
Adv. Eng. Tec. Appl.4, No. 2, 11-14 (2015) 11

Advanced Engineering Technology and Application
An International Journal

http://dx.doi.org/10.12785/aeta/040201

Simple Linear Sorting Algorithm for 123-Avoiding
Permutations
Satybaldiyev Yernaz∗ and Orazbayev Sanzhar∗

Kazakh British Technical University, Almaty, Kazakhstan

Received: 23 Feb. 2015, Revised: 24 Mar. 2015, Accepted: 25 Mar. 2015
Published online: 1 May 2015

Abstract: We present basic techniques on pattern avoiding permutations and provide simple linear sorting algorithm for 123-avoiding
permutations. Also did some experiment on stack-based sorting algorithm by Donald Knuth and provide results achieved.Experiment
is based on counting number of iterations needed for sortingany permutation by D. Knuth’s algorithm.

Keywords: Sorting, Pattern avoiding, 123-avoiding permutations, Stack

1 Introduction

Sorting is a fundamental operation in computing and
appears in almost every program. Nowadays many
companies have large datasets, big-data and they do a lot
of operations on them and the sorting is a part of them. So
if we some how can improve sorting algorithm then we
will make big impact on our performance. In next
sections we will describe pattern avoiding permutations
and give simple linear sorting algorithms for
123-avoiding permutations.

Many works on pattern avoiding permutations
devoted for counting them and now there international
conference devoted to this subject. And many works done
on enumeration of them. For some papers, see [2,4,7,8,9,
10].One of the most important result is Stanley-Wilf
conjecture, recently proven by Marcus and Tardos, which
states that number of permutationsπ of length n that
avoid a fixed patternσ is at mostCn for some constant
C(σ ).

Recalling that an arbitrary permutation is known to
takeΩ (n log n) comparisons, because lg(n!) =Ω (n log n)
comparisons are required to distinguish between the n!
possible inputs. Now, suppose we want to sort a
permutation that is known to avoid a fixed pattern . By
the Stanley-Wilf conjecture, the same lower bound
argument in this case can only yield a bound of lg(Cn) =
Ω (n) here. And theoretically, it is become possible sorting
pattern avoiding permutations faster thanΩ (n log n).

Fig. 1: The permutation (3, 2, 1, 5, 6, 7, 4) contains the pattern
(1, 3, 2).

2 Pattern Avoiding Permutations

A permutation π = (π1,π2, ...,πn)is said to contain a
pattern σ = (σ1,σ2, ...,σk) if contains a possibly
non-contiguous subsequence(π1,π2, ...,πk) ordered in
precisely the same way asσ . For example, (3, 2, 1, 5, 6,
7, 4) contains the pattern (1, 3, 2) since the subsequence
(1, 5, 4) is ordered in the same way as (1, 3, 2). This is
illustrated in Figure 1. Ifπ does not containσ , it is said to
avoidσ .

Pattern avoiding permutations were firstly studied by
Donald Knuth who provided linear algorithm for
231-avoiding permutations. His algorithm is based on
single stack, he also proved that only 231-avoiding
permutations can be sorted by single stack.[1]

Pattern-avoiding permutations arise naturally in a
number of contexts. For example, the permutations

∗ Corresponding author e-mail:satybaldiyev.yernaz@gmail.com, sanzharorazbayev@gmail.com

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/aeta/040201


12 Y. Satybaldiyev, S. Orazbayev: Simple Linear Sorting Algorithm for 123-Avoiding Permutations

Fig. 2: Stack sorting the permutation 3214.

corresponding to riffle shuffling a deck of cards are
precisely those that avoid the pattern (3, 2, 1).[3]

Study of the Tamari poset can be done by 132-avoiding
permutations. And the Tamari poset is used in physics and
algebra. For details, see [5].

Many work related for sorting pattern avoiding
permutations did David Arthur. He proposed
”fast-sorting” algorithm for some class of pattern
avoiding permutations. His algorithm sorts input in O(n
log log log n) time.

3 Sorting Industry

In this section we will illustrate how patterns can be used
in the sorting industry.

3.1 Stack sortable permutations

A stack is a last-in first-out linear sorting device with
push and pop operations (also known as insert and
remove operations). In other words, a stack is a container
for a linear sequence (in our case, for a permutation) that
one is allowed to change by inserting new items (one at a
time) at its tail and by removing tail items (again, one at a
time). Initially the stack is empty and then a sequence of
insertions interleaved with removals is made. Thus an
input permutation is transformed thereby into an output
permutation.

The greedy algorithm we are interested in for stack
sorting a permutationπ = (π1,π2, ...,πn) works as
follows. We start with pushingπ1 onto the stack. Next, if
π2 < π1 then we pushπ2 onto the stack to be on top of
π1;on the other hand, ifπ2 > π1, we popπ1 off and letπ2
enter the stack. More generally, suppose, at some point,
the lettersπ1,π2, ...,πi have all been added to the stack
(some of them could be still in the stack, others have been
popped off), so we are readingπi+1. We pushπi+1 onto
the stack if and only ifπi+1 is less than the top element of
the stack (which is easily seen to beπi). Otherwise, we
pop elements off the stack, one by one, untilπi+1 is less
than the top remaining stack element and then we push
πi+1 onto the stack. When no more elements remain to be
pushed onto the stack, we pop off all elements of the
stack until it is empty. This produces a permutation S(π)
as output.[6] Look for illustration, Figure 2.

Above greedy algorithm is Knut’s algorithm and sorts
only 231-avoiding permutations.

Fig. 3: Sorting the permutation 2341 with deque.

Fig. 4: Sorting the permutation 4231 with deque.

3.2 Sorting by Deque

Deque is a linear collection that supports element
insertion and removal at both ends. The name deque is
short for ”double ended queue” and is usually pronounced
”deck”. A successful sorting of a permutation requires the
existence of a sequence involving the allowed operations
that leads to the increasing permutation. Of course, we
now have more possibilities to sort a permutation.For
example, the permutation 2341 requires three stacks in
series to be sorted while it can be sorted with a single
deque as shown in Figure 3.

On the other hand, not all permutations can be sorted
with deque as shown in Figure 4.

4 Symmetry of Patterns

4.1 Reversing

Let σ = (σ1,σ2, ...,σs)be an arbitrary pattern. Then, we
define the reverse pattern r(σ ) to be(σs,σs1, ...,σ1), if we
can sortσ -avoiding permutation then we can sort r(σ )-
avoiding permutation.

Ex. 5 4 2 3 1−−> 1 3 2 4 5

Proof. Simply reverse input permutation to obtain an
σ -avoiding permutation and then sort.

4.2 Taking Complement

Let σ = (σ1,σ2, ...,σs)be an arbitrary pattern. Then, we
define the complement pattern̄σ to be(s+1−σ1,s+1−
σ2, ...,s+ 1−σs), if we can sortσ -avoiding permutation
then we can sort̄σ -avoiding permutation.

Ex. 5 4 2 3 1−−> 1 2 4 3 5

Proof. Take complement of input permutation to
obtain anσ -avoiding permutation then sort.

c© 2015 NSP
Natural Sciences Publishing Cor.



Adv. Eng. Tec. Appl.4, No. 2, 11-14 (2015) /www.naturalspublishing.com/Journals.asp 13

Fig. 5: Illustration of algorithm for input (4 2 5 3 1).

4.3 Classification of Permutations with Length 3

There will left only two classes (1, 2, 3) and (2, 3, 1)
others will be derivatives of these two by above
symmetries or combination of them.

1.(1, 3, 2) - reverse(2, 3, 1)

2.(2, 1, 3) - complement(2, 3, 1)

3.(3, 1, 2) - reverse(complement(2, 3, 1))

4.(3, 2, 1) - reverse(1, 2, 3)

Donald Knuth provided simple one stack algorithm for
(2, 3, 1), below we will describe our algorithm for (1, 2, 3).

5 Simple Algorithm for 123-avoiding
Permutations

Algorithm use 2 stacks and in each stack we keep numbers
in descending order. So, for each number - x:

1.If stack1.isEmpty() or stack1[top]> x, put x to stack1
and go to next number

2.If stack2.isEmpty() or stack2[top]> x, put x to stack2
and go to next number

3.Alert that input is not 123-avoiding and break

At the end we will finish with 2 stack sorted in
descending order and we just merge these stacks to obtain
sorted sequence. Example:

input - [4 2 5 3 1]
stack1 - [4 2 1]
stack2 - [5 3]

Proof.

–If algorithm reaches step-3 it means that input is not
123-avoiding because stack2[top] is less than the last
number and there is a number in stack1 which is less
than stack2[top]. These three numbers form (1, 2, 3)
pattern.

–if algorithm doesn’t reach step-3, we will finish with 2
stacks sorted in descending order.

6 Generalization

Above simple linear algorithm for 123-avoiding
permutations can be easily generalized for
(12..k)-avoiding permutations that will use k-1 stacks, and
at the end we will get k-1 sorted stacks and will merge
them. But for k we must choose value smaller than log(n)
to ensure efficiency of algorithm.

7 Experiment with Donald Knuth’s
Algorithm

What if we apply repeatedly Knuth’s algorithm until we
get sorted array? How many iterations/runs it will need?
What is average, minimum, maximum of iterations? To
answer these questions we implemented Knuth’s
algorithm and got some results.

7.1 How Implemented?

We generated all possible permutations of fixed length and
apply the above algorithm to each of them.
Just recursively generated all possible permutations.

public void genPerm(int pos) {
if (pos == n) {

stackSort(a);
return;

}
for (int i=0; i<n; i++) if (!used[i])

{
a[pos] = i;
used[i] = true;
genPerm(pos+1);
used[i] = false;
a[pos] = -1;

}
}

And apply above algorithm until we get sorted array.
At the end, number of iterations is stored in variablesteps.

public void stackSort(int[] b) {
int[] a = b.clone();
int steps = 0;
System.err.print(Arrays.toString(a));
while (!isSorted(a)) {

a = apply(a);
steps++;

}
total+=steps;
max = Math.max(max, steps);
System.err.println(" " + steps);

}

Main stack-based algorithm.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


14 Y. Satybaldiyev, S. Orazbayev: Simple Linear Sorting Algorithm for 123-Avoiding Permutations

public int[] apply(int[] a) {
int[] st = new int[n];
int top = 0;
int[] b = new int[n];
int cur = 0;
for (int i=0; i<n; i++) {

while (top > 0 && a[i] > st[top-1])
{

b[cur++] = st[top-1];
top--;

}
st[top++] = a[i];

}

while (top > 0) {
b[cur++] = st[top-1];
top--;

}
return b;

}

7.2 Results

Table 1: Results of experiment on Knuth’s algorithm
Len Max Max inputs Avg # Total inputs
1 0 1 0 1
2 1 1 0.5 2
3 2 1 1.0 6
4 3 2 1.45 24
5 4 6 1.93 120
6 5 24 2.44 720
7 6 120 2.97 5040
8 7 720 3.52 40320
9 8 5040 4.09 362880
10 9 40320 4.67 3628800
11 10 362880 5.26 39916800
12 11 3628800 5.87 479001600

Surprizingly:

–Minimum iterations is easy - equal to 1
–Maximum iterations is 1 less than input length
–Number of inputs with maximum iterations is equal to
Factorial(input length - 2)

–Average number of iterations increases approximately
by 0.6

8 Conclusion

We described pattern avoiding permutations. Provided
simple linear sorting algorithm for 123-avoiding
permutations and did some experiment with Knuth’s

algorithm for sorting 231-avoiding permutations.
Pattern-avoiding inputs problem is a new field and there is
a great deal of opportunity for future work.[3]

References

[1] Donald E. Knuth, The art of computer programming,
Addison-Wesley vol. 1, 1973.

[2] Sergi, Elizalde, Statistics on Pattern-avoiding Permutations,
MIT. 2004

[3] David Arthur, Fast Sorting and Pattern-Avoiding
Permutations, Stanford University

[4] Joel Brewster Lewis, Alternating, pattern-avoiding
permutations, Feb 27, 2009.

[5] Marcelo Aguiar and Frank Sottile, strcuture of the loday-
ronco Hopf algebra of trees

[6] Kitaev S. Patterns in permutations and words, Springer 2011
[7] R. Arratia On the StanleyWilf conjecture for the number of

permutations avoiding a given pattern
[8] M. Bna Permutations avoiding certain patterns: The caseof

length 4 and some generalizations
[9] D. Marinov, R. Radoii Counting 1324-avoiding permutations
[10] F. R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., and M.

Kleiman, The number of Baxter permutations, J. Combin.
Theory Ser. A 24 (1978), no. 3, 382394.

Yernaz Satybaldiyev
received the bachelor degree
in Information Systems
at Kazakh-British Technical
University in Almaty. He has
several awards in olympiads
like Republican Olympiad in
Informatics, IOI, ACM-ICPC,
Russian Code Cup and Cotlin
Challenge. His main research

interests are: data structures, combinatorics, graph theory,
game theory and number theory.

Sanzhar Orazbayev
received the bachelor degree
in Computer Science and
Software at Kazakh-British
Technical University
in Almaty. He has several
awards in IMO, ACM-ICPC
and Imagine Cup. His
main research interests
are: combinatorics, sorting

algorithms, game theory and number theory.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction
	Pattern Avoiding Permutations
	Sorting Industry
	Symmetry of Patterns
	Simple Algorithm for 123-avoiding Permutations
	 Generalization 
	Experiment with Donald Knuth's Algorithm
	Conclusion

