0

(−1)iσn−1

yields that

∂n(σn) =

{
0, n is odd
σn−1, n is even and positive.

Therefore ifn is odd, then

Sn(X) = Ker ∂n = Zn(X)

and sincen+ 1 is even,∂n+1 will be an isomorphism, so
that

Sn(X) = Image∂n+1 = Bn(X).

ThusHn(X) = 0.
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If n is even then∂n will be an isomorphism so that

Sn(X) = Kernel∂n = 0.

ThusHn(X) = 0 as well.�

Theorem 3.10.Let X = {a= (0,0),b= (1,0),c= (1,1)}
be a subset ofZ2 as shown in the Figure 3. Then the digital
singular homology groups ofX up to the dimension 2 are
as follows:

H0(X)∼= Z, H1(X) = 0, H2(X) = 0.

Proof. We have already shown that the Khalimsky

topology onX is

τX = { /0,X,{c},{b,c}}.

Now we will compute the singular digital homology
groups of X. The digital singular chain maps are as
follows:

S0(X) has for a
basis

σ0
1 : e0 7→ a

σ0
2 : e0 7→ b σ0

3 : e0 7→ c.

S1(X) has for a
basis

σ1
1 : e0 7→ a

e1 7→ a

σ1
4 : e0 7→ a

e1 7→ b

σ1
2 : e0 7→ b

e1 7→ b

σ1
5 : e0 7→ a

e1 7→ b

σ1
3 : e0 7→ c

e1 7→ c

σ1
6 : e0 7→ b

e1 7→ c.

S2(X) has for a
basis

σ2
1 : e0 7→ a

e1 7→ a

e2 7→ a

σ2
4 : e0 7→ a

e1 7→ b

e2 7→ c

σ2
2 : e0 7→ b

e1 7→ b

e2 7→ b

σ2
5 : e0 7→ a

e2 7→ a

e1 7→ b

σ2
3 : e0 7→ c

e1 7→ c

e2 7→ c

σ2
6 : e0 7→ a

e1 7→ b

e2 7→ b

σ2
7 : e0 7→ a

e1 7→ a

e2 7→ c

σ2
10 : e0 7→ b

e1 7→ c

e2 7→ c.

σ2
8 : e0 7→ a

e1 7→ c

e2 7→ c

σ2
9 : e0 7→ b

e1 7→ b

e2 7→ c

S3(X) has for a
basis

σ3
1 : e0 7→ a

e1 7→ a

e2 7→ a

e3 7→ a

σ3
4 : e0 7→ a

e1 7→ a

e2 7→ a

e3 7→ b

σ3
7 : e0 7→ b

e1 7→ b

e2 7→ b

e3 7→ c

σ3
10 : e0 7→ a

e1 7→ a

e2 7→ b

e3 7→ c

σ3
13 : e0 7→ a

e1 7→ a

e2 7→ b

e3 7→ b

σ3
2 : e0 7→ b

e1 7→ b

e2 7→ b

e3 7→ b

σ3
5 : e0 7→ a

e2 7→ a

e1 7→ a

e3 7→ c

σ3
8 : e0 7→ a

e1 7→ c

e2 7→ c

e3 7→ c

σ3
11 : e0 7→ a

e1 7→ b

e2 7→ b

e3 7→ c

σ3
14 : e0 7→ a

e1 7→ a

e2 7→ c

e3 7→ c

σ3
3 : e0 7→ c

e1 7→ c

e2 7→ c

e3 7→ c

σ3
6 : e0 7→ a

e1 7→ b

e2 7→ b

e3 7→ b

σ3
9 : e0 7→ b

e1 7→ c

e2 7→ c

e3 7→ c

σ3
12 : e0 7→ a

e1 7→ b

e2 7→ c

e3 7→ c

σ3
15 : e0 7→ b

e1 7→ b

e2 7→ c

e3 7→ c.

It’s easy to see that

S0(X)∼= Z
3, S1(X)∼= Z

6, S2(X)∼= Z
10, S3(X)∼= Z

15.

Now we’ll determine the cycles and the boundaries of each
digital singularn-chains:

∂1 : S1(X)→ S0(X).
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For σ1
i ∈ S1(X), we have a differential map

∂1(σ1
i ) = σ1

i (e1)−σ1
i (e0) for i = 1, ...,6.

Indeed we see that

• ∂1(σ1
1 ) = 0

• ∂1(σ1
2 ) = 0

• ∂1(σ1
3 ) = 0

• ∂1(σ1
4 ) = σ0

2 −σ0
1

• ∂1(σ1
5 ) = σ0

3 −σ0
1

• ∂1(σ1
6 ) = σ0

3 −σ0
2 .

Then we get Image∂1
∼= Z

2.
To determine the kernel of∂1, let

∂1(
5

∑
i=1

siσ1
i ) = 0

wheresi ∈ Z, i = 1, ...,6. Since∂1 is linear,

6

∑
i=1

si∂1(σ1
i ) = 0.

Solving the equation

s4(σ0
2 −σ0

1)+ s5(σ0
3 −σ0

1)+ s6(σ0
3 −σ0

2) = 0,

we obtain
s4 =−s5 = s6.

Thus we conclude that Kernel∂1
∼= Z

4.
Now consider

∂2 : S2(X)→ S1(X).

For σ2
i ∈ S2(X) we have a differential map

∂2(σ2
i ) = σ2

i ([e1,e2])−σ2
i ([e0,e2])+σ2

i ([e0,e1])

for i = 1, ...,10. The following are observed:

• ∂2(σ2
1 ) = σ1

1 −σ1
1 +σ1

1 = σ1
1

• ∂2(σ2
2 ) = σ1

2 −σ1
2 +σ1

2 = σ1
2

• ∂2(σ2
3 ) = σ1

3 −σ1
3 +σ1

3 = σ1
3

• ∂2(σ2
4 ) = σ1

6 −σ1
5 +σ1

3
• ∂2(σ2

5 ) = σ1
4 −σ1

4 +σ1
1 = σ1

3
• ∂2(σ2

6 ) = σ1
2 −σ1

4 +σ1
4 = σ1

2
• ∂2(σ2

7 ) = σ1
5 −σ1

5 +σ1
1 = σ1

1
• ∂2(σ2

8 ) = σ1
3 −σ1

5 +σ1
5 = σ1

3
• ∂2(σ2

9 ) = σ1
6 −σ1

6 +σ1
2 = σ1

2
• ∂2(σ2

10) = σ1
3 −σ1

6 +σ1
6 = σ1

3 .

Then we get Image∂2
∼= Z

4.
To determine the kernel of∂2 we have

∂2(
10

∑
i=1

siσ2
i ) = 0

wheresi ∈ Z, i = 1, ...,10. Since∂2 is linear, we have

10

∑
i=1

si∂2(σ2
i ) = 0.

Solving the equation

σ1
1 (s1+ s5+ s7)+σ1

2(s2+ s6+ s9)+σ1
3(s3+ s8+ s10)

+σ1
4s4+σ1

5(−s4)+σ1
6(s4) = 0,

we have

s1+ s5+ s7 = 0
s2+ s6+ s9 = 0

s3+ s8+ s10= 0
s4 = 0





So, Kernel∂2
∼= Z

6.
Now consider

∂3 : S3(X)→ S2(X).

For σ3
i ∈ S3(X) we have a differential map

∂3(σ3
i ) =σ3

i ([e1,e2,e3])−σ3
i ([e0,e2,e3])+σ3

i ([e0,e1,e3])

−σ3
i ([e0,e1,e2])

for i = 1, ...,15. It is seen that

• ∂3(σ3
1 ) = σ2

1 −σ2
1 +σ2

1 −σ2
1 = 0

• ∂3(σ3
2 ) = σ2

2 −σ2
2 +σ2

2 −σ2
2 = 0

• ∂3(σ3
3 ) = σ2

3 −σ2
3 +σ2

3 −σ2
3 = 0

• ∂3(σ3
4 ) = σ2

5 −σ2
5 +σ2

5 −σ2
1 = σ2

5 −σ2
1

• ∂3(σ3
5 ) = σ2

7 −σ2
7 +σ2

7 −σ2
1 = σ2

7 −σ2
1

• ∂3(σ3
6 ) = σ2

2 −σ2
6 +σ2

6 −σ2
6 = σ2

2 −σ2
6

• ∂3(σ3
7 ) = σ2

9 −σ2
9 +σ2

9 −σ2
2 = σ2

9 −σ2
2

• ∂3(σ3
8 ) = σ2

3 −σ2
8 +σ2

8 −σ2
8 = σ2

3 −σ2
8

• ∂3(σ3
9 ) = σ2

3 −σ2
10+σ2

10−σ2
10 = σ3−σ2

10
• ∂3(σ3

10) = σ2
4 −σ2

4 +σ2
7 −σ2

5 = σ2
7 −σ2

5
• ∂3(σ3

11) = σ2
9 −σ2

4 +σ2
4 −σ2

6 = σ2
9 −σ2

6
• ∂3(σ3

12) = σ2
10−σ2

8 +σ2
4 −σ2

4 = σ2
10−σ2

8
• ∂3(σ3

13) = σ2
6 −σ2

6 +σ2
5 −σ2

5 = 0
• ∂3(σ3

14) = σ2
8 −σ2

8 +σ2
7 −σ2

7 = 0
• ∂3(σ3

15) = σ2
10−σ2

10+σ2
9 −σ2

9 = 0.

Then one can get Image∂3
∼= Z

6. Hence the digital
singular homology groups ofX are

H0(X)∼= Z H1(X) = 0 H2(X) = 0. �

Theorem 3.10.Let

X = {a= (0,0),b= (2,0),c= (1,1),d = (2,2)}

be a subset inZ2. Then the digital homology groups ofX
up to the dimension 2 are as follows:

H0(X)∼= Z, H1(X)∼= Z, H2(X) = 0.

Proof. The Khalimsky topology onX is
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τX = { /0,X,{c},{a,c},{c,b},{c,d},{a,b,c},{a,c,d},{b,c,d}}.

S0(X) has for a
basis

σ0
1 : e0 7→ a

σ0
4 : e0 7→ d.

σ0
2 : e0 7→ b σ0

3 : e0 7→ c

S1(X) has for a
basis

σ1
1 : e0 7→ a

e1 7→ a

σ1
4 : e0 7→ d

e1 7→ d

σ1
7 : e0 7→ d

e1 7→ c.

σ1
2 : e0 7→ b

e1 7→ b

σ1
5 : e0 7→ a

e1 7→ c

σ1
3 : e0 7→ c

e1 7→ c

σ1
6 : e0 7→ b

e1 7→ c

S2(X) has for a
basis

σ2
1 : e0 7→ a

e1 7→ a

e2 7→ a

σ2
4 : e0 7→ d

e1 7→ d

e2 7→ d

σ2
7 : e0 7→ a

e1 7→ c

e2 7→ c

σ2
10 : e0 7→ d

e1 7→ d

e2 7→ c.

σ2
2 : e0 7→ b

e1 7→ b

e2 7→ b

σ2
5 : e0 7→ a

e2 7→ a

e1 7→ c

σ2
8 : e0 7→ b

e1 7→ c

e2 7→ c

σ2
3 : e0 7→ c

e1 7→ c

e2 7→ c

σ2
6 : e0 7→ b

e1 7→ b

e2 7→ c

σ2
9 : e0 7→ d

e1 7→ c

e2 7→ c

S3(X) has for a
basis

σ3
1 : e0 7→ a

e1 7→ a

e2 7→ a

e3 7→ a

σ3
4 : e0 7→ d

e1 7→ d

e2 7→ d

e3 7→ d

σ3
7 : e0 7→ a

e1 7→ c

e2 7→ c

e3 7→ c

σ3
10 : e0 7→ d

e1 7→ d

e2 7→ d

e3 7→ c

σ3
13 : e0 7→ d

e1 7→ d

e2 7→ c

e3 7→ c.

σ3
2 : e0 7→ b

e1 7→ b

e2 7→ b

e3 7→ b

σ3
5 : e0 7→ a

e2 7→ a

e1 7→ a

e3 7→ c

σ3
8 : e0 7→ b

e1 7→ c

e2 7→ c

e3 7→ c

σ3
11 : e0 7→ a

e1 7→ a

e2 7→ c

e3 7→ c

σ3
3 : e0 7→ c

e1 7→ c

e2 7→ c

e3 7→ c

σ3
6 : e0 7→ b

e1 7→ b

e2 7→ b

e3 7→ c

σ3
9 : e0 7→ d

e1 7→ c

e2 7→ c

e3 7→ c

σ3
12 : e0 7→ b

e1 7→ b

e2 7→ c

e3 7→ c

It’s clear that

S0(X)∼= Z
4, S1(X)∼= Z

7, S2(X)∼= Z
10, S3(X)∼= Z

13.

Now we’ll determine the cycles and boundaries of each
singular digital singularn-chains:

∂1 : S1(X)→ S0(X).

For σ1
i ∈ S1(X) we have a differential map

∂1(σ1
i ) = σ1

i (e1)−σ1
i (e0) fori = 1, ...,7.

The following are hold:

• ∂1(σ1
1 ) = σ0

1 −σ0
1 = 0

• ∂1(σ1
2 ) = σ0

2 −σ0
2 = 0

• ∂1(σ1
3 ) = σ0

3 −σ0
3 = 0

• ∂1(σ1
4 ) = σ0

4 −σ0
4 = 0

• ∂1(σ1
5 ) = σ0

3 −σ0
1

• ∂1(σ1
6 ) = σ0

3 −σ0
2

• ∂1(σ1
7 ) = σ0

3 −σ0
4 .
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Then we get Image∂1
∼= Z

3.

To determine the kernel of∂1, let

∂1(
7

∑
i=1

siσ1
i ) = 0

wheresi ∈ Z, i = 1, ...,7. Since∂1 is linear, then

7

∑
i=1

si∂1(σ1
i ) = 0.

Solving the equation

σ0
1 (−s5)+σ0

3(s5+ s6+ s7)+σ0
4(−s7) = 0,

we get
s5 = s6 = s7 = 0,

and hence
Kernel∂1

∼= Z
4.

Consider
∂2 : S2(X)→ S1(X).

For σ2
i ∈ S2(X) we have a differential map

∂2(σ2
i ) = σ2

i ([e1,e2])−σ2
i ([e0,e2])+σ2

i ([e0,e1])

for k= 1, ...,10. The following are observed:

• ∂2(σ2
1 ) = σ1

1 −σ1
1 +σ1

1 = σ1
1

• ∂2(σ2
2 ) = σ1

2 −σ1
2 +σ1

2 = σ1
2

• ∂2(σ2
3 ) = σ1

3 −σ1
3 +σ1

3 = σ1
3

• ∂2(σ2
4 ) = σ1

4 −σ1
4 +σ1

4 = σ1
4

• ∂2(σ2
5 ) = σ1

5 −σ1
5 +σ1

1 = σ1
1

• ∂2(σ2
6 ) = σ1

6 −σ1
6 +σ1

2 = σ1
2

• ∂2(σ2
7 ) = σ1

3 −σ1
5 +σ1

5 = σ1
3

• ∂2(σ2
8 ) = σ1

3 −σ1
6 +σ1

6 = σ1
3

• ∂2(σ2
9 ) = σ1

3 −σ1
7 +σ1

7 = σ1
3

• ∂2(σ2
10) = σ1

7 −σ1
7 +σ1

4 = σ1
4 .

From this observation, we get

Image∂2
∼= Z

4.

To determine the kernel of∂2 we have

∂2(
10

∑
i=1

siσ2
i ) = 0

wheresi ∈ Z, i = 1, ...,10. Since∂2 is linear, we have

10

∑
i=1

si∂2(σ2
i ) = 0.

Solving the equation

σ1
1 (s1+ s5)+σ1

2(s2+ s6)+σ1
3(s3+ s7+ s8+ s9)

+σ1
4(s4+ s10) = 0,

we obtain

s1 =−s5
s2 =−s6
s4 =−s10

s3+ s7+ s8+ s9 = 0





and hence
Kernel∂2

∼= Z
6.

Consider
∂3 : S3(X)→ S2(X)

For σ3
i ∈ S3(X) we have a differential map

∂3(σ3
i ) =σ3

i ([e1,e2,e3])−σ3
i ([e0,e2,e3])+σ3

i ([e0,e1,e3])

−σ3
i ([e0,e1,e2])

for ℓ= 1, ...,15.

It’s clear that

• ∂3(σ3
1 ) = σ2

1 −σ2
1 +σ2

1 −σ2
1 = 0

• ∂3(σ3
2 ) = σ2

2 −σ2
2 +σ2

2 −σ2
2 = 0

• ∂3(σ3
3 ) = σ2

3 −σ2
3 +σ2

3 −σ2
3 = 0

• ∂3(σ3
4 ) = σ2

4 −σ2
4 +σ2

4 −σ2
4 = 0

• ∂3(σ3
5 ) = σ2

5 −σ2
5 +σ2

5 −σ2
1 = σ2

5 −σ2
1

• ∂3(σ3
6 ) = σ2

6 −σ2
6 +σ2

6 −σ2
2 = σ2

6 −σ2
2

• ∂3(σ3
7 ) = σ2

3 −σ2
7 +σ2

7 −σ2
7 = σ2

3 −σ2
7

• ∂3(σ3
8 ) = σ2

3 −σ2
8 +σ2

8 −σ2
8 = σ2

3 −σ2
8

• ∂3(σ3
9 ) = σ2

3 −σ2
9 +σ2

9 −σ2
9 = σ2

3 −σ2
9

• ∂3(σ3
10) = σ2

10−σ2
10+σ2

10−σ2
4 = σ2

10−σ2
4

• ∂3(σ3
11) = σ2

7 −σ2
7 +σ2

5 −σ2
5 = 0

• ∂3(σ3
12) = σ2

8 −σ2
8 +σ2

6 −σ2
6 = 0

• ∂3(σ3
13) = σ2

9 −σ2
9 +σ2

10−σ2
10 = 0.

Thus we have
Image∂3

∼= Z
6.

Then the digital singular homology groups ofX are as
follows:

H0(X)∼= Z H1(X)∼= Z H2(X) = 0. �

4 Functorial Property of Hn

Let (Xm1,κ1,τX) and(Ym2,κ2,τY) be two spaces. If

f : (Xm1,κ1,τX)→ (Ym2,κ1,τY)

is a KD-(κ1,κ2)-continuous map and

σn : ∆n → X

is a singular digitaln-simplex inX, then

f ◦σn : ∆n →Y

c© 2015 NSP
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is also ann-simplex inY. If we extend f by linearity of
singular digital n-simplexes in X, we have a
homomorphism

f♯ : Sn(X)→ Sn(Y), f♯(∑sσnσn) = ∑sσn( f ◦σn)

wheresσn ∈ Z.

Theorem 4.1. Let (Xm1,κ1,τX) and (Ym2,κ2,τY) be two
spaces. If

f : (Xm1,κ1,τX)→ (Ym2,κ1,τY)

is KD-(κ1,κ2)-continuous map, then for everyn≥ 0, then
the following diagram commutes:

Sn(X)
∂n

//

f♯
��

Sn−1(X)

f♯
��

Sn(Y) ∂n

// Sn−1(Y)

Proof.Since∂n is linear, it’s enough to show the evaluation
of each composition on a generatorσn ∈ Sn(X).

f♯∂n(σn) = f♯(
n

∑
i=1

(−1)iσn◦ εi)

=
n

∑
i=1

(−1)i f♯(σn ◦ εi)

=
n

∑
i=1

(−1)i( f♯ ◦σn)◦ εi

= ∂n( f ◦σn)

= ∂n f♯(σn).

�

Theorem 4.2. Let (Xm1,κ1,τX) and (Ym2,κ2,τY) be two
digital spaces. If

f : (Xm1,κ1,τX)→ (Ym2,κ2,τY)

is KD-(κ1,κ2)-continuous map, then for everyn≥ 0

f♯(Zn(X))⊂ Zn(Y) and f♯(Bn(X))⊂ Bn(Y).

Proof. Let zn ∈ Zn(X), then∂n(zn) = 0. By the previous
theorem, we have

∂n f♯(zn) = f♯∂n(zn) = f♯(0) = 0

so that
f♯∂n ∈ Ker ∂n = Zn(Y).

Now letβ ∈Bn(X), then there existsα ∈Sn+1(X) such
that

β = ∂n+1(α).

Again, by Theorem4, we have

f♯(β ) = f♯∂n+1(α) = ∂n+1 f♯(α) ∈ Im ∂n+1 = Bn(Y). �

Consider the KD-topological category KDTC, where

• The objects are(Xn,κ ,τX); and
• the morphisms are KD-(κ1,κ2)-continuous functions.

Theorem 4.3. For eachn ≥ 0, Hn : KDTC → Ab is a
functor.

Proof. Let (Xm1,κ1,τX) and(Ym2,κ2,τY) be two spaces and
let

f : (Xm1,κ1,τX)→ (Ym2,κ2,τY)

be KD-(κ1,κ2)-continuous map, be a continuous function.
Define

Hn( f ) : Hn(X)→ Hn(Y)

by
z= zn+Bn(X) 7→ f♯(zn)+Bn(Y)

wherezn ∈ Zn(X). Note that,zn being ann-cycle implies
that f♯(zn) is ann-cycle inY. Also this definition is well
defined, that is, independent of the choice of representative
since

f♯(Bn(X))⊂ Bn(Y).

• Hn( f ) is a homomorphism:
For all zn,z′n in Hn(X), we have

Hn( f )(zn+ z′n) = f♯(zn+ z′n)+Bn(Y)

= ( f♯(zn)+ f♯(z
′
n))+Bn(Y)

= f♯(zn)+Bn(Y)+ f♯(z
′
n)+Bn(Y)

= Hn(zn)+Hn(z′n).

It’s also clear thatHn sends the identity function to
identity homomorphism.

• Hn preserves the composition: For the spaces
(Xm1,κ1,τX), (Ym2,κ2,τY) and(Zm3,κ3,τZ), let

f : (Xm1,κ1,τX)→ (Ym2,κ2,τY)

and
g : (Ym2,κ2,τY)→ (Zm3,κ3,τZ)

be two KD-(κ1,κ2) and KD-(κ2,κ3) continuous maps
respectively. Then

Hn(g◦ f )(zn) = (g◦ f )♯(zn)+Bn(X) = g♯( f♯(zn)+Bn(X))

= (Hn(g)◦Hn( f ))(z).

So this shows thatHn is a functor.�

Corollary 4.4. If (Xm1,κ1,τX) and (Ym2,κ2,τY) are
KD-(κ1,κ2)-isomorphic, then

Hn(X)∼= Hn(Y)

for all n≥ 0.
Proof. It’s a consequence ofHn being a functor.�
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5 Conclusion

In this paper, we define the digital singular homology and
compute the homology groups of some certain digital
spaces. We have seen that the digital singular homology is
a functorial property so that it can be used to distinguish
and classify the digital spaces. The next work based on
this paper is to investigate whether the homology axioms
are valid or not in the digital singular homology theory,
define the digital singular cohomology and compute the
cohomology groups of some digital spaces, to compare
the digital singular homology groups with the digital
simplicial groups.
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