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Abstract: Cumulative residual entropy (CRE) is a new measure of uaicgytfor continuous distributions which has been intrastlic

by Rao et al. 27] and its discrete version has been defined by Baratpour and B& The present paper addresses the question of
extending the definition of CRE and its dynamic version ta@bate setup in discrete case and study its properties. \0¥e giat the
proposed measure is invariance under increasing onegdransformation and has additive property. Also, a lowemlofor discrete
bivariate CRE based on Shannon entropy is obtained. Furibeg, we introduce scalar and vector bivariate dynamic CiEtheir
connections with well-known reliability measures suchtesdiscrete bivariate mean residual life time. Finally,bhvariate version of

the hazard rate, mean residual life and cumulative resiehiabpy are obtained for bivariate geometric distribution

Keywords: Entropy, Cumulative residual entropy, Bivariate hazare,r8ivariate mean residual life, Bivariate cumulativeidesl
life, Bivariate geometric distribution.

1 Introduction and Preliminaries

The Shannon entropy, which is the well known measure of daicdy and associated with a discrete integer-valued
life distribution, is introduced by Shanno81]. This measure is given by,

H(T) = —ti p(t)logp(t),

wherep(t) is a probability mass function and the base of logarithea(ise. natural logarithm) and also, 0log90.

Rao et al. 7] defined an alternative measure of uncertainty called cativelresidual entropy (CRE). This measure is
based on the cumulative distribution functirand is defined in the univariate case for non-negative coatia random
variableX as,

eX)=— /ooof(x) logF (x)dx,

whereF (x) = 1— F(x). They also provided some applications of it in reliabilitygtneering and computer vision. Rao
[26] developed some mathematical properties of CRE and gavianative formula for it. Many interesting properties
of CRE are given in a recent paper by Di Crescenzo and Longop@r

Recently, Asadi and Zohrevang] [proposed a dynamic form of CRE for continuous distribusiend obtain some of
its properties. They also showed how CRE and dynamic forn@RE (DCRE) are connected with well known reliability
measures such as mean residual lifetime. They introduceaidiz CRE with the form,

e(X,t):—/ @Iog@dx.
t F(t) F(t)
Nanda and Paull]7,18] defined some orderings and ageing properties in terms ofjyémeralized residual entropy
function. Navarro et al.19) obtained some new results on these functions. They alsoatkfind studied the dynamic
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cumulative past entropy function. For more discussion enpifoperties and generalization of (dynamic) CRE one may
refer to Abbasnejad et all], Kumar and Tanejall2], Navarro et al. 20], Sunoj and Linu 82], Khorashadizadeh et al.
[11], Psarrakos and Navarr@?], Navarro et al. 21] and Chamany and Baratpols][ among others.

In studying the reliability aspects of multi-componentteys with each component having a lifetime depending on the
lifetimes of the next, multivariate life distributions aeenployed. Reliability characteristics in the univariatse extend
to the corresponding multivariate version. Even though aflinterest has been evoked on the entropy of residualfife i
the univariate case, only few works seem to have been dorighehdimensions.

The works of Ahmed and Gokhalg][ Zografos B3], Darbellay and Vajdad], Rajesh and Naird3], Nadarajah and
Zografos [L5], Ebrahimi, et al. 8], Rajesh et al.24] and Sathar et al.29,30] focus attention on extending information
measures in higher dimensions.

Rejesh et al. 25] have proposed the bivariate dynamic CRE for absolutelyticoous distributions, through the
relationship,

E
e(X;ty,tp) = / X1,X2 log 04, % )dX 1dX%o.
th Jiy F tl,tz F(tl,tz)

They have studied some propertiessgX;ts,t>) and looked into the problem of characterizing certain batarmodels
using the functional form of the(X;ts,t). Further, they defined new classes of life distributionseldam this measure.
Also, Kundu and Kundul3] have studied the bivariate dynamic cumulative past egtrop

As we know, it is sometimes impossible or inconvenient to sneathe life length of a device, on a continuous scale.
In practice, we come across situations, where lifetime ahaag is considered to be a discrete random variable. Descre
failure data arise in several common situations such aswelo

—Reports on field failures are collected weekly, monthly, #mel observations are the number of failures, without
specification of the failure times.

—A piece of equipment operates in cycles and the experimebtarves the number of cycles successfully completed
prior to failure. For example the life length of many devigesndustry such as switches and mechanical devices
depend on the number of times that the devices are turnedaff or

—An experimenter often discretizes or groups continuoua.dat

So, studying the discrete life time random variables is drte@essential subject in reliability literature. Followi this
idea, the discrete version of the CRE (d-CRE) have been defigeBaratpour and Bam#] for non-negative integer
valued random variabl€, as

- ti)f(t) logF(t). (1)

They have studied some properties of the€ T ) and showed that it is connected with some well-known measueh as
discrete mean residual lifetime.

Let T = (T1,T2) be bivariate discrete non-negative integer random vaiabth joint probability mass function
p(t1,t2), joint survival functionF(t1,t2), marginal probability mass functiongi(ti);i = 1,2 and marginal survival
functionsFi(t), i =1,2.

Nair and Asha 6] defined the bivariate hazard rate function by

h(T) =h(T1,T2) = (he(T),h2(T)), (2)
where -
ha(T) = h(te,t2) = P(To = [T > t) = 1— %
ho(T) = ha(ta, to) = P(To = to[T > 1) = 1— %

They have derived various classes of increasing failuee (I&R) and decreasing failure rate (DFR) models. The failur
rateh(T) determines the distribution df uniquely through the formula

t1—1 to—1
E(tl,tz) = rL[l —hi(ty —r—1,tp)] x I_L[l— ha(0,tp —r —1)].

The discrete bivariate mean residual life functions hawentoefined by RoyJ8] as below,

my(t,tr) = E(Ty —tgTe > 11, To > 1), (3
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mp(ty,t) = E(To—to| Ty > 11, To > to).
Where we showed that tma (t1,t2),i = 1,2 can be expressed by survival function as follow,

zf():Il z(J?o=t2(i _tl)p(la J) il
11,10) = = —1th-—
Mt t) Flti—1t—1) tl—ltz— Z 2=1)
and similarly,
t1,t S T F -1,
rT}Z( 1, 2) F(tl—ltz z J

Jtz

In this paper we define the scalar and vector version of latediscrete dynamic cumulative residual entropy and show
that it is invariant under increasing one-to-one transtiams. Then, it is shown that the proposed measure hasweddit
property. Also, its relations with Shannon entropy and sarak-known reliability measures are obtained.

2 Main Results

In this section we look into the problem of extendiriy {0 the bivariate setup. A natural extension dfis given by the
following definition.

Definition 1. Let T = (T, T,) be a non-negative integer valued bivariate random vectibr suirvival functionF (t;,t,).
We define the bivariate d-CRE through the relationship,

[ee] [ee]

de (Tl,Tz Z Z F tl,tz |OgF(t1,t2) 4)
=ot/=

In the next theorem we show that the bivariate d-CRE define@jnis invariant under non-singular increasing
transformations which is different in continuous case, eheajesh et al.g5] have established that the bivariate CRE in
continuous lifetime distributions is not influenced by ngingular increasing transformations.

Theorem 1.1f Kj = ®;(T;), j = 1,2, are increasing and one-to-one transformations, witftesponding survival function
G(ky,k2) and bivariate d-CREe (K1, Ky), then

de(Kq,Ka) = de(Ty, To).
Proof: Via transformatiorK; = ®;(Tj), j = 1,2 we have,

G(kg, ko) = P(Ty > &7 (ke), T2 > &5 (k)
=F(0 Y (ke), @5 (ko).

Now, we have,

Py(e0)  Py(w) o
dE(KlaKZ) = - z Z G(klakZ) |OgG(klak2)
ko=®,(0) ky=®1(0)
=- 3 > Flttp)logF(ty,tz)
tp=0t;=0
= dE(Tl,Tz),

which shows that the d-CRHEYis invariant under the increasing transformation.
Ebrahimi et al. 8] has shown that bivariate residual entropy has the additivperty. In the following theorem, we
show that this property holds good for our proposed bivatbCRE also.

Theorem 2.If T; andT, are independent, then
de(Ty, T2) = pade(Tz) + pede(Ty),

wherey; = E(Ty),i =1,2.
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Proof: Using definition of d-CRE, we have,

de(Ty, T2) = — g i F(ty,t2)logF (t1,t2)
to=0t;=0
== io iofl(tl)fz(tz)Iog[fl(tl)Fz(tz)]
ty=0t;=
5 i 1(t1) |OgF1 (t1)

t2=0 1=0

Z E tl Z Fz tz |OgF2(t2)
0

1= tr=

8

M s

Fal(tz)de(Ty) + z Fi(t)de(T2)
to=0 t1=0

= E(Tl)dE(Tz) + E(Tz)dE(Tl),
which complete the prodf]
In particular if T; andT, are independent and both are having the same expectattbe above relation becomes
de(Ty, T2) = p[de(T) +de(Ta)].

Example 1.Among many bivariate geometric distributions there is athmental one defined by Hawkd9[ and Esary
and Marshall 9], as follows. Suppose thdi andT, are bivariate random variables taking values in the{6¢t, 2, ...}.
ThenT = (T4, T,) is said to have a bivariate geometric distribution if itsvéual function be as follow,

Flt,tp) = pipz0m@tl); 0<p<1,pf<1,0<B<1i=12 (5)

This distribution has geometric marginal, and it is a diseemalogue of the bivariate exponential distributionddtrced
by Marshall and Olkin14]. For this distribution we obtained the bivariate hazate fanction of form 2) as follow,

1—pi6, tg >t

i) = {3 RS2 ©
1-p20, >t

relte) = { 3722 @

We see that despite the univariate, in bivariate case thertiaate function of bivariate geometric distribution offrfo(5)
is not constant.
Also, the bivariate mean residual life of fort)(in this distribution is given by,

pll—tl pz—tz el—max(tbtz)

t1,10) =
my (tg,to) 1- 10 ;
pl—tl pzl—tz el—max(tbtz)
t1,t0) = .
mp(t1,to) 1- 10

Furthermore, we obtain the bivariate d-CRE as follows,
de(Ty, T2) = In(p1)As + In(p2) Az + In(0)Ag,

where,
A = 26°p2ps® — 92D1—392p1— 6%p2p1+2p," — (Zeplpz)’1+27
(Op1—1)"(6p2—1)(6p2p1—1)
P — — 1-26p2p1 . i (O po—1)2 L,
(0p1—1)0p2p1(6p2p1—1)° =0
As— —1—26°p2%p1> + pa?p2? (14 p2+ p1) 0%+ 463p,2pa?

P1p26 (8 p1—1)% (8 p2— 1)* (8 pop1 — 1)°
n —3p1(P2+ P1+4/3) P26+ ((2p2+2) pL+2p2) 0
PLP26 (6 p1—1)% (0 p2— 1) (8 pop1— 1)°
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which is not a simple form.
Next theorem describes the connection between marginalr®maentropies ande(T1,T2) and also gives a lower
bound for discrete bivariate CRE.

Theorem 3.For a nonnegative integer valued bivariate random vetter(T;, Ty),

de(Ty, To) > max{KeH (M) Kyell(T2)1

where

Ky =exp{ Ep ( > F(Tut)| |09F(T1at2)|> }
t:

(2
-
)

and

8

Ex ( > Flt,T2)| |09F(t1,T2)|> }

=0

Proof: Using log-sum inequality we have:

[ee]

p1(ty)
t1)lo
tlZO <p1( v e Fltn.k) 10gF (tr, )|

> Sti—o P1(t1)
> t1) ]I L —
- <zo Pt ) S ot oF (L) 10gF (t.tz)]

The left hand side is equal to
—H(Tl) —E; < Z E(Tl,t2)| |OgE(T1,t2)|> ,
t,=0

which gives
de(Ty, Tp) > KleH<T1).

Similarly we havede(Ty, T,) > KoeH(T2) and the prove is completed.

3 Bivariate dynamic cumulative residual entropy

In the same way of other extentions, we can define the disdyet@mic CRE of form1) as,

< F(@) (i)
de(T,t) =-3% = log= 8
£(T.1) 2 Fi-1 YFi-n’ (8)
wheredg(T,0) = de(T). In terms of discrete mean residual lifgt) = E(T —t|T >t) = zﬁt‘ <;) we can write 8) as,
1 0

de(T,t) =m(t)logF(t —1) — F(i)logF(i).

If T =(Ty,T,) represents the lifetimes of two components in a system whette the components survived up to
timest; andty, respectively, then, the measure of uncertainty assatisitl the residual lifetimes of the system, called
bivariate dynamic CRE, is given by

o < F(i,j)
£(ty,t) — . 9
W) ==2 2 tl—ltz—l) Flu-1t-1) ©)
If T, andT, are independent then we have:
de(ty,t2) = my(ty)de(T2, t2) 4+ mp(t2)de(Ty, 1), (10)
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wherem;(tj) = t O Y, Fi(j) are the marginal discrete mean residual life of the compisiign = 1,2.

In pamcular |le andT, are independent and both are having the same discrete msduaidife m(t), the above
relation becomes
de(ty,t2) = m(t)[de(T2, t2) + de(Ta, t)].

Corollary 1. Similar to Theorem 1. it is easy to show thdf(ty,tz) is invariant under non-singular increasing
transformations.

4 Conditional discrete dynamic CRE

Now, we investigate the behavior of the dCRE for conditiafisiributions. Consider the random variabigs= [T;| T, >
t1, T > to]. The distribution oiK; corresponds the conditional distributionBfprovided thafl; has survived up to time

t, i =1, 2, and has reliability functlo% fork, >t andtli’kz)> for ko > tp. The discrete dynamic CRE for

1t
the random variables;, j =1, 2 are equaI to

Flit) F(i,tz)

— 11
tl—ltz—l) F(tl—l,tz—l)’ (11)

Ms

dei(ty,to) =

and _
dea(to.ty) = F(ty,]) log F(t1,])) .
F (t1— Lt —1) Fti—1,t,—1)

Analogous to definitions of bivariate dlscrete hazard rae livariate discrete mean residual life as a two component
vector, we give another definition of vector discrete biatridynamic CRE.

Definition 2. For a non-negative integer valued bivariate random veEter(Ty, T,), vector bivariate dynamic CRE is

defined as
de(ty,tp) = (deg(t1,t2), dea(ty, 12)), (13)

wheredg; (t1,t2) anddex(ty,tp) are given by {1) and (L2), respectively.

dep(t1,t2) measures expected uncertainty contained in random varfabdbout the predictability of the residual
lifetime of the component, aftéy, subject to the revision thdk has survived up to time. This interpretation can be said
for de(ta,t2), similarly.
Corollary 2. If T and T, are independent, we ha¥g = [Tj|T1 > t1,T> > to] = [Tj|T; > tj;j = 1,2], thendg(ty,t2) =
de(Ti,t);i=1,2.

Also, dey (tg,t2) anddex(ta,t2) (given by Eq's (1) and (L2)) can be written in terms of discrete bivariate mean redidua
life (3) as,

(12)

_ = E(it) _
dex(tr,t2) = my(ty, 1) logF (t1 — L, — 1) — § =——2——logF(i,tp),
1(tr,t2) = Mty t2) logF (t — 1,12 — 1) 2 Flt 1t 1) gF(i.t2)
and .
dez(t1,tp) = mp(ty, t2) logF (ty — 1t — 1) Z = t1—1 tz— )|09F(t1,J)-

5 Conclusion

According to importance of the discrete random variablekalso the bivariate set up in reliability studies, we pragubs

a discrete version of (dynamic) cumulative residual entrapd some of its properties are discovered which some of
them are different form continuous case. Also a lower boundbivariate CRE and its connections with other reliability
measures has obtained. Finally, an example of bivariatmga@ distribution is presented.
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