
*Corresponding author e-mail:  analyst_mohamed@yahoo.com 
 © 2015 NSP 

 Natural Sciences Publishing Cor. 

 

 

 Adv. Eng. Tec. Appl. 4, No. 2, 27-34 (2015)   27 

http://dx.doi.org/10.12785/aeta/040203 
 

                                                                                                                                                         

An Effective Hybrid Flower Pollination and Genetic Algorithm 

for Constrained Optimization Problems  

Mohamed Abdel-Baset *,1 and Ibrahim M. Hezam 2. 

1 Department of Operations Research, faculty of Computers and Informatics, Zagazig University, El-Zera Square,  Zagazig, 

Sharqiyah, Egypt. 
2 Department of computer, Faculty of Education, Ibb University, Ibb city, Yemen. 

 
Received: 29 Mar. 2015, Revised: 20 Apr. 2015, Accepted: 24 Apr. 2015. 

Published online: 1 May 2015. 

Abstract: Flower pollination algorithm (FPA) is a new nature-inspired algorithm, based on the characteristics of flowering plants .In this 

paper, a new hybrid optimization method called hybrid flower pollination algorithm with genetic (FPA-GA) is proposed. The method 

combines the standard flower pollination algorithm (FPA) with the genetic (GA) algorithm to improve the searching accuracy. The FPA-

GA algorithm is used to solve constrained optimization problems. To verify the performance of FPA-GA, seven benchmark optimization 

problems chosen from literature are employed. Experimental results indicate that the proposed method performs better than, or at least 

comparable to state-of-the-art methods from literature when considering the quality of the solutions obtained. Experimental results further 

demonstrate the proposed method is very effective.  
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1 Introduction 

Optimization is a field of applied mathematics that deals 

with finding the extremal values of a function in a domain of 

definition, subject to various constraints on the variable 

values [1].Global optimization refers to finding the extreme 

value of a given nonconvex function in a certain feasible 

region and such problems are classified in two classes; 

unconstrained and constrained problems. Solving global 

optimization problems has made great gain from the interest 

in the interface between computer science and operations 

research [1-5]. 

There are two categories of optimization techniques: exact 

and heuristic. Exact strategies guarantee the optimal solution 

will be found, and work well for many problems. However 

for complex problems or ones with a very large number of 

parameters, exact strategies may require very high 

computational costs [3]. A large amount of real-world 

problems fall in this category of complex problems, and in 

order to solve them in a reasonable amount of time a 

different approach is needed [3,6]. For these problems, 

Meta-heuristic algorithms are considered as efficient tools to 

obtain optimal solutions [6-29]. Two important 

characteristics of meta-heuristics are intensification and 

diversification. Intensification, also called exploitation, 

intends to use the information from the current best 

solutions. This process searches around the neighborhood of 

the current best solutions and selects the best candidates. 

Diversification, also called exploration, guarantees that the 

algorithm can explore the search space more efficiently, 

often by randomization. This is the essential step that 

guarantees that the system can jump out of any local optima 

and can generate new solutions as diversely as possible [6-

7].  

These methods have received remarkable attentions as they 

are known to be derivative free, robust and often involve a 

small number of parameter tunings [6-29]. However, 

applying such single methods is sometimes too restrictive, 

especially for high dimensional and nonlinear problems. 

This is because these methods usually require a substantially 

huge amount of computational times and are frequently 

trapped in one of the local optima. Recently, different 

methods combining meta-heuristics with local search 

methods is a practical remedy to overcome the drawbacks of 

slow convergence and random constructions of meta-

heuristics [30-38]. In these hybrid methods, local search 

strategies are inlaid inside meta-heuristics in order to guide 

them especially in the vicinity of local minima, and 

overcome their slow convergence especially in the final 

stage of the search.  

Recently, Yang [39] developed a new Flower pollination 

algorithm (FP) that draws its inspiration from the flow 

pollination process of flowering plants. In this paper, a new 
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hybrid optimization method is introduced. The proposed 

method, hybrid flower pollination algorithm with genetic 

algorithm for solving constrained global optimization 

problems. The experimental results showed that the accuracy 

and speed performance of the FPA-GA method had 

outperformed the other existing methods.  

2. The Flower pollination Algorithm  
The rest of this paper is organized as follows: In 

Section 2 we review the basic FPA. The genetic algorithm is 

presented in Section 3 respectively. The proposed algorithm 

is given in Section 4. The results are given in Section 5. In 

the last section we conclude this paper and point out some 

future research directions. 

Flower Pollination Algorithm (FPA) was founded by Yang 

in the year 2012. Inspired by the flow pollination process of 

flowering plants are the following rules: 

Rule 1: Biotic and cross-pollination can be considered as a 

process of global pollination process, and pollen-carrying 

pollinators move in a way that obeys Le'vy flights.  

Rule 2: For local pollination, a biotic and self-pollination are 

used. 

Rule 3: Pollinators such as insects can develop flower 

constancy, which is equivalent to a reproduction 

probability that is proportional to the similarity of two 

flowers involved. 

Rule 4: The interaction or switching of local pollination and 

global pollination can be controlled by a switch 

probability p[0,1], with a slight bias toward local 

pollination. 

In order to formulate updating formulas, we have to convert 

the aforementioned rules into updating equations. For 

example, in the global pollination step, flower pollen 

gametes are carried by pollinators such as insects, and pollen 

can travel over a long distance because insects can often fly 

and move in a much longer range [39].Therefore, Rule 1 and 

flower constancy can be represented mathematically as: 

1 ( )( )t t t

i i ix x L x B                         (1) 

Where 
t

ix is the pollen i or solution vector xi at iteration t, 

and B is the current best solution found among all solutions 

at the current generation/iteration. Here γ is a scaling factor 

to control the step size. In addition, L(λ) is the parameter that 

corresponds to the strength of the pollination, which 

essentially is also the step size. Since insects may move over 

a long distance with various distance steps, we can use a 

Le'vy flight to imitate this characteristic efficiently. That is, 

we draw L > 0 from a Levy distribution: 

01

( )sin( / 2) 1
~ ,( 0)L S S
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     (2)            

Here, Γ(λ) is the standard gamma function, and this 

distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 and Rule 3 

can be represented as 

1 ( )t t t t

i i j kx x U x x   
                       

(3)
                                     

 

Where t

jx and 
t

kx are pollen from different flowers of the 

same plant species. This essentially imitates the flower 

constancy in a limited neighborhood. Mathematically, if 
t

jx

and 
t

kx comes from the same species or selected from the 

same population, this equivalently becomes a local random 

walk if we draw U from a uniform distribution in [0, 

1].Though Flower pollination activities can occur at all 

scales, both local and global, adjacent flower patches or 

flowers in the not-so-far-away neighborhood are more likely 

to be pollinated by local flower pollen than those faraway. In 

order to imitate this, we can effectively use the switch 

probability like in Rule 4 or the proximity probability p to 

switch between common global pollination to intensive local 

pollination. To begin with, we can use a naive value of p = 

0.5 as an initially value. A preliminary parametric showed 

that p = 0.8 might work better for most applications [39-43]. 

The basic steps of FPA can be summarized as the pseudo-

code shown in Figure 1. 

Algorithm 1:  Flower pollination algorithm 

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution B in the initial population 

Define a switch probability p ∈ [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a 

L´evy distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx 
 

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

Fig. 1 Pseudo code of the Flower pollination algorithm 

3 Genetic Algorithm 

The basic steps of GA can be summarized as the pseudo-

code shown in Figure 2. 
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Algorithm 2:  Genetic algorithm  

Define Objective function f (x), x = (x1, x2, ..., xd) 

Encode the solution into chromosomes (binary strings) 

Define fitness F (  F f x for maximization) 

Generate the initial population 

Initial probabilities of crossover (pc) and mutation (pm) 

while (t < MaxGeneration) or (stop criterion); 

Generate new solution by crossover and mutation 

if pc >rand, Crossover; end if 

if pm >rand, Mutate; end if 

Accept the new solutions if their fitness increase 

Select the current best for new generation (elitism) 

end while 

Decode the results and visualization 

End 

Fig. 2 Pseudo code of genetic algorithm 

4 Proposed Hybrid Flower Pollination 

Algorithm and Genetic Algorithm for 

Constrained Optimization Problems   

This section describes the proposed hybrid flower 

pollination and genetic algorithm. The initial motivation of 

developing hybrid FPA-GA approach is to combine the 

advantages of both flower pollination algorithm and genetic 

algorithm. To find an optimal solution to an optimization 

problem is often a very challenging task, depending on the 

choice and the correct use of optimization technique. In 

general, an ideal global optimization technique should have 

the following characteristics: method should be easy and 

simple to implement, good balance between exploration and 

exploitation, true global optimum should be found in each 

run, convergence should be fast, algorithm should have 

minimum control parameters to tune and algorithm should 

require minimum computational power to run effectively. In 

the first step, FPA explores the search place in order to either 

isolate the most promising region of the search space. In the 

second step, to improve global search and get rid of trapping 

into several local optima, it is introduced GA to explore 

search space (starting with the solution obtained by FPA and 

find new better solutions. The steps of the proposed 

algorithm for solving constrained global optimization 

problems can be summarized as the pseudo-code shown in 

Figure 3. 

4.1 Handling Constraints 

One of the well-known techniques of handling constraints is 

using penalty function, which transforms constrained 

problem into unconstrained ones, consisting of a sum of the 

objective and the constraints weighted by penalties. By using 

penalty function methods, the objectives are inclined to 

guide the search toward the feasible solutions. Hence, in this 

paper the corresponding objective function used in is defined 

and described as: 

1

min   ( ) ( ) max(0, )
K

n

n

F x f x g


         (4) 

Where 𝑓(𝑥) is the objective function for assignment problem 

is,  is the penalty coefficient and it is set to a value of 107 in 

this paper, 𝐾 is the number of constraints and gn the 

constraints of the problem.  

Algorithm 3:  Hybrid FPA-GA 

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution B in the initial population 

Define a switch probability p ∈ [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

Define Genetic algorithm parameters pc, pm 

Begin FPA 

while (t <MaxGeneration) 

for i = 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a 

L´evy distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx 
 

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the population 

end for 

Find the current best solution B 

end while 

Final the best solution found 

End begin FPA 

Begin GA 

i=0 

Initial population P(0) = Final best population of 

flowers/pollen gametes 

Evaluate P(0) fitness 

while (t < MaxGeneration) or (stop criterion); do 

i=i+1 

Select P(i) from P(i − 1) 

Recombine P(i) with crossover probability pc 

Mutate P(i) with mutation probability pm 

Evaluate P(i) fitness 

end while 

Rank the chromosomes, find the current best and save 

Postprocess results and visualization 

end begin GA 

Fig. 3 Pseudo code of the FPA-GA 

5 Experimental Results 

Most real-world engineering optimization problems are 

nonlinear with complex constraints. In some cases, the 

optimal solutions of interest do not even exist. In order to 

evaluate the performance of FPA-GA, it is tested against the 

following well-known benchmark design problems. 
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In this section, we will carry out numerical 

simulation based on some well-known constrained 

optimization problems to investigate the performances of the 

proposed algorithm. The best results obtained by FPA-GA 

for test problems (1–7) are presented in Table 1. In these 

problems, the initial parameters are set at n= 50 and the 

number of iterations is set to t = 1000.The results of FPA-

GA algorithm are conducted from 40 independent runs for 

each problem. The comparison between the results 

determined by the proposed approach and the compared 

algorithms are reported in Table 1. The statistical results of 

the FPA-GA on the benchmark problems are summarized in 

Table 2. It includes the known optimal solution for each test 

problem and the obtained best, median, mean and worst 

values and the standard deviations (SD). 

The results have demonstrated the superiority of the 

proposed approach to finding the global optimal solution. So 

far, these problems have been widely used as benchmarks for 

research with different methods by many researchers. 

Definitions of benchmark problems are described as follows: 

5.1 Test problem 1 

This problem, originally introduced by Bracken and 

McCormick [44], is a constrained minimization problem. 

Table 1 shows the best solution from the FPA-GA algorithm 

and also provides the results obtained using the GA 

(Homaifar et al. [20]), the evolutionary programming (Fogel 

[45]) and harmony search (Lee and Geem [46]).The problem 

can be formulated as: 

2

2

2
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5.2 Test problem 2 

This function is a minimization problem with two design 

variables and two inequality constraints. The FPA-GA best 

solutions were compared to the previous solutions reported 

by Deb [47] using GA and Lee and Geem [45] using 

harmony search in Table 1. The problem formulation is: 
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5.3 Test problem 3 

The welded beam structure is a practical design problem that 

has been often used as a benchmark for testing different 

optimization methods [5, 47-49]. The structure consists of 

beam A and the weld required to hold the beam to member 

B. A welded beam is designed for minimum cost f(x) subject 

to constraints: g1 shear stress τ, g2 bending stress in the beam 

σ , g7 buckling load on the bar )(x , g6 end deflection of the 

beam δ and g3; g4; g5 side constraints[2,5]. And there are four 

design variables. The FPA-GA best solutions were 

compared to the previous solutions reported by other method 

in Table 1. The problem can be stated as follows: 

2

1 2 3 4 2min ( ) 1.10471 0.04811 (14.0 ),f x x x x x x         (7)      

,
4

)(,
6

)(

,)
2

(
12

22

,)
2

(
4

),
2

(,'
2

,)(
2

2)()(

0)()(

,0)()(

,0125.0)(

,00.5)0.14(04811.010471.0)(

,0)(

,0)()(

,0)()(

..

4

3

3

3

2

34

231

2

2

21

231

2

2

2

21

222

7

max6

15

243

2

14

413

max2

max1

xEx

PL
x

xx

PL
x

xxx
xxJ

xxx
R

x
LPM

J

MR

xx

P

R

x
x

where

xxg

xxg

xxg

xxxxxg

xxxg

xxg

xxg

ts






















 





































 

.25.0

,30000,30600,1012

,1030.,14,6000

,
42

1
36

013.4

)(

max

maxmax

6

6

3

2

6

4

2

3

in

psipsiG

psiEinLlbP

G

E

L

x

L

xx
E

x


























  

5.4 Test problem 4 

Himmelblau’s Nonlinear Optimization Problem, This 

problem is originally proposed by Himmelblau [50] and 

solved using Generalize Reduced Gradient method 

(GRG).Table 1 lists the optimal values of the function 

problem obtained by the FPA-GA algorithm, and compares 
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them with earlier results reported by other methods Has been 

solved by Deb [47], Lee and Geem [46].  

,141.40792293239.378356891.0357847.5)(min 151

2

3  xxxxxf   (8)                                                                                
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2
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5.5 Test problem 5 

Tension/Compression String, This problem, is described by 

Arora [9], Coello [51] and Belegundu [52], and it consists of 

minimizing the weight of a tension/compression spring 

subject to constraints on minimum deflection, shear stress, 

surge frequency, limits on outside diameter and on design 

variables. The design variables are the wire diameter d=x1, 

the mean coil diameter D= x2, and the number of active coils 

N=x3 .Formally, the problem can be expressed as: 
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Table 1 lists the best solution of Tension/Compression String 

problem obtained by the FPA-GA algorithm, and compares 

them with previous best solutions reported by Belegundu 

[52], Arora [9], Coello [51], Mahdavi et al. [53], Shi and 

Eberhart[41]. 

5.6 Test problem 6  

The pressure vessel design was previously analyzed by 

Sandgren [54] who first proposed this problem. The 

objective is to minimize the total cost f(x) including the cost 

of the material, forming and welding. There are four design 

variables: x1 (Ts, shell thickness), x2 (Th, spherical head 

thickness), x3 (R, radius of cylindrical shell) and x4 (L, shell 

length). Ts= x1 and Th= x2 are integer multipliers of 0.0625 

in. in accordance with the available thickness of rolled steel 

plates, and R=x3 and L= x4 have Continuous values of 40≤ R 

≤ 80 in. and 20≤ L ≤60 in., respectively. The mathematical 

formulation of the optimization problem can be stated as 

follows: 
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The FPA-GA algorithm was applied to the pressure vessel 

optimization problem and the optimal results were compared 

to earlier solutions reported by Sandgren [54] and Wu and 

Chow [55], Geem [46] and Mahdavi et al. [53], as shown in 

Table 1.  

5.7 Test problem 7 

Heat Exchanger Design is a benchmark minimization 

problem that is regarded as difficult test case due to all the 

constraints are binding. This constrained function has eight 

variables and six inequality constraints, and has been solved 

previously by Deb [47], Michalewicz [56], Joines et al. [57], 

Lee and Geem[46]. The results show in Table 1.The problem 

formulation is: 
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6 Conclusions 

In the present study, FPA-GA algorithm has been employed 

to solve constrained optimization problems. FPA-GA has 

been validated using several benchmark mathematical and 

engineering design problems. To verify the performance of 

FPA-GA, seven benchmark optimization problems chosen 

from the literature are employed. The results show that the 

proposed FPA-GA algorithm clearly outperforms the basic 

FPA and GA. Compared with some evolution algorithms 

from literature, we find that our algorithm is superior to or at 

least highly competitive with these algorithms. In the last, 

experiments have been conducted on Lorenz system and 
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Chen system. Simulation results and comparisons 

demonstrate the proposed method is very effective. The 

proposed FPA-GA algorithm can be extended to solve other 

problem such as combinatorial optimization problems. 

 

Table 1: the best solution of proposed algorithm and other algorithms for solving constrained optimization problems. 

Test 

problem 

Optimum 

solution 

The proposed algorithm  Other algorithms 

The best solution 
CPU 

time (s) 

Name The best solution 
CPU time (s) 

P1 1.3935 1.3935 0.11 

Homaifar et al. [20] 1.4339 Unavailable 

Fogel [45] 2.3772 Unavailable 

Lee and Geem[46] 1.3770 Unavailable 

P2 13.59085 13.59085 0.8 

Lee and Geem [46] 13.590845 Unavailable  

Deb [47] 13.58958 Unavailable  

Mahdavi et al. [53] 13. 590841 Unavailable 

P3 - 1.724840 0.71 

Fesanghary et al. [30] 1.7248 4. 138 

Shi and Eberhart [41] 1.72485084 Unavailable 

Lee and Geem [46] 2.38 Unavailable 

Mahdaviet al. [53] 1.7248 Unavailable 

Coello [58] 1.7483 Unavailable 

P4 - -31025.56541 0.51 
Fasanghary et al. [30] -31024.316 1.306 

Shi and Eberhart [41] -31025.56142 Unavailable 

P5 - 0.0126657981091 0.86 

Arora [9] 0.0127302737 Unavailable 

Shi and Eberhart [41] 0.0126661409 Unavailable 

Coello [51] 0.012681 Unavailable 

Belegundu [52] 0.0128334378 Unavailable 

P6 - 6059.719980 1.017 

Mahdavi et al.[53] 7197.730 Unavailable 

Lee and Geem[46] 7198.433 Unavailable 

Wu and Chow[55] 7207.494 Unavailable 

Sandgren [54] 7980.894 Unavailable 

P7 7049.3307 7049.3307 1.48 

Lee and Geem [46] 7057.274414 Unavailable 

Deb [47] 7060.221 Unavailable 

Michalewicz [56] 7377.976 Unavailable 

Joines [57] 7068.6880 Unavailable 

 
Table 2: Best Results for the benchmark problems by FPA-GA 

Test 

problem 
Global optimal 

Results of proposed FPA-GA 

best median mean worst SD 

P1 1.3935 1.3935 1.3935 1.3935 1.3935 2.1E−04 

P2 13.59085 13.59085 13.59085 13.59080 13.59085 1.1E−14 

P3 - 1.724840 1.724840 1.7248401 1.724840 0.00E+00 

P4 - -31025.56541 -31025.56541 -31025.56541 -31025.56541 0.00E+00 

P5 - 0.0126657 0.0126657 0.0126657 0.0126657 1.35E−16 

P6 - 6059.719980 6059.719980 6059.719980 6059.719980 0.00E+00 

P7 7049.3307 7049.3307 7049.3307 7049.3307 7049.2216 1.3E−02 
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