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Abstract: We present an alternative formulation of quantum mechanicsin which no reference is made to any potential function. In
this formalism, the wavefunction is written as a bounded infinite sum in a complete and suitable basis with orthogonal polynomials in
the energy as expansion coefficients. The asymptotics of these polynomials give the scattering phase shift, bound states and resonances
for the corresponding physical system. In addition to the well-known quantum systems, this formulation enables one to obtain analytic
realization of previously untreated problems.
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1 Introduction

In the standard formulation of quantum mechanics, one
starts by proposing a potential function that models the
physical system under study. The potential is then
inserted into the Schrödinger equation, which is solved
for the wavefunction, scattering phase shift, energy
spectrum and/or resonances. Exact solvability of the
equation limits the number of analytically realizable
systems. These solutions are well known for a long time
and have been arranged into a small number of classes
(see, for example, [1] and references therein). Each one of
these classes is associated with a potential function like
the Coulomb, harmonic oscillator, Morse, Scarf, Eckart,
etc. Nonetheless, we believe that the set of analytically
realizable quantum systems is much larger than the set of
exact solutions of the Schrödinger equation. Equivalently,
we are affirming that the representation of the
Hamiltonian operator in the wave equation ih̄ ∂

∂ tΨ = HΨ
as the sum of the kinetic energy operator and a potential
function,H = T +V , is a particular choice that may limit
the number of analytically realizable physical systems. In
fact, the postulates of quantum mechanics have no
reference at all to a potential function (see, for example,
Ref. [2]). Only two elements of the physical system are
specified in the postulates: the state functionΨ and the

Hamiltonian operator H. The former gives the expectation
values (measurements) of physical observables and the
latter determines the time development of the system.
Accordingly, we are proposing here a formulation of
quantum mechanics in which the potential function does
not appear. The aim is to obtain a set of analytically
realizable systems, which is larger than in the standard
formulation. This implies that the potential functions
corresponding to the newly found systems (if they exist)
do not have analytic realizations or that the corresponding
wave equation cannot be written in the conventional
format (that is, it could become a differential equation of
order higher than two or with nonlocal potential, etc.).
Our recent work in [3], where we proposed a formulation
of quantum mechanics for a finite level system whose
potential function is not realizable, is a prelude to this
one.

In the absence of a potential function, we propose a
construction where the wavefunction is written as a
bounded infinite sum in a suitable and complete basis,
{φn(x)}∞

n=0 with polynomials coefficients that are
orthogonal on an appropriate domain in the energy space.
That is, we write Ψ (t,x) = e−iEt/h̄ψ(E,x) and
ψ(E,x) = ∑n f µ

n (E)φn(x) whereE is the system’s energy
andµ stands for a set of physical parameters. Beside the
requirements that the elements of the basis satisfy the
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boundary conditions and be compatible with the
configuration space of the problem, there is very little
information content beyond the kinematics (such as the
angular momentum, etc.) which is common to all systems
whose state functions are expanded as above. Structural
and dynamical information about the specific system
under study is contained only in the expansion
coefficients

{

f µ
n (E)

}∞
n=0. Using the completeness and

orthogonality of the basis and writing
f µ
n (E) = f µ

0 (E)Pµ
n (ε) we obtain:

∫

ρ µ(ε)Pµ
n (ε)Pµ

m (ε)dε = δnm (1)

where ε is some proper function of the energy,
ε(µ ,E), and ρ µ(ε) = [ f µ

0 (E)]
2. Thus, Pµ

0 (ε) = 1 and
{

Pµ
n (ε)

}∞
n=0 becomes a complete set of orthogonal

polynomials (see, for example [4]). Using earlier findings
concerning the asymptotic property of the wavefunction
expansion [5], we conclude that the orthogonal
polynomials with physical relevance are only those with
the following asymptoticn → ∞ behavior:

Pµ
n (ε)≈ A(ε)cos

[

nξ θ (ε)+ δ (ε)
]

(2)

WhereA(ε) is the scattering amplitude andξ is a real
positive constant that depends on the particular energy
polynomial. The scattering phase shiftδ (ε) which is
defined modulo an integer multiple ofπ

/

2 depends on
the energy and the set of physical parameters{µ}. On the
other hand, bound states (if they exist) occur at discrete
real energies{εm} at which A(εm) = 0. However, if
A(εm) = 0 at complex energies{εm} with negative
imaginary parts, then these are the resonance energies and
the imaginary part forces the wave function to vanish with
time due to the factore−iEmt/h̄. In the following section,
we give illustrative examples of two classes of problems
where we obtain analytic representations for well-known
quantum systems and for others that were not treated in
the past.

2 Two Examples

As an illustration, we consider quantum systems on the
positive real line with

φn(x) =
√

Γ (n+1)
Γ (n+ν+1)(λ x)

ν
2 e−λ x/2Lν

n (λ x), whereLν
n (z) is

the Laguerre polynomial,ν > −1 andλ is a real positive
scale parameter. In addition to 1D systems, this basis is
also suitable for the radial component of spherically
symmetric 3D systems where x becomes the radial
coordinate andν depends on the angular momentum
quantum numberℓ. Thus, we construct wave functions of
the form:

ψ(E,x) =
∞

∑
n=0

√

ρ µ(ε)Pµ
n (ε)φn(x) (3)

Below, we obtain analytic expressions for the phase
shift, energy spectra and/or resonances for two classes of
problems. The first one is associated with the
Meixner-Pollaczek polynomial and the second with the
continuous dual Hahn polynomial.

2.1 The Meixner-Pollaczek polynomial class

The energy polynomial considered here is a special case
of the orthonormal version of the Meixner-Pollaczek
polynomial, which we write as (see page 37 of [6])

Pµ
n (y) = (i)n

√

Γ (n+2µ)
Γ (2µ)Γ (n+1)2F1

(

−n,µ+iy
2µ

∣

∣

∣
2
)

(4)

Where,2F1

(

a,b
c

∣

∣

∣
z
)

is the hypergeometric function,y∈
[−∞,+∞] andµ > 0. These are polynomials of order n in
y and satisfy the following symmetric three-term recursion
relation:

2yPµ
n (y) =

√

n(n+2µ −1)Pµ
n−1(y)

+
√

(n+1)(n+2µ)Pµ
n+1(y) (5)

The associated normalized weight function is

ρ µ(y) = 22µ−1

π Γ (2µ) |Γ (µ + iy)|2 (6)

To derive the large n asymptotic formula we use
Darboux’s method (see Chapter 9 of [7]) which gives:

Pµ
n (y)≈ 1

2µ−1
√

n |Γ (µ + iy)| cos
[

n(π
/

2)+argΓ (µ + iy)
]

(7)
Comparing this with Eq. (2) gives the following

scattering phase shift (modulo an integer multiple ofπ
2 )

δ (ε) = argΓ (µ + iy) (8)

The scattering amplitude is
A(ε) =

[

2µ−1√n |Γ (µ + iy)|
]−1

. It vanishes if
iy = −(m+ µ) where m = 0,1,2, .. giving the energy
spectrum formulay2 = −(m+ µ)2. If the solution of this
formula,{εm}, is a real set then these provide the bound
states energies. On the other hand, if it is a complex set
with negative imaginary parts then those correspond to
the resonance energies.

Now, if we choose the parameters asµ = ℓ+ 1 and
y = Z

/

k wherek =
√

2E then we obtain the following
phase shiftδ (E) = argΓ

(

ℓ+1+ iZ
/

k
)

and the energy

spectrum formulaEm = −Z2
/

2(m+ ℓ+1)2. Obviously,

these results agree with the well-known Coulomb

problem. However, takingy =
(

α
/

k
)2ℓ+1

, whereα is a
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real parameter, then we obtain the following phase shift
and energy spectrum

δ (E) = argΓ
[

µ + i
(

α
/

k
)2ℓ+1

]

(9a)

Em =−α2
/

2(m+ µ)1/(ℓ+1/2) (9b)

These results are not associated with any of the known
exactly solvable problems in the standard formulation of
quantum mechanics. A final example in this class, which
is designed with a resonance structure, corresponds to the

parameters assignmentµ = α
/√

2E andy = β
/

α where

α > β > 0. The energy spectrum formula
y2 =−(m+ µ)2 gives the following discrete energies

Em =
1
2(m

2α2−β 2)− imαβ
(

m2+β 2
/

α2
)2 (10)

The result is a single bound state atE0 =− 1
2(α

2
/

β)2 and
an infinite number of resonances atE = E1,E2, ... that tend
to E = 0 asm → ∞.

2.2 The continuous dual Hahn polynomial class

Here, the energy polynomial is the orthonormal version of
the continuous dual Hahn polynomial, which we write as
(see page 29 of [6])

Sµ
n (y

2;a,b) =

√

(µ+a)n(µ+b)n
n! (a+b)n

3F2

(

−n,µ+iy,µ−iy
µ+a,µ+b

∣

∣

∣
1
)

(11)

where, (z)n = z(z + 1)(z + 2)...(z + n − 1), y > 0 and
{µ ,a,b} are positive parameters except for a pair of
complex conjugates with positive real parts. These are
polynomials of ordern in y2 and the corresponding
normalized weight function reads as follows:

ρ µ(y;a,b) =
1

2π

∣

∣Γ (µ + iy)Γ (a+ iy)Γ (b+ iy)
/

Γ (2iy)
∣

∣

2

Γ (µ + a)Γ (µ + b)Γ (a+ b)
(12)

Again, we use the Darboux’s method to obtain the
following asymptotic(n → ∞) formula:

Sµ
n (y

2;a,b)≈ 2
√

Γ (µ + a)Γ (µ + b)Γ (a+ b)|Γ (2iy)|
|Γ (a+ iy)Γ (b+ iy)Γ (µ + iy)|√n

× cos(y lnn+ γ) (13)

Where, γ = arg
{

Γ (2iy)
/

Γ (µ + iy)Γ (a+ iy)Γ (b+ iy)
}

Now, since lnn ≈ o(nξ ) for anyξ > 0, then we extract the
following phase shift

δ (ε) = arg
{

Γ (2iy)
/

Γ (µ + iy)Γ (a+ iy)Γ (b+ iy)
}

(14)

Moreover, the discrete bound/resonance states correspond
to the zeros of the scattering amplitude that occur for
iy = −(m + c) wherec stands for any one of the three
parameters{µ ,a,b}. However, in this case c must be
negative and the energy spectrum is finite corresponding
to m = 0,1,2, ..,N whereN is the largest integer less than

or equal to−c. Now, if we choosey =
√

2E
/

α , a = µ
and b = 1

2 − α−1β
√

2V0, where {α,β ,V0} are real
positive parameters such thatb < 0 then the scattering
phase shift and energy spectrum become:

δ (E) = argΓ
(

2iα−1
√

2E
)

−2argΓ
(

µ + iα−1
√

2E
)

−argΓ
[

1
2 +α−1

(

i
√

2E −β
√

2V0

)]

(15a)

Em =−α2

2

(

m+ 1
2 −α−1β

√

2V0

)2
(15b)

andm = 0,1, ..,N whereN is the largest integer less than
or equal to−b. These results are associated with the 1D
Morse potentialV (x) = V0

(

e−2αx −2β e−αx
)

whereb =
−N−µ and 1> µ ≥0. If, on the other hand, we choose the

physical parameters as:y =
√

β−1 ln(1+2E
/

α2) where

β > 0 andµ < 0 then the associated energy spectrum is
obtained as:

Em =
α2

2
[e−β (m+µ)2 −1] (16)

wherem = 0,1, ..,N andN is the largest integer less than
or equal to−µ . This energy spectrum does not belong to
any of the known classes of exactly solvable problems.

3 Discussion on Physical Applications

In the standard formulation of quantum mechanics, a
physical application typically starts by engineering the
potential function, which is believed to model the
physical system under study. Such engineering is built on
the experience of working with various potential
configurations and on the physical insight one develops in
dealing with these settings such as the connection
between potential functions and the properties of bound
states and resonances, tunnelling effects, location of
stable points, phase transitions, classical turning points
etc. Subsequently, the equation of motion is solved and
the properties of the system are calculated. Fine-tuning of
the potential is performed to arrive at the desired or
sought-after system characteristics. Now, in our
formulation the same process is maintained except that
”potential engineering” is replaced by ”polynomial
engineering”. For that, one needs to develop an insight
into the relationship between the physical features of a
given system and the properties of the associated
orthogonal polynomials. Such properties include, but not
limited to, the shape of the weight functions, nature of the

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


54 A. ALHAIDARI: Formulation of Quantum Mechanics without...

generating functions, distribution and density of the zeros,
recursion relations, asymptotics, differential or difference
equations, etc. Fine-tuning is done by slightly altering one
or more of these polynomial properties such as adjusting
the polynomial parameters, deforming the recursion
relation, perturbing the differential equation, etc. The
asymptotics of the modified polynomials are then
calculated as shown above and the physical properties
(such as the energy spectrum and phase shift) are
extracted. The process is repeated until the desired
physical features are obtained. As an example of such
application, we investigate the density of states of a given
physical system associated with an orthogonal energy
polynomial that satisfies the following three-term
recursion relation

εPµ
n (ε) = anPµ

n (ε)+ bn−1Pµ
n−1(ε)+ bnPµ

n+1(ε) (17)

where ε is the system’s energy scaled by some
characteristic frequency andPµ

0 (ε) = 1. The recursion
coefficients are taken asan = 0, b2n = µ , and
b2n+1 = 1− µ whereµ is a real parameter in the range
0 < µ < 1

2. The energy density of states could be
calculated usingρ(ε) = 1

π ImG(ε + i0) whereG(z) is the
Green’s function associated with these polynomials which
has the following continued fraction representation

G(z) =
−1

z− a0− b2
0

z−a1−
b2
1

z−a2−...

(18)

The resulting density of states forµ = 0.4 is shown as the
solid curve in the figure. It is a symmetric two-band
density in the range−1≤ ε ≤ 1 with a forbidden energy
gap, |ε| ≤ 1− 2µ cantered about the origin. Now, we
modify the system by adjusting only the first diagonal
recursion coefficient asa0 = γ whereγ is a deformation
parameter.

Fig. 1: The density of states for the physical system associated
with the energy polynomials (17) forµ = 0.4 (solid curve) and
for two values of the deformation parameters:γ =−0.1 (dashed)
andγ =−0.2 (dashed-dotted).

The figure shows the result of this modification on the
density of states for several values of the parameterγ. The

dashed and dashed-dotted curves in the figure correspond
to γ =−0.1 andγ =−0.2 , respectively.

4 Conclusion

In this Letter, we introduced an alternative formulation of
quantum mechanics in which the potential function does
not appear. Our aim is to find analytically realizable
quantum systems despite the lack of knowledge of the
potential. Using the postulate of quantum mechanics, we
proposed the existence of a wavefunction that contains all
structural and dynamical information about the system.
We wrote this state function as a bounded infinite sum in
a discrete and complete basis functions with polynomial
coefficients that are orthogonal in the energy space. The
asymptotic properties of these polynomials give exact
analytic expressions for the phase shift of the continuum
scattering states and for the spectrum formula of the
discrete bound states and/or resonances. In addition to the
well-known quantum systems, this formulation enabled
us to present exact realizations of previously untreated
problems. The examples presented above constitute a
testimony to our claim. Thus, instead of giving the
potential function as is done in the standard formulation,
we propose orthogonal polynomials in the energy as the
expansion coefficients of the wavefunction in a suitable
complete basis. The physical properties of the system are
contained in these polynomials and their corresponding
weight functions.

Finally, we make the following remarks: (1) our
recent work on the Dirac-Coulomb problem [8] suggests
that a relativistic extension of this formulation is feasible.
(2) One can also show that the wave equation in this
formulation becomes equivalent to the three-term
recursion relation satisfied by the energy polynomials (as
illustration, see Ref. [9]). (3) One can also formulate
perturbative and non-perturbative calculation in this
formalism by altering the recursion relation associated
with the energy polynomials (see, for example, Ref. [3]
where we also make use of the J-matrix method of
scattering). (4) In the two examples of Sec. 2, we made a
seemingly arbitrary choice of polynomials and only by a
specific choice of parameters and polynomial arguments
that we were able to obtain the physical properties of the
corresponding system. However, with time and after
working with many such examples together with a careful
analysis of the properties of these polynomials, one can
develop an insight into a solid relationship between
properties of the polynomials and the features of the
corresponding physical systems. Such properties include
the weight function, recursion relation, asymptotics,
distribution of the zeros, etc.
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