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Abstract: The phenomenology related to the exceptional groups of string theory will be reviewed. A known success of theE6 model
is an accurate prediction of the Weinberg angle. Spontaneous symmetry breaking produces scalar and fermion fields that do not belong
to the lepton and quark multiplets, and therefore, a description of the standard model is likely to be derived from a groupof less
dimension. A comparison with theories that contain compactgroups, which are subgroups of the ten-dimensional Lorentzgroup, is
given. Following the reduction of a twelve-dimensional theory, governing the ten-dimensional superstring and heterotic string effective

actions in ten dimensions, over the coset manifoldG2×SU(2)×U(1)
SU(3)×U(1)′×U(1)′′ , or eleven-dimesional supergravity over the compact spaceMklm,

the renormalization group flow of the couplings is found to give the approximate value ofsin2θW only for a certain ratio of the
hypercharge to nonabelian gauge couplings, which is found to require modification at supersymmetric scales. The isometry groups of
these coset spaces arise from geometrical considerations,while a unique connection with the larger exceptional groupis introduced
through the intersection form of the manifold in four dimensions.
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1 Introduction

Anomaly cancellation at leading order in the powers of
the curvature in heterotic string theory can be achieved
initially through the introduction of the groupsSO(32) or
E8 × E8. There are other anomalies that arise at the
next-to-leading order, and the phenomenology of theories
with a residual symmetry may be determined. After the
identification of one of the factors ofE8 with gravitational
connection, the other factor ofE8 may be reduced toE6
on compact spaces with SU(3) holonomy, preserving
N = 2 supersymmetry [1]. An E6 gauge symmetry also
would be achieved by the dimensional reduction of the
heterotic string effective action over the coset space
G2/SU(3) [2].

Although the dimension of this group is larger than
the maximum dimension of groups with an effective
pointwise action on a four-dimensional manifold [3], its
phenomenological viability is verified in the unique
theoretical prediction of the value of the Weinberg angle
[4]. This grand unified theory, however, contains many
symmetry breaking patterns which yield massive scalar

fields. A large number of experiments have been
conducted to establish the Higgs boson mass for the
electroweak model [5] , and there is almost no evidence
of additional massive Higgs scalar fields.

A check of the matter multiplets the reduction of the
E6 supergravity in ten dimensions to four dimensions
yields three massless scalar fields [6]. The existence of
these massless fields has not been confirmed. The
fermions produced also do not match the lepton and quark
multiplets of the standard model. There are too many
particles arising from the symmetry breaking of this large
group. A description of the elementary particle
interactions, however, does exist in a model derived from
the Clifford algebra with a division algebra module that is
a direct sum of a tensor product ofC, H and O. The
Clifford algebra corresponding to this tensor product is
R1,9 and the space of products of two elements is the
Lorentz groupSO(1,9) [7].

The problem of determining the symmetries relevant
to elementary particle physics then may be considered.
The Lorentz group this symmetry of Type II superstrings,
where exceptional groups are not necessary. The
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reduction of this symmetry to subgroups coinciding with
the standard model gauge groups also exists. By requiring
invariance of certain elements and idempotent conditions
on the representation of the algebra, a projection to
known gauge groups of the standard model is derived [7].

2 Geometry and the Allowed Groups

The location of a particle may be distinguished from the
remainder of space-time. However, since it is a point
particle, its location may be included in a continuous
manifold, and the functional space on the complement
can be completed from a dense subset of that on the
union, which is necessary for the a consistent limit of a
quantum theory. The conditions on a manifold, therefore,
will be relevant for a point particle, and the gauge group
action could be interpreted as a localization of a transitive
group action on a manifold at a point. Specifically, the
admission of the effective action of a compact group of
dimension less than ten in four dimensions is equivalent
to a limit on the dimension of the gauge groups acting at
the location of a point particle. The symmetry groups of
point-particle limits of quantum theories, therefore, will
be required to satisfy this bound.

It has been proven that the allowed effective compact
group actions on a four-dimensional manifold have
dimensions less than or equal to 10 [3]. The gauge groups
of the standard model all satisfy the inequality, whereas
the dimensions of the exceptional groups exceed this
bound. The potentials of a gauge theory may be identified
with the components of a vector field in the vertical
subspace of a bundle. A connection in a fibre bundle is
given by a choice of the horizontal subspace of the total
space of the bundle at each point on the base manifold.
The tangent bundle of a four-manifoldM that may be
approximated in a local neighbourhood by a submanifold
of S4 has a subbundleTΣ ×R, whereΣ is a hypersurface
in M, which can be described by a Pfaffian system of
differential equations that have aG2 symmetry [8]. The
maximal dimension of a group acting effectively on the
the bundleT Σ ×R is 28.

An analogous bound for the maximal dimension of a
pointwise effective compact group on a ten-dimensional
manifold would be 55. WhileG2, F4 andSO(1,9) satisfy
this inequality, the dimension ofE6 may be considered to
be too large for a pointwise effective action to be supported
by a ten-dimensional manifold [?]. With the inclusion of
tangent vectors, the dimension of the natural bundle on the
manifold is increased to 190. The point-particle limit of
gauge theories in ten dimensions then would allowE6×E8
and notE8×E8.

3 The Phenomenological Gauge Groups and
the E6 Symmetry

Supersymmetric theories with anE6 gauge symmetry
have been investigated with regard to phenomenological
viability. Given a choice of the intermediate gauge group
in the pattern of symmetry breaking, which may involve
more than one scale [10], the number of multiplets of the
reduced groups can be evaluated from the initial27
representations ofE6.

It has been demonstrated that an asymmetric orbifold
in heterotic string theory yields a different number of
fermion and anti-fermion generations [11] , which is not
physically realistic. Different partition functions withan
E6 symmetry can be constructed, although these models
are not viable because certain gauge symmetries are not
included [12].

It follows that the theories withE6 symmetry and
supersymmetry may not form an adequate basis for
phenomenology. The symmetry breaking pattern ofE6
can be described without supersymmetry because the
source of the symmetry is not necessarily a
supersymmetric field theory. Instead, it may be included
in the isometry group of the subbundle of the tangent
bundle to a ten-dimensional manifold and could arise
from the intersection form of infinite-genus surfaces with
nonsmooth boundaries [11].

The preference for a theory which does not have a
generalE6 invariance in four dimensions follows from
elementary particle phenomenology. Instead, it would be
sufficient to have a viable model based on symmetries
that can be reduced to the standard model together with a
mechanism for introducing the larger exceptional group
symmetry for a specific parameter such assin2θW . The
following results have been proven [13]:

1.Infinite-genus surfaces can have nonplanar ends.
2.The metric structure of the infinite-genus surface is

not smooth when the capacity of the ideal boundary is
nonvanishing.

3.Equality of the integral over the wedge product of the
curvature and its dual with the signature of anE8
homology manifold yields a condition on the measure
of the ideal boundary.

Since a physical model in the four-dimensional
embedding space must preserve the intersection form in
the neighbourhood of the ideal boundary, it would be
compatible with anE8 gauge symmetry. Therefore, this
invariance should be present locally for certain scattering
parameters includingsin2θW . The large-scale gauge
group, however, would be determined by the Lagrangian
and must be consistent with the elementary particle.

The particle spectrum already can be derived from
Mkℓm = SU(3)×SU(2)×U(1)

SU(2)×U(1)′×U(1)′′ or Lkℓm, a U(1) bundle over

Mkℓm. This eight-dimensional space may be compared to
G2×SU(2)×U(1)

SU(3)×U(1)′×U(1)′′ , which gives the particle and
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antiparticle spectrum of the standard model [13]. The
wreath product of the isometry group of the latter coset
space andS3 is isomorphic to the automorphism group of
the spinor space of the formulation of the particle
spectrum of the standard model with division algebra
modules.

Consider the manifoldMkℓm, and let the charges
generating aU(1) group embedded in the tangent space,
U(1)′ andU(1)′′ be
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since(uc)L and(dc)L transform under thē3 representation
of SU(3) while (ec)L belongs to the complex conjugate
representation ofU(1). Expanding these fermions in
terms of a representation ofSU(2) × U(1)′ × U(1)′′,
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where the sign of the charge ofuR, dR andeR is chosen
to be identical to that ofuL, dL andeL, and therefore, the
coefficients ofm′ andm′′ are opposite to that of12Y for the
(uc)L, (dc)L and(ec)L.

A matching with quantum numbers of the fermions in
the standard model requires the embedding paramters to
satisfy 3k′ = −m′ since the quarks have charges that are
multiples of 1

3e. From the relationI3 = Q− 1
2Y , ℓ = ∓m′

reflects contributions of the same magnitude of the isospin
and half of the hypercharge for fixed electric charge. The
two solutions generating the quantum numbers are

3k′ =±ℓ′ =−m′, 3k′′ =±ℓ′′ =−m′′.
The conditions for supersymmetry in the theory have

been proven to be

3k′′− ℓ′′

3k′− ℓ′
=

m′′

m′ (4)

3k′′+ ℓ′′

3k′+ ℓ′
=

m′′
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which will be valid singularly for the two classes of
solutions [14].

Since the fermions in the standard model represent the
spinor content, there would be scalar fields in the ground
state by supersymmetry. However, the masses of these
fields could be much larger through supersymmetry
breaking. The absence of couplings of these heavy fields
to the lighter fields cause the existence of composite
particles to be less prevalent. The classical value of the
electromagnetic coupling in this model follows from
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based on a relation between the electromagnetic and
hypercharge couplings, ande2 = g2

2sin2θW , whereg1 and
g2 represent the gauge couplings ofU(1)Y andSU(2). At
the solution withN = 2 supersymmetry with the quantum
numbers of the standard model, in units with
κ2 = 8πG = 1, g2
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singular. The breaking of supersymmetry is necessary for
a valid formula forg1. Then the contribution toα from 1
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2sin2θW andsin2θW → 1.

A renormalization group flow is necessary for a
derivation of the couplings and the masses. However, the
relation betweene and g2 continues to be valid at low
energy scales. With the breaking of supersymmetry and
the energy-dependence of the couplings,g2
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and let the contribution of1α1
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and

sin2θW =
1

1+ k
. (8)

The conventional value ofθW will be achieved when
k ≃ 3. The value of theU(1)Y coupling g1 satisfies

sin2θW =
g2

1
g2

1+
5
3g2

2
.. When k ≃ 3, the ratio is 1

4, and the

relation between the hypercharge and nonabelian gauge
charge couplings must be modified at supersymmetric
scales.

This theory must be distinguished from theG2
minimal supersymmetric standard models, which require
stabilization of the moduli together with a stratification of
the particle spectrum [16]. Typically, this space is
seven-dimensional withG2 holonomy [17]. Given the
difficulties in verifying the commutation of theE8 gauge
group elements with the holonomy group on this space
when the strings are interpreted to be Wilson loops, since
the noncovariance under infinitesimal gauge
transformations modifies the condition for the centralizer
[18][19] and may be restored only with the introduction
of a scalar field [20], the phenomenology derived from
this formalism is considerably different from the
G2/SU(3) solution to the heterotic string field equations
[21][22].

The components of the Ricci tensors of theMklm

manifolds are given by
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If 3k′ = −m′ and 3k′′ = −m′′, k′m′′ = − 1
3k′k′′ = k′′m′,

and, ℓ′ = ∓m′ and ℓ′′ = ∓m′′, ℓ′m′′ = ∓m′m′′ = ℓ′′m′.
Then R3

3 = 0 and the metric is not a Freund-Rubin
solution. Nevertheless, a flat metric can be placed on the
parallelizable circle.

The equality of theZ′ andZ′′ numbers follows from
an identification of theU(1)′ and U(1)′′ factors. The

resulting manifold,Llℓm =
SU(3)×SU(2)×U(1)

SU(2)× ˜U(1)
, which can be

equivalent to anS3 bundle overS5 or anS2 × S1 bundle
over S5 or have the topologiesCP2 × S3 × S1 or
CP2 × S2 × S1 × S1, where the spherical topologies may
include squashed spheres. Although the last topology
does not admit a metric of the Freund-Rubin form, it is
sufficient for the description of a configuration with
supersymmetry and a spinor sector consisting of the
fermions in the standard model.

It may be noted that, although there is a bosonic
sector which can be found by a supersymmetry
transformation of the fermionic sector, it is more easily
derived by dimensional reduction of the six-dimensional
Yang-Mills theory with gauge groupG2 over S2.

Therefore, the other eight-dimensional geometry
G2×SU(2)×U(1)

SU(3)×U(1)′×U(1)′′ may be considered with regard to the
generation of the quarks, leptons and antiparticles of the
standard model. Furthermore, there is a factorization,
G2/SU(3)× SU(2)/U(1)′×U(1)/(U(1)′′) which is
diffeomorphic to S6 × S2

s × U(1)/U(1)′′, where the
squashing parameter may be set equal to zero whenU(1)′

is identified with theS1 fibre in the Hopf fibration. By the
previous analysis, it would not be usual to identifyU(1)′′

with U(1), for embeddings orthogonal to the tangent
space. However, the manifold is well-defined,
nevertheless, and a reduction overS6×S2 will haveN = 1
supersymmetry. There is no possibility of a coincidence
of the topologies, with the exception ofCP2 × S3 × S1,
because G2

SU(3)×U(1)′×U(1)′′ is a singular variety, since the

rank ofG2 is 2 and the rank ofSU(3)×U(1)′×U(1)′′ is
4.

4 Conclusion

The E6 theories derived from superstring theory tend to
have too many fermion generations or the number of
particle and antiparticle multiplets are not equal. The
dimensionally reducedE8 super-Yang-Mills theory over
G2/SU(3) yields results in an anomaly-freeE6 theory
with N = 1 supersymmetry. With the scalar potential, it is
possible to determine each of the symmetry breaking
patterns, which introduce, however, a larger number of
extra fields.

The prediction of the Weinberg angle supports anE6
model without supersymmetry. By contrast, the
phenomenological viability of a unified field theory with
compactification over the coset spaceG2×SU(2)×U(1)

SU(3)×U(1)′×U(1)′′

results from the reduction of the fermions in the higher
dimensions to the known quarks and leptons and
antiparticles and the automorphism group of the spinor
space of the standard model. The topology of this
compact manifold is different that of theMkℓm solutions
to eleven-dimensional supergravity or the
eight-dimensional limits Lkℓm. Although both the
manifold Lkℓm and the coset space yield the particle
spectrum, there is a difference in the value of the
couplings, especially since the solution withN = 2
supersymmetry, necessary to produce the fermion
multiplets in the former model, does not generate the
value of the Weinberg angle at electroweak scales.

The resolution to the problem of the precise value of
sin2θW and the ratios of the couplings is provided by a
new mechanism for the introduction of the exceptional
gauge groupE6 without affecting the physical gauge
symmetries derived from the compactification. The
invariances of a physical theory defined over a four
manifold, in which infinite-genus surfaces are embedded,
may be enlarged to a larger subgroup of theE8 homology
group of a nonsmooth structure occurring in the
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neighbourhood of the ideal boundary. The prediction of
the E6 theory without supersymmetry is known for
sin2θW is known to coincide closely with the
experimental value. Then, a consistent phenemonological
theory may be derived from the compactification of the
string model.
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