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Abstract: Cumulative residual entropy (CRE) is a new measure of uncertainty for continuous distributions which has been introduced
by Rao et al. [27] and its discrete version has been defined by Baratpour and Bami [4]. The present paper addresses the question of
extending the definition of CRE and its dynamic version to bivariate setup in discrete case and study its properties. We show that the
proposed measure is invariance under increasing one-to-one transformation and has additive property. Also, a lower bound for discrete
bivariate CRE based on Shannon entropy is obtained. Furthermore, we introduce scalar and vector bivariate dynamic CRE and their
connections with well-known reliability measures such as the discrete bivariate mean residual life time. Finally, thebivariate version of
the hazard rate, mean residual life and cumulative residualentropy are obtained for bivariate geometric distribution.

Keywords: Entropy, Cumulative residual entropy, Bivariate hazard rate, Bivariate mean residual life, Bivariate cumulative residual
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1 Introduction and Preliminaries

The Shannon entropy, which is the well known measure of uncertainty and associated with a discrete integer-valued
life distribution, is introduced by Shannon [31]. This measure is given by,

H(T ) =−
∞

∑
t=0

p(t) logp(t),

wherep(t) is a probability mass function and the base of logarithm ise (i.e. natural logarithm) and also, 0 log0= 0.
Rao et al. [27] defined an alternative measure of uncertainty called cumulative residual entropy (CRE). This measure is

based on the cumulative distribution functionF and is defined in the univariate case for non-negative continuous random
variableX as,

ε(X) =−
∫ ∞

0
F(x) logF(x)dx,

whereF(x) = 1−F(x). They also provided some applications of it in reliability engineering and computer vision. Rao
[26] developed some mathematical properties of CRE and gave an alternative formula for it. Many interesting properties
of CRE are given in a recent paper by Di Crescenzo and Longobardi [7].

Recently, Asadi and Zohrevand [3] proposed a dynamic form of CRE for continuous distributions and obtain some of
its properties. They also showed how CRE and dynamic forms ofCRE (DCRE) are connected with well known reliability
measures such as mean residual lifetime. They introduced dynamic CRE with the form,

ε(X , t) =−

∫ ∞

t

F(x)

F(t)
log

F(x)

F(t)
dx.

Nanda and Paul [17,18] defined some orderings and ageing properties in terms of thegeneralized residual entropy
function. Navarro et al. [19] obtained some new results on these functions. They also defined and studied the dynamic
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cumulative past entropy function. For more discussion on the properties and generalization of (dynamic) CRE one may
refer to Abbasnejad et al. [1], Kumar and Taneja [12], Navarro et al. [20], Sunoj and Linu [32], Khorashadizadeh et al.
[11], Psarrakos and Navarro [22], Navarro et al. [21] and Chamany and Baratpour [5], among others.

In studying the reliability aspects of multi-component system with each component having a lifetime depending on the
lifetimes of the next, multivariate life distributions areemployed. Reliability characteristics in the univariate case extend
to the corresponding multivariate version. Even though a lot of interest has been evoked on the entropy of residual life in
the univariate case, only few works seem to have been done in higher dimensions.

The works of Ahmed and Gokhale [2], Zografos [33], Darbellay and Vajda [6], Rajesh and Nair [23], Nadarajah and
Zografos [15], Ebrahimi, et al. [8], Rajesh et al. [24] and Sathar et al. [29,30] focus attention on extending information
measures in higher dimensions.

Rejesh et al. [25] have proposed the bivariate dynamic CRE for absolutely continuous distributions, through the
relationship,

ε(X ; t1, t2) =−

∫ ∞

t2

∫ ∞

t1

F(x1,x2)

F(t1, t2)
log

F(x1,x2)

F(t1, t2)
dx1dx2.

They have studied some properties ofε(X ; t1, t2) and looked into the problem of characterizing certain bivariate models
using the functional form of theε(X ; t1, t2). Further, they defined new classes of life distributions based on this measure.
Also, Kundu and Kundu [13] have studied the bivariate dynamic cumulative past entropy.

As we know, it is sometimes impossible or inconvenient to measure the life length of a device, on a continuous scale.
In practice, we come across situations, where lifetime of a device is considered to be a discrete random variable. Discrete
failure data arise in several common situations such as below,

–Reports on field failures are collected weekly, monthly, andthe observations are the number of failures, without
specification of the failure times.

–A piece of equipment operates in cycles and the experimenterobserves the number of cycles successfully completed
prior to failure. For example the life length of many devicesin industry such as switches and mechanical devices
depend on the number of times that the devices are turned on oroff.

–An experimenter often discretizes or groups continuous data.

So, studying the discrete life time random variables is one of the essential subject in reliability literature. Following this
idea, the discrete version of the CRE (d-CRE) have been defined by Baratpour and Bami [4] for non-negative integer
valued random variableT , as

dε(T ) =−
∞

∑
t=0

F(t) logF(t). (1)

They have studied some properties of thedε(T ) and showed that it is connected with some well-known measures such as
discrete mean residual lifetime.

Let T = (T1,T2) be bivariate discrete non-negative integer random variable with joint probability mass function
p(t1, t2), joint survival functionF(t1, t2), marginal probability mass functionspi(ti); i = 1,2 and marginal survival
functionsF i(ti), i = 1,2.
Nair and Asha [16] defined the bivariate hazard rate function by

h(T) = h(T1,T2) = (h1(T),h2(T)), (2)

where

h1(T) = h1(t1, t2) = P(T1 = t1|T ≥ t) = 1−
F(t1+1, t2)

F(t1, t2)
,

h2(T) = h2(t1, t2) = P(T2 = t2|T ≥ t) = 1−
F(t1, t2+1)

F(t1, t2)
.

They have derived various classes of increasing failure rate (IFR) and decreasing failure rate (DFR) models. The failure
rateh(T) determines the distribution ofT uniquely through the formula

F(t1, t2) =
t1−1

∏
r=0

[1− h1(t1− r−1, t2)]×
t2−1

∏
r=0

[1− h2(0, t2− r−1)].

The discrete bivariate mean residual life functions have been defined by Roy [28] as below,

m1(t1, t2) = E(T1− t1|T1 ≥ t1,T2 ≥ t2), (3)

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 2, 249-255 (2016) /www.naturalspublishing.com/Journals.asp 251

m2(t1, t2) = E(T2− t2|T1 ≥ t1,T2 ≥ t2).

Where we showed that themi(t1, t2), i = 1,2 can be expressed by survival function as follow,

m1(t1, t2) =
∑∞

i=t1 ∑∞
j=t2(i− t1)p(i, j)

F(t1−1, t2−1)
=

1

F(t1−1, t2−1)

∞

∑
i=t1

F(i−1, t2−1),

and similarly,

m2(t1, t2) =
1

F(t1−1, t2−1)

∞

∑
j=t2

F(t1−1, j−1).

In this paper we define the scalar and vector version of bivariate discrete dynamic cumulative residual entropy and show
that it is invariant under increasing one-to-one transformations. Then, it is shown that the proposed measure has additive
property. Also, its relations with Shannon entropy and somewell-known reliability measures are obtained.

2 Main Results

In this section we look into the problem of extending (1) to the bivariate setup. A natural extension of (1) is given by the
following definition.

Definition 1. Let T = (T1,T2) be a non-negative integer valued bivariate random vector with survival functionF(t1, t2).
We define the bivariate d-CRE through the relationship,

dε(T1,T2) =−
∞

∑
t2=0

∞

∑
t1=0

F(t1, t2) logF(t1, t2). (4)

In the next theorem we show that the bivariate d-CRE defined in(4) is invariant under non-singular increasing
transformations which is different in continuous case, where Rajesh et al. [25] have established that the bivariate CRE in
continuous lifetime distributions is not influenced by non-singular increasing transformations.

Theorem 1.If K j = Φ j(Tj), j = 1,2, are increasing and one-to-one transformations, with corresponding survival function
G(k1,k2) and bivariate d-CREdε(K1,K2), then

dε(K1,K2) = dε(T1,T2).

Proof: Via transformationK j = Φ j(Tj), j = 1,2 we have,

G(k1,k2) = P(T1 > Φ−1
1 (k1),T2 > Φ−1

2 (k2))

= F(Φ−1
1 (k1),Φ−1

2 (k2)).

Now, we have,

dε(K1,K2) = −
Φ2(∞)

∑
k2=Φ2(0)

Φ1(∞)

∑
k1=Φ1(0)

G(k1,k2) logG(k1,k2)

= −
∞

∑
t2=0

∞

∑
t1=0

F(t1, t2) logF(t1, t2)

= dε(T1,T2),

which shows that the d-CRE (4) is invariant under the increasing transformation.�

Ebrahimi et al. [8] has shown that bivariate residual entropy has the additiveproperty. In the following theorem, we
show that this property holds good for our proposed bivariate d-CRE also.

Theorem 2.If T1 andT2 are independent, then

dε(T1,T2) = µ1dε(T2)+ µ2dε(T1),

whereµi = E(Ti), i = 1,2.
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Proof: Using definition of d-CRE, we have,

dε(T1,T2) = −
∞

∑
t2=0

∞

∑
t1=0

F(t1, t2) logF(t1, t2)

= −
∞

∑
t2=0

∞

∑
t1=0

F1(t1)F2(t2) log[F1(t1)F2(t2)]

= −
∞

∑
t2=0

F2(t2)
∞

∑
t1=0

F1(t1) logF1(t1)

−
∞

∑
t1=0

F1(t1)
∞

∑
t2=0

F2(t2) logF2(t2)

=
∞

∑
t2=0

F2(t2)dε(T1)+
∞

∑
t1=0

F1(t1)dε(T2)

= E(T1)dε(T2)+E(T2)dε(T1),

which complete the proof.�
In particular ifT1 andT2 are independent and both are having the same expectationµ , the above relation becomes

dε(T1,T2) = µ [dε(T2)+ dε(T1)].

Example 1.Among many bivariate geometric distributions there is a fundamental one defined by Hawkes [10] and Esary
and Marshall [9], as follows. Suppose thatT1 andT2 are bivariate random variables taking values in the set{0,1,2, . . .}.
ThenT = (T1,T2) is said to have a bivariate geometric distribution if its survival function be as follow,

F(t1, t2) = pt1
1 pt2

2 θ max(t1,t2); 0< pi < 1, piθ < 1,0< θ < 1, i = 1,2. (5)

This distribution has geometric marginal, and it is a discrete analogue of the bivariate exponential distribution introduced
by Marshall and Olkin [14]. For this distribution we obtained the bivariate hazard rate function of form (2) as follow,

h1(t1, t2) =

{

1− p1θ , t1 ≥ t2
1− p1, t1 < t2

(6)

h2(t1, t2) =

{

1− p2θ , t2 ≥ t1
1− p2, t2 < t1

(7)

We see that despite the univariate, in bivariate case the hazard rate function of bivariate geometric distribution of form (5)
is not constant.

Also, the bivariate mean residual life of form (3) in this distribution is given by,

m1(t1, t2) =
p1

1−t1 p2
−t2θ 1−max(t1,t2)

1− p1θ
,

m2(t1, t2) =
p1

−t1 p2
1−t2θ 1−max(t1,t2)

1− p2θ
.

Furthermore, we obtain the bivariate d-CRE as follows,

dε(T1,T2) = ln(p1)A1+ ln(p2)A2+ ln(θ )A3,

where,

A1 =
2θ 3p2p1

2−θ 2p1−3θ p1−θ 2p2p1+2p−1
2 − (θ p1p2)

−1+2

(θ p1−1)2 (θ p2−1)(θ p2p1−1)2
,

A2 = −
1−2θ p2p1

(θ p1−1)θ p2p1 (θ p2p1−1)2
−

∞

∑
t2=0

(t2θ p2−1)t2−1 ,

A3 = −
−1−2θ 5p2

3p1
3+ p1

2p2
2 (1+ p2+ p1)θ 4+4θ 3p2

2p1
2

p1p2θ (θ p1−1)2 (θ p2−1)2 (θ p2p1−1)2

+
−3p1(p2+ p1+4/3) p2θ 2+((2p2+2) p1+2p2)θ

p1p2θ (θ p1−1)2 (θ p2−1)2 (θ p2p1−1)2
,
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which is not a simple form.
Next theorem describes the connection between marginal Shannon entropies anddε(T1,T2) and also gives a lower

bound for discrete bivariate CRE.

Theorem 3.For a nonnegative integer valued bivariate random vectorT = (T1,T2),

dε(T1,T2)≥ max{K1eH(T1),K2eH(T2)},

where

K1 = exp

{

E1

(

∞

∑
t2=0

F(T1, t2)| logF(T1, t2)|

)}

,

and

K2 = exp

{

E2

(

∞

∑
t1=0

F(t1,T2)| logF(t1,T2)|

)}

.

Proof: Using log-sum inequality we have:

∞

∑
t1=0

(

p1(t1) log
p1(t1)

∑∞
t2=0 F(t1, t2)| logF(t1, t2)|

)

≥

(

∞

∑
t1=0

p1(t1)

)

log
∑∞

t1=0 p1(t1)

∑∞
t2=0 ∑∞

t1=0 F(t1, t2)| logF(t1, t2)|

= log
1

dε(T1,T2)
.

The left hand side is equal to

−H(T1)−E1

(

∞

∑
t2=0

F(T1, t2)| logF(T1, t2)|

)

,

which gives
dε(T1,T2)≥ K1eH(T1).

Similarly we havedε(T1,T2)≥ K2eH(T2), and the prove is completed.

3 Bivariate dynamic cumulative residual entropy

In the same way of other extentions, we can define the discretedynamic CRE of form (1) as,

dε(T, t) =−
∞

∑
i=t

F(i)

F(t −1)
log

F(i)

F(t −1)
, (8)

wheredε(T,0) = dε(T ). In terms of discrete mean residual lifem(t) = E(T − t|T ≥ t) = ∑∞
i=t F(i)

F(t−1)
we can write (8) as,

dε(T, t) = m(t) logF(t −1)−
1

F(t −1)

∞

∑
i=t

F(i) logF(i).

If T = (T1,T2) represents the lifetimes of two components in a system whereboth the components survived up to
timest1 andt2, respectively, then, the measure of uncertainty associated with the residual lifetimes of the system, called
bivariate dynamic CRE, is given by

dε(t1, t2) =−
∞

∑
i=t1

∞

∑
j=t2

F(i, j)

F(t1−1, t2−1)
log

F(i, j)

F(t1−1, t2−1)
. (9)

If T1 andT2 are independent then we have:

dε(t1, t2) = m1(t1)dε(T2, t2)+m2(t2)dε(T1, t1), (10)

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


254 M. Khorashadizadeh, G. Borzadaran: Discrete (dynamic) CREin bivariate case

wheremi(ti) = 1
F i(ti−1) ∑∞

j=ti F i( j) are the marginal discrete mean residual life of the componentsTi; i = 1,2.

In particular if T1 andT2 are independent and both are having the same discrete mean residual life m(t), the above
relation becomes

dε(t1, t2) = m(t)[dε(T2, t2)+ dε(T1, t1)].

Corollary 1. Similar to Theorem 1. it is easy to show thatdε(t1, t2) is invariant under non-singular increasing
transformations.

4 Conditional discrete dynamic CRE

Now, we investigate the behavior of the dCRE for conditionaldistributions. Consider the random variablesK j = [Tj|T1 ≥
t1,T2 ≥ t2]. The distribution ofK j corresponds the conditional distribution ofTj provided thatTi has survived up to time

ti, i = 1, 2, and has reliability function F(k1,t2)
F(t1−1,t2−1)

for k1 ≥ t1 and F(t1,k2)
F(t1−1,t2−1) for k2 ≥ t2. The discrete dynamic CRE for

the random variablesK j, j = 1, 2 are equal to

dε1(t1, t2) =−
∞

∑
i=t1

F(i, t2)

F(t1−1, t2−1)
log

F(i, t2)

F(t1−1, t2−1)
, (11)

and

dε2(t1, t2) =−
∞

∑
j=t2

F(t1, j)

F(t1−1, t2−1)
log

F(t1, j)

F(t1−1, t2−1)
. (12)

Analogous to definitions of bivariate discrete hazard rate and bivariate discrete mean residual life as a two component
vector, we give another definition of vector discrete bivariate dynamic CRE.

Definition 2. For a non-negative integer valued bivariate random vectorT = (T1,T2), vector bivariate dynamic CRE is
defined as

dε(t1, t2) = (dε1(t1, t2),dε2(t1, t2)), (13)

wheredε1(t1, t2) anddε2(t1, t2) are given by (11) and (12), respectively.
dε1(t1, t2) measures expected uncertainty contained in random variable T1 about the predictability of the residual

lifetime of the component, aftert1, subject to the revision thatT2 has survived up to timet2. This interpretation can be said
for dε2(t1, t2), similarly.

Corollary 2. If T1 andT2 are independent, we haveK j = [Tj|T1 ≥ t1,T2 ≥ t2] = [Tj|Tj ≥ t j; j = 1,2], thendεi(t1, t2) =
dε(Ti, ti); i = 1,2.

Also, dε1(t1, t2) anddε2(t1, t2) (given by Eq’s (11) and (12)) can be written in terms of discrete bivariate mean residual
life (3) as,

dε1(t1, t2) = m1(t1, t2) logF(t1−1, t2−1)−
∞

∑
i=t1

F(i, t2)

F(t1−1, t2−1)
logF(i, t2),

and

dε2(t1, t2) = m2(t1, t2) logF(t1−1, t2−1)−
∞

∑
j=t2

F(t1, j)

F(t1−1, t2−1)
logF(t1, j).

5 Conclusion

According to importance of the discrete random variables and also the bivariate set up in reliability studies, we proposed
a discrete version of (dynamic) cumulative residual entropy and some of its properties are discovered which some of
them are different form continuous case. Also a lower bound for bivariate CRE and its connections with other reliability
measures has obtained. Finally, an example of bivariate geometric distribution is presented.
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