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Abstract: We present an alternative formulation of quantum mechanieghich no reference is made to any potential function. In
this formalism, the wavefunction is written as a boundechitdisum in a complete and suitable basis with orthogonainawhials in
the energy as expansion coefficients. The asymptotics séthelynomials give the scattering phase shift, boundsstatd resonances
for the corresponding physical system. In addition to thé-lwgwn quantum systems, this formulation enables onébdtain analytic
realization of previously untreated problems.
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1 Introduction Hamiltonian operator H. The former gives the expectation
values (measurements) of physical observables and the
In the standard formulation of quantum mechanics, oneIatter determines the time development of the system.

starts by proposing a potential function that models theAccordlneg, we are proposing here a formulation of

physical system under study. The potential is thepduantum mechanics in which the potential function does

inserted into the Schrddinger equation, which is solved?Ot”?pEFar' Tthfna'n\jw:is rtloi olbt;':unra;hsit iﬁf tgnaliﬂ'ﬁgl? d
for the wavefunction, scattering phase shift, energy calizable systems, ch 1S larger tha € stahda

spectrum and/or resonances. Exact solvability of theformulauon. This implies that the potential functions

equation limits the number of analytically realizable ggr;eost%%r\;célg%;? ;[iréergg\i/\zlle)&igonusngrst)rg{tet?es égriggy:;(('j?;)
systems. These solutions are well known for a long time y P g

and have been arranged into a small number of classegave eqhuat[on. canrllot be wrltten_ﬁln th‘? Iconvent|onafl
(see, for example 1] and references therein). Each one of ormat (.t atis, it could become a differentia equation o
these classes is associated with a potential function lik rder higher tha!" two or with nonlocal potential, e'tc.).
the Coulomb, harmonic oscillator, Morse, Scarf, Eckart, o recent work |n$],' where we p'roposed a formulation
etc. Nonetheless, we believe that the set of analyticallyO
realizable quantum systems is much larger than the set dt
exact solutions of the Schrodinger equation. Equivajentl one.

we are affirming that the representation of the In the absence of a potential function, we propose a
Hamiltonian operator in the wave equatidegtqu =HYy construction where the wavefunction is written as a
as the sum of the kinetic energy operator and a potentiabounded infinite sum in a suitable and complete basis,
function,H = T +V, is a particular choice that may limit {@(X)},_, Wwith polynomials coefficients that are
the number of analytically realizable physical systems. Inorthogonal on an appropriate domain in the energy space.
fact, the postulates of quantum mechanics have ndhat is, we write ¥(t,x) = e ®/My(Ex) and
reference at all to a potential function (see, for example,/(E,x) = 3, fi(E)gn(x) whereE is the system’s energy
Ref. [2]). Only two elements of the physical system are and i stands for a set of physical parameters. Beside the
specified in the postulates: the state functi¥rand the  requirements that the elements of the basis satisfy the

otential function is not realizable, is a prelude to this
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boundary conditions and be compatible with the  Below, we obtain analytic expressions for the phase
configuration space of the problem, there is very little shift, energy spectra and/or resonances for two classes of
information content beyond the kinematics (such as theproblems. The first one is associated with the
angular momentum, etc.) which is common to all systemsMeixner-Pollaczek polynomial and the second with the
whose state functions are expanded as above. Structurabntinuous dual Hahn polynomial.

and dynamical information about the specific system

under study is contained only in the expansion

coefficients { f§'(E)}_,. Using the completeness and

orthogonality of the basis and writing
f'(E) = f5'(E)Pk (€) we obtain:

2.1 The Meixner-Pollaczek polynomial class

The energy polynomial considered here is a special case

g " " of the orthonormal version of the Meixner-Pollaczek
/ P (&)Ry (€)Pn () de = dm (1) polynomial, which we write as (see page 37 &fj[
where ¢ is some proper function of the energy, L i\ I (n+2u) —n,u+iy
£(1.E), and pi(g) — [fH(E)2. Thus, P(g) — 1 and REW) = 0" rerameP (2 2) @

{P#(s)}:: becomes a complete set of orthogonal
polynoml ?s (see, for exa_mplé]]j. Using earlier findings. Where oF; abl7) isthe hypergeometric functionge
concerning the asymptotic property of the wavefunct|on[_oo7+oo] andy > 0. These are polynomials of order n in

expansion [5], we conclude that the orthogonaly ,.q satisy the following symmetric three-term recursion
polynomials with physical relevance are only those with relation:

the following asymptotia — c behavior:

Pl (g) ~ Ae) cos{n'f 0(e)+ 5(8)} (2) 2yPH(y) = v/n(n+2u—1)PX L (y)
WhereA(¢) is the scattering amplitude ardis a real ++/(n+1)(n+2u)PL (y) (5)

positive constant that depends on the particular energy _ _ ' o
polynomial. The scattering phase shi{e) which is  The associated normalized weight function is
defined modulo an integer multiple af/2 depends on

the energy and the set of physical paramefgrs On the pH(y) = % IF (u+iy)? (6)
other hand, bound states (if they exist) occur at discrete

real energies{ém} at which A(ém) = 0. However, if To derive the large n asymptotic formula we use
A(ém) = 0 at complex energiegem} with negative Darboux's method (see Chapter 9 @[which gives:
imaginary parts, then these are the resonance energies an

the imaginary part forces the wave function to vanish with 1 .

time due to the factoe 'Em/M, |n the following section, Pi(y) = T R (L iy)] cos[n(1/2) +argl" (u +iy)]
we give illustrative examples of two classes of problems H+ly @)

where we obtain analytic representations for well-known

guantum systems and for others that were not treated irgC Comparing this with Eqg. (2) gives the following

attering phase shift (modulo an integer multipl€of

the past.
() = argl" (u +1iy) (®)
2 Two Examples The scattering amplitude is
_ . , Ale) = [2“*1\/ﬁ|l'(u+iy)|]_l. It vanishes if
As an illustration, we consider quantum systems on thqy = —(m+pu) wherem = 0,1,2,.. giving the energy
positive e realv line with spectrum formulg? = —(m+ ). If the solution of this
h(x) = r<n(£¢+>1) (A x)ﬁe*AX/ZL,‘q (AX), wherelL}(z) is formula, {em}, is a real set then these provide the bound

the Laguerre polynomial; > —1 andA is a real positive ~ States energies. On the other hand, if it is a complex set
scale parameter. In addition to 1D systems, this basis ig'ith negative imaginary parts then those correspond to
also suitable for the radial component of spherically the resonance energies.

symmetric 3D systems where x becomes the radial Now, if we choose the parameters @s= ¢+ 1 and
coordinate andv depends on the angular momentumy = Z/k wherek = v/2E then we obtain the following
quantum numbef. Thus, we construct wave functions of phase shiftd(E) = argl (£+ 1+iz/k) and the energy

the form: spectrum formuleEy, = —72 /2(m+ ¢+ 1)2. Obviously,

these results agree with the well-known Coulomb
problem. However, taking = (a/k)2£+1, wherea is a

WE.x) = i}\/pws) PR ()
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real parameter, then we obtain the following phase shiftMoreover, the discrete bound/resonance states correspond

and energy spectrum to the zeros of the scattering amplitude that occur for
iy = —(m+ c) wherec stands for any one of the three
parameters{u,a,b}. However, in this case ¢ must be

O(E) =argr {u+i(a/k)2€+l} (9a)  negative and the energy spectrum is finite corresponding
, ey tom=0,1,2,..,N whereN is the largest integer less than
+
Em=—a /2(m+ ) (9b)  or equal to—c. Now, if we choosey = \/2E/a, a=p

fnd b = $ — a7 1B/2V,, where {a,B,Vo} are real
positive parameters such thiat< 0 then the scattering
phase shift and energy spectrum become:

These results are not associated with any of the know
exactly solvable problems in the standard formulation of
guantum mechanics. A final example in this class, which
is designed with a resonance structure, corresponds to the

_ NS = I - T
parameters assignmemt= a/\/ZE andy = B/a where 6(E) =argr (Zla ZE) 2arg’ (“ tha ZE)

a > B > 0. The energy spectrum formula —argl [% Lat (i /2E - B /_ZVO)} (15a)
y2 = —(m-+ p)? gives the following discrete energies

_a? 1 —1p /52
E 1 (mPa?—B2) —imaf (10) En = —?(m+§—a B 2\/0) (15b)
" (P + 32/02)2 andm=0,1,..,N whereN is the largest integer less than

or equal to—b. These results are associated with the 1D
The result is a single bound stateFat= —1(a?/B)? and ~ Morse potentiaV (x) = Vo (e 29— 2B e 9X) whereb =

an infinite number of resonancesat Ey, E», ... thattend ~ —N—pand 1> p > 0. If, onthe other hand, we choose the
toE =0asm— . physical parameters ag:= \/Bflln (1+2E/a?) where
B > 0 andu < 0 then the associated energy spectrum is
. . obtained as:
2.2 The continuous dual Hahn polynomial class ,
a 2
— 2 e Blmp)® _
Here, the energy polynomial is the orthonormal version of Em = 2 le ] (16)
the continuous dual Hahn polynomial, which we write as . )
(see page 29 of]) wherem=0,1,..,N andN is the largest integer less than

or equal to—p. This energy spectrum does not belong to
() (u D) vy any of the known classes of exactly solvable problems.
Sﬁ(yz;a, b) = \/ W?’B (u-ﬁa,u-&-’b ’ 1) (11)

where, (2),, = 2(z+ 1)(z+2)...(z+n—-1), y > 0 and 3 Discussion on Physical Applications
{u,a,b} are positive parameters except for a pair of
complex conjugates with positive real parts. These ardn the standard formulation of quantum mechanics, a
polynomials of ordern in y? and the corresponding physical application typically starts by engineering the
normalized weight function reads as follows: potential function, which is believed to model the
physical system under study. Such engineering is built on
the experience of working with various potential
Ui 1 | (u+iy)r(a+iy)r (b+iy)/r (2iy) configurations and on the physical insight one develops in
pryia.b) = o Futal (uLb)r(atb) dealing with these settings such as the connection
12) between potential functions and the properties of bound

Again, we use the Darboux’s method to obtain thesStates and resonances, tunnelling effects, location of

| 2

following asymptotio(n — o) formula: stable points, phase transitions, classical turning point
etc. Subsequently, the equation of motion is solved and

2T (u+al (LD (axb) |l (2i the properties of the system are calculated. Fine-tuning of

31‘()/2;3, b) ~ VI (u+ ) (DI I (2y)] the potential is performed to arrive at the desired or

M @+iy)l (b+iy)l (u+iy)| v sought-after system characteristics. Now, in our
x cos(ylnn-+y) (13)  formulation the same process is maintained except that

"potential engineering” is replaced by “polynomial
Where, y = arg{r (2iy)/I (u+iy)l (a+iy)l (b+iy)}  engineering”. For that, one needs to develop an insight
Now, since Im ~ o(n%) for any & > 0, then we extractthe into the relationship between the physical features of a
following phase shift given system and the properties of the associated
orthogonal polynomials. Such properties include, but not
5(e) = arg{r (2iy)/I (u+iy) (a+iy)l (b+iy)} (14) limited to, the shape of the weight functions, nature of the
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generating functions, distribution and density of the gero dashed and dashed-dotted curves in the figure correspond
recursion relations, asymptotics, differential or diflece  toy= —0.1 andy = —0.2, respectively.

equations, etc. Fine-tuning is done by slightly altering on

or more of these polynomial properties such as adjusting

the polynomial parameters, deforming the recursion

relation, perturbing the differential equation, etc. The

asymptotics of the modified polynomials are then4 Conclusion

calculated as shown above and the physical properties

(such as the energy spectrum and phase shift) are

extracted. The process is repeated until the desired

gggﬁgﬁ: Ofﬁ,awg'?ﬁvgg‘fig%?éatlﬁ : c:i.ef]‘:it; gfiﬁgtrgsp Isf gfg?yggn this Letter, we introduced an alternative formulation of

physical system associated with an orthogonal energ uantum mechanic_s in_which .the potentjal function does
polynomial that satisfies the following three-term ot appear. Our aim Is 1o find analytically realizable
recursion relation guantum systems despite the lack of knowledge of the

potential. Using the postulate of quantum mechanics, we
ePH(g) = apPH(e) + bn_lPrﬁ’fl(s) + an,ﬁ‘H(e) a7 proposed the existence of a wavefunction that contains alll
structural and dynamical information about the system.
We wrote this state function as a bounded infinite sum in
a discrete and complete basis functions with polynomial
coefficients that are orthogonal in the energy space. The
asymptotic properties of these polynomials give exact
. . i analytic expressions for the phase shift of the continuum

calculated using(g) = =ImG(e +i0) whereG(z) is the

i . o : . . scattering states and for the spectrum formula of the
Green's function associated with these polynomials whichyiscrete hound states and/or resonances. In addition to the

has the following continued fraction representation well-known quantum systems, this formulation enabled

where ¢ is the system’'s energy scaled by some
characteristic frequency ang (¢) = 1. The recursion
coefficients are taken as, = 0, by, = p, and
boni1 = 1— u wherepu is a real parameter in the range

O< u< % The energy density of states could be
1

-1 us to present exact realizations of previously untreated

G(2) = b2 (18) problems. The examples presented above constitute a
Z_ao_ibg testimony to our claim. Thus, instead of giving the
R potential function as is done in the standard formulation,

The resulting density of states far= 0.4 is shown as the we propose orthogonal polynomials in the energy as the
solid curve in the figure. It is a symmetric two-band expansion coefficients of the wavefunction in a suitable

density in the range-1 < € < 1 with a forbidden energy complete basis. The physical properties of the system are
gap, || < 1 - 2u cantered about the origin. Now, we contained in these polynomials and their corresponding
modify the system by adjusting only the first diagonal weight functions.

recursion coefficient agp = y wherey is a deformation

parameter Finally, we make the following remarks: (1) our

recent work on the Dirac-Coulomb proble®] fuggests
that a relativistic extension of this formulation is fedsib
(2) One can also show that the wave equation in this
formulation becomes equivalent to the three-term
ST recursion relation satisfied by the energy polynomials (as
ke v pe) illustration, see Ref.q]). (3) One can also formulate
0.4 P vy perturbative and non-perturbative calculation in this
_i,'/" i formalism by altering the recursion relation associated
" Pl . .
i/ RN with the energy polynomials (see, for example, R&]. [
0 ¥ 4 - where we also make use of the J-matrix method of
f - scattering). (4) In the two examples of Sec. 2, we made a
seemingly arbitrary choice of polynomials and only by a
specific choice of parameters and polynomial arguments
that we were able to obtain the physical properties of the
Gcorresponding system. However, with time and after

with the energy polynomials (17) fqr = 0.4 (solid curve) and working with many such examples together with a careful

for two values of the deformation parameters: —0.1 (dashed) analysis of th,e propgrties of th?se PO'Ynomi?"s’ one can
andy — —0.2 (dashed-dotted). develop an insight into a solid relationship between

properties of the polynomials and the features of the
corresponding physical systems. Such properties include
The figure shows the result of this modification on the the weight function, recursion relation, asymptotics,
density of states for several values of the paramet€he  distribution of the zeros, etc.

0.6]

s 4

0
-1.2 -0.8 -0.4 0 0.4 0.8 1.2

Fig. 1: The density of states for the physical system associate
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