
Appl. Math. Inf. Sci.9, No. 4, 2175-2183 (2015) 2175

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090458

Affinity Propagation-based Clustering For Data Streams
Walid Atwa and Kan Li∗

School of Computer Science and Technology, Beijing Institute of Technology, China

Received: 27 Nov. 2014, Revised: 27 Feb. 2015, Accepted: 1 Mar. 2015
Published online: 1 Jul. 2015

Abstract: Clustering data stream is an active research area that has recently emerged to discover knowledge from large amounts of
continuously generated data. Several clustering algorithms have been proposed for static data. Nevertheless, data stream clustering
imposes several challenges to be addressed, such as dealingwith dynamic data that arrive in an online fashion, capable of performing
fast and incremental processing of data objects, suitably addressing time and memory limitations, and how to handle theevolving
patterns that are important characteristics of streaming data with dynamic distributions. In this paper, we propose analgorithm that
extends Affinity Propagation (AP) to handle evolving data steam with dynamic distribution. Affinity Propagation was proposed as a
clustering algorithm extracted a set of exemplars that bestrepresent the dataset using a message passing method. We present a semi-
supervised clustering technique (SSAP) that incorporateslabeled exemplars into the AP algorithm to deal with changesin the data
distribution, which requires the stream model to be updatedas soon as possible. Experimental results with state-of-the-art data stream
clustering methods demonstrate the effectiveness and efficiency of the proposed method.
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1 Introduction

Mining streaming data that are generated continuously at
high rates is an area of data mining with many unresolved
challenges. Streaming data is the discipline specifically
concerned with handling large-scale datasets in an online
fashion [1,2]. Applications of streaming data include
mining data generated by sensor networks,
meteorological analysis, stock market analysis, and
computer network traffic monitoring. These applications
involve datasets that are far too large to fit in main
memory and are typically stored in a secondary storage
device. From this standpoint, mining the patterns in
streaming data imposes a great challenge for cluster
analysis.

Clustering is one of the most important unsupervised
learning methods which partition a given set of objects
into subsets called clusters, such that objects in the same
cluster are similar and objects in different clusters are
dissimilar. Clustering data stream continuously produces
and maintains the clustering structure from the data
stream in which the data items continuously arrive in the
ordered sequence. Algorithms for clustering data streams
should ideally fulfill the following requirements [3,4]: (1)
provide timely results by performing fast and incremental
processing of data objects; (2) rapidly adapt to change

dynamics of the data, which means algorithms should
detect when new clusters may appear, or others disappear;
(3) scale to the number of objects that are continuously
arriving; (4) provide a model representation that is not
only compact, but that also does not grow with the
number of objects processed; and (5) rapidly detect the
presence of outliers and act accordingly. There are many
data streaming algorithms have been adapted from
clustering algorithms, e.g., the partitioning method
k-means [5,6,7,8], the density based method DBSCAN
[9,10], and grid based methods [11,12].

Semi-supervised clustering algorithms are concerned
with finding good partitions of data in the presence of
side information. Two popular forms of side information
are partial labels and instance-level constraints. In this
paper, we propose an algorithm that extends Affinity
Propagation (AP) method [13] for streaming data (called
SSAPStream). We incorporate the labeled exemplars into
the AP algorithm to handle the evolving data stream with
dynamic distribution. The proposed algorithm
SSAPStream involves three main steps described as
follow:

1. Using the AP method on the first bunch of data arrives
at time t0 to identify the exemplars and initialize the
stream model.
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2. As the stream flows in, each pointp is compared to the
exemplars; if too far from the nearest exemplar,p is put
in the buffer, otherwise the stream model is updated.

3. If the buffer is full or a change in the data stream is
detected, the stream model is rebuilt based on the
current model and buffer using the set of labeled
exemplars.

The experimental results on synthetic and real data
sets validate the effectiveness of our method in handling
dynamically evolving data streams. Also, we study the
execution time and memory usage of SSAPStream, which
are important efficiency factors for streaming algorithms.

The rest of the paper is organized as follows. Section
2 briefly reviews related work. Section 3 presents Affinity
Propagation and describes the proposed Semi-Supervised
Affinity Propagation (SSAP). Section 4 describes the
proposed algorithm (SSAPStream) for streaming data.
Section 5 shows the experimental results. Section 6
presents the conclusion and future work.

2 Related Work

Data streaming is one of the major data mining tasks,
faces additional challenges compared to traditional data.
Recently, the clustering of data streams has been
attracting a lot of research attention. The methods that
discuss the problem of data stream clustering can be
categorized into: (1)one-pass methodsthat assume a
unique underlying model of streaming data and cannot
study the evolution of data distribution, (2)evolving
clustering methodsthat take into account the behavior of
data as it may evolve over time.

The first well-known algorithm performing clustering
over entire data streams is the STREAM algorithm
proposed by Guha et al. [5,14]. It is a
Divide-and-Conquer algorithm that builds clusters
incrementally and hierarchically using bi-criterion
approximation algorithms. The stream is processed in a
batch mode where a set of data points that fit in the main
memory are clustered into a smaller set of intermediate
medians, each weighted by the number of data points
assigned to it. The process is repeated for subsequent
batches of data points until the set of intermediate
medians fit the memory space; they are then clustered and
summarized into a higher level of intermediate medians.
Such methods simply view data stream clustering as a
variant of one-pass clustering.

The CluStream framework proposed in [6] is effective
in handling evolving data streams. It divides the
clustering process into online and offline components.
The online component uses microclusters to continuously
captures synopsis information from the data stream while
the offline component uses this information and other
user inputs to yield on-demand clustering results. The
main drawback of this algorithm is that the number of
micro-clusters needs to be predefined. For

high-dimensional data stream clustering, Aggarwal et al.
[15] proposed HPStream, which reduces the
dimensionality of the data stream via data projection
before clustering.

Based on the online maintenance and offline
clustering strategy, Cao et al. [9] proposed a DenStream
algorithm, which extends DBSCAN [16] by introducing
microclusters to the density-based connectivity search. It
is an algorithm that forms local clusters progressively by
detecting and connecting dense data item neighborhoods.
During the online phase microclusters are maintained
while the final clusters are defined (offline) on demand by
the user. Independently, Chen and Tu [11,12] also
proposed a density-based method termed D-Stream.
Rather than using microclusters, D-Stream partitions the
data space into grids and maps new data points into the
corresponding grid to store density information, which
are further clustered based on the density. One common
limitation of the above algorithms is that they are
computationally more expensive, requiring more memory
to store nonlinear cluster structures and more time to
update them.

Zhang et al. [17] presented a version of the AP
algorithm called StrAP that is closer to handling data
streaming. The StrAP algorithm proceeds by
incrementally updating the current model if the current
data item fits the model. Otherwise, detecting the data
item as an outlier.

Recently, Ackermann et al. proposed StreamKM++, a
two-step algorithm that is merge-and reduce [7]. The
reduce step is performed by the coreset tree, considering
that it reduces 2m objects tom objects. The merge step is
performed by another data structure, namely the bucket
set, which is a set ofL buckets (also named buffers),
whereL is an input parameter. Each bucket can storem
objects. The StreamKM++ algorithm can obtain better
clustering results but takes more computing time, as its
running time dependent on the dimensionality of the data
and thus, unsuitable for clustering high dimensional data.
Moreover, produces clusters of the large data set when the
algorithm terminates, instead of forming clusters at any
time step when data flow in.

It must be emphasized that both Divide-and-Conquer
and two-level schemes keep their computational load
within reasonable limits as they only build the data model
upon the users explicit request. In the rest of time, they
only maintain a summary of the data, which makes them
ill-suited to applications such as system monitoring where
the data model has to be continuously available at all
times.

3 Semi-Supervised Affinity Propagation

In this section, we first describe the Affinity Propagation
(AP) algorithm. An extension, Semi-Supervised AP, is
then presented to find good partitions of data in the
presence of side information (i.e. labeled data).
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3.1 Affinity Propagation

Affinity Propagation (AP) [13] is a clustering method that
takes as input similarities between data items. It aims to
identify exemplars among data items and forms clusters
around these exemplars. Each exemplar is characterized
by a data item representative of the sample itself and some
other similar items. The objective of AP is to maximize
the sum of similarities between the data items and their
exemplars.

Assume thatX = {x1,x2, . . . ,xn} is a set of distinct
data items and letS(xi,x j) denote the similarity between
the data itemsxi and x j , with i 6= j. AP algorithm
searches for a mappingc(·), which assigns each data item
xi to its nearest data item, referred to as exemplar ofxi
(i.e. c(xi)). This mapping should maximize the following
objective function:

S(c) =
N

∑
i=1

s(xi ,c(xi))+
N

∑
k=1

δk(c) (1)

whereδk(c) is an exemplar consistency constraint such
that if data itemxi has selectedxk as its exemplar, i.e.,
c(xi) = xk, then data itemxk must select itself as an
exemplar, i.e.,c(xk) = xk.

δk(c) =

{

−∞, if c(xk) 6= xk but∃xi : c(xi) = xk ;
0, otherwise. (2)

The objective function defined by (1) is solved using a
message passing algorithm. AP algorithm takes as input
the set of similarities,{S(xi,x j)}, which describe how
well the x j item is suited to serve as exemplar for thexi
item. Usually, similarity is set to a negative squared error
S(xi,x j ) = −‖xi − x j‖

2. AP begins by simultaneously
considering all data items as potential exemplars, and
iteratively exchanges messages between data items until a
good set of exemplars and clusters emerges. The
messages can be combined at any stage to decide which
data items are exemplars and, for every other item, which
exemplar it belongs to. There are two kinds of messages
exchanged between data items [13]:

1.The responsibility messager(i,k), sent from data item
xi to candidate exemplar itemxk, reflects the
accumulated evidence for how well-suited itemxk is
to serve as the exemplar for itemxi .

r(i,k) = S(xi,xk)−max
j 6=k

{S(xi,x j)+a(i, j)} (3)

If k= i, the responsibility message is adjusted as:

r(k,k) = S(xk,xk)−max
j 6=k

{S(xi,x j)} (4)

2.The availability messagea(i,k), sent from candidate
exemplar itemxk to item xi , reflects the accumulated
evidence for how appropriate it would be for itemxi

to choose itemxk as its exemplar, taking into account
the support from other items that itemxk should be an
exemplar. It is initialized as zero and updated as
follows:

a(i,k) =

{

∑i′ 6=k max[0, r(i
′
,k)], i = k;

min[0, r(k,k)+∑i′ /∈{i,k}max[0, r(i
′
,k)]], i 6= k.

(5)

After convergence, the exemplars are obtained by
calculating the set of positivea(i, i)+ r(i, i) messages for
each xi , and the items are assigned to their respective
exemplars (clusters) according to the following rule,
c(xi) = argmaxk(a(i,k) + r(i,k)). The message passing
procedure stops after a specific number of iterations, or
after cluster structure does not significantly change for a
given number of iterations.

3.2 Semi-Supervised AP (SSAP)

The original affinity propagation is an unsupervised
clustering method. To utilize the partially labeled data,
semi-supervised clustering aims to improve the clustering
performance by learning from a combination of both
labeled samples and unlabeled data.

Assume we have L labeled data set
{(x1,y1),(x2,y2), ...,(xl ,yl )}, whereyl is the cluster label
of data item xl , and U unlabeled data items
xl+1,xl+2, · · · ,xl+u. Let C be the set of exemplars in the
data set. For a certain labeled samplexi (1 ≤ i ≤ l) and
unlabeled data itemx j (l + 1 ≤ j ≤ u) we can have two
possible situations where the labeled sample may be
associated with the unlabeled data item after a run of the
AP algorithm.

– The unlabeled data itemx j takes the labeled samplexi
as the cluster exemplar. The messagea(xi ,xi)+r(xi ,xi)
is positive, i.e.,xi ∈C, and if xi = argmax{a(x j ,xk)+
r(x j ,xk)} for eachk= {1,2, ...,N}.

– The labeled samplexi takes the unlabeled data itemx j
as the cluster exemplar. The messagea(xi ,xi)+r(xi ,xi)
is negative, i.e.,xi /∈C, and ifx j = argmax{a(xi,xk)+
r(xi ,xk)} for eachk= {1,2, ...,N}.

If one of the two conditions is satisfied, the unlabeled
data itemx j is the most similar to the labeled samplexi .
Then, the unlabeled data itemx j is selected and set to the
label of xi . Therefore, we can select the most similar
unlabeled data itemx j as follows:

V =







x j

i f xi = argmax1≤k≤N{a(x j ,xk)+ r(x j ,xk)}andxi ∈C

i f x j = argmax1≤k≤N{a(xi,xk)+ r(xi,xk)}andxi /∈C

whereV is the new labeled sample set picked fromU.
Selecting the unlabeled data items is defined according to
the operational mechanism of the AP algorithm. This
process repeats until no unlabeled data items left inU. At
each iteration, the selection process takes advantage of
the updated results of the AP algorithm.
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4 Clustering Streaming Data

4.1 Streaming Data Model

In clustering data stream, data evolve over time and thus
new clusters may appear, clusters may merge or deleted.
The goal is to identify clusters of data and study the
evolution of clusters over time. We consider the problem
of clustering a data stream in the damped window model,
in which the weight of data items decreases with timet
according to the decay functionf (t) = 2−λ ·t , where,
λ > 0 is a decay factor. In other words, the weight at time
tk of a data itemxi with time stampti (i.e. an item that
arrived at timeti ) will be given by:

w(xi , tk) = 2−λ (tk−ti ) (6)

Data items that have arrived at previous time cannot
be assumed to be available at future time. Therefore, we
would like to maintain a succinct synopsis of data
generated during previous time, taking also into account
the weight of these historical data. The exemplars can be
considered as representatives of the data in their clusters,
and thus we define an exemplar vector to provide a
synopsis of underlying data. The exemplar vector is
consists of a set of 4-tuple(ei ,ni ,wi , ti), whereei ranges
over the exemplars,ni is the number of items associated
to exemplarei , wi is the weight ofei (see Definition 1),
andti is the last time stamp when an item was associated
to ei .

Definition 1: Weight of exemplar. For an exemplare, at a
given time t, let n be the set of data items that are
associated toe at or before timet. The weight ofe is
defined as the sum of the weights of all data items that is
associated toe. Namely, the weight ofe at t is:

w(e, t) =
n

∑
j=1

w(x j , t) (7)

The weight of any exemplar is constantly changing.
However, we have found that it is unnecessary to update
the weight values of all data items and exemplars at every
time step. Instead, it is possible to update the weight of an
exemplar only when a new data item is associated to that
exemplar. For each exemplar, the time when it receives
the last data item should be recorded so that the weight of
the exemplar can be updated according to the following
result when a new data item arrives at the exemplar.

Proposition 1. Suppose an exemplare receives a new
data itemxn at time tn, and suppose the time whene
receives the last data record istl (tn > tl ), then the weight
of ecan be updated as follows:

w(e, tn) = 2−λ (tn−tl )w(e, tl )+1 (8)

Proof. Let the data items{xi}
m
i=1 with time stamps{ti}m

i=1
be associated to the exemplareat timetl , we have:

w(e, tl ) =
m

∑
i=1

w(xi , tl ) (9)

According to (6), we have that:

w(xi , tn) = 2−λ (tn−ti) = 2−λ (tn−tl )2−λ (tl−ti)

= 2−λ (tn−tl )w(xi , tl ), for i = 1, · · · ,m. (10)

Therefore, we have:

w(e, tn) = ∑m
i=1w(xi , tn)+w(xn, tn)

= ∑m
i=1w(xi , tn)+2−λ (tn−tn)

= ∑m
i=1w(xi , tn)+1= ∑m

i=12−λ (tn−tl )w(xi , tl )+1

= 2−λ (tn−tl ) ∑m
i=1w(xi , tl )+1

= 2−λ (tn−tl )w(e, tl )+1

From Proposition 1, we save huge amount of computation
time. To update all exemplars at each time step requires
O(N) computing time for weight update at each time step.
In contrast, using Proposition 1 allows us to update only
one exemplar, leading to O(1) running time.

4.2 SSAPStream Algorithm

We develop SSAPStream a variation of the initially AP
clustering algorithm, that is capable of handling
sequences of data in an online fashion under the limited
memory constraints imposed by streaming applications.
The detailed procedure of SSAPStream is described in
Algorithm 1.

Firstly, we apply AP clustering algorithm on the first
bunch of data items that arrived at timet0 to identify the
exemplars and initialize the stream model (step 2). For
each new data itemp, we try to mergep into its nearest
exemplarei in the current model (w.r.t. distanced). If
d(p,ei) is less than some thresholdε (heuristically, set to
the average distance between data items and exemplars in
the initial model),p is affected to thei-th cluster and the
model is updated accordingly; otherwise,p is put in the
buffer (steps 4-10).

In order to prevent the number of exemplars from
growing beyond control, one must be able to forget the
exemplars that have not been visited for a long time. In
other words, for each existing exemplarei , if no new data
item is merged into it, the weight ofei will decay
gradually and it should be deleted and its memory space
released for new exemplar. Accordingly, we compare the
weight of each exemplar with its lower limit of weight
(denoted asη). If the weight of an exemplar is below its
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lower limit of weight, we can safely delete it (steps
12-14). The lower limit of weight is defined as:

η(tc, ti) =
1−2−λ (tc−ti+1)

1−2−λ (11)

wheretc is the current time andti is the last update time
of the exemplarei . This functionη(tc, ti) is an increasing
function for fixedti value. Thus, the longer an exemplar
exists, the larger its weight is expected to be.

A key difficulty in streaming data is to detect a change
in the generative process underlying the data stream,
referred to asconcept drift, which requires the stream
model to be updated as soon as possible. The clustering
results are said to be changed according to the following
two criteria. The first criterion is based on the number of
data items in the buffer; when it exceeds the buffer size,
the stream model should be updated. The second criterion
is based on the variation of clusters distribution, when the
ratio of data items in the clusters is changed dramatically,
e.g., the cluster that contains half of the data items in the
last clustering result has suddenly disappeared in the
current clustering result.

In order to detect the changes in streaming data, we
adopt a double-threshold method. One thresholdθ named
exemplar variation thresholdis utilized to determine that
the variation of the ratio of data items associated to an
exemplar is big enough. The exemplar that exceeds the
exemplar variation threshold is seen as a different
exemplar (steps 16-17). And then, the number of different
exemplars is counted, and the ratio of different exemplars
is compared with the other thresholdϕ namedexemplar
difference threshold. If the ratio of different exemplars is
larger than the exemplar difference threshold, a large
number of exemplars are varied in the ratio of data items,
and thus the stream model should be updated (steps
20-21).

The variation of the ratio of data items associated to
the exemplarei between the last clustering result and the
current temporal clustering result is calculated and
compared by a zero-one functionf (eti

i ,e
tc
i ), whereti is the

last update time andtc is the current time of exemplarei .

f (eti
i ,e

tc
i ) =







1, if

∣

∣

∣

∣

n
ti
i

ΣC
x=1n

ti
x
−

ntc
i

ΣC
x=1n

ti
x

∣

∣

∣

∣

> θ

0, otherwise







(12)

whereC is the number of exemplars andni is the number
of data items associated to exemplarei .

Finally, the number of different exemplars is summed,
and the ratio of different exemplars is compared withϕ .
Thus, the stream model should be updated according to
the following:

U pdateModel=







Yes, if the buffer is full

Yes, if ΣC
i=1

f (e
ti
i ,e

tc
i )

C > ϕ )
No, otherwise







(13)

Algorithm 1. SSAPStream Algorithm
1. Initialize Buffer ={}
2. Apply AP method on the first set of data arrived at timet0
3. While data stream is activedo
4. Read data itemxt ;
5. Compute the nearest exemplarei to xt ;
6. If d(xt ,ei)< ε then
7. Update the stream model ;
8. Else
9. Insertxt into the Buffer ;
10. End If
11. numdi f f exemplars= 0 ;
12. For each exemplarei in C do
13. If wi (weight of exemplarei) < η(tc, ti)
14. Deleteei ;
15. Else

16. IF

∣

∣

∣

∣

n
ti
i

ΣC
x=1n

ti
x
−

ntc
i

ΣC
x=1n

ti
x

∣

∣

∣

∣

> θ then

17. Numdiffexemplars++;
18. End If
19. End For
20. If Buffer is full or Numdi f f exemplars

C > ϕ then
21. Rebuild the stream model using SSAP ;
22. Buffer ={} ;
23. End If
24.End While

A new model is rebuilt by launching SSAP on the
dataset and data items in the buffer. As mentioned
previously, we have two possible situations where the
labeled samples represented in the exemplars can be
associated with the unlabeled data items in the buffer. The
cost of selecting current exemplarei to be the exemplar of
data itemx j is ordinary similarity−d(x j ,ei)

2, while the
cost of selectingx j to be the exemplar ofei is increased
by a factor of ni (i.e. ni is the number of data items
associated to exemplarei). Therefore, the current
exemplarei will have more chance to be an exemplar
again. SSAP accordingly selects the set of data items
from buffer that are most similar to the exemplarei and
thus, merges them to the exemplarei . This process repeats
until no data items left in the buffer.

5 Experiments

In this section, we evaluate the effectiveness and efficiency
of SSAPStream and compare it with several well-known
data stream clustering algorithms, including CluStream [6]
, DenStream [9], StrAP [17] and StreamKM++ [7]. All the
experiments are conducted on a 2.4 GHz Intel Core 2 PC
running Windows XP with 2 GB main memory.

5.1 Data Sets and Evaluation

To evaluate the effectiveness and efficiency of
SSAPStream algorithm, both synthetic and real data sets

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2180 W. Atwa, K. Li: Affinity Propagation-based Clustering...

(a) (b)

Fig. 1: Synthetic data sets.

are used. Two synthetic data sets, DS1 and DS2, are
generated as shown in Figures 1(a) and (b), respectively.
Each of them contains 10,000 points. We generate an
evolving data stream (denoted as EDS) by randomly
choosing one of the data sets (DS1 and DS2) 10 times, for
each time the chosen data set forms a 10,000 points
segment of the data stream, and the total length of the
evolving data stream is 100,000. Because we know the
true cluster labels of each point in the data sets DS1 and
DS2, we can get the true cluster label of each point in
EDS.

Two real data sets, KDDCUP99 [19] and URLs [20],
are employed for the evaluation. KDDCUP99 is a data set
that evolves significantly over time and has been widely
used to evaluate data stream clustering algorithms [6,7,9,
17]. It consists of a series of TCP connection records of
LAN network traffic managed by MIT Lincoln Labs. The
complete data set contains approximately 4.9 million
records, and as in the previous work [6,9,17], a
sub-sampled subset of length 494020 is used. Each
connection is classified into either a normal connection or
specific kinds of attack (such asbuffer overflow, ftp write,
guess passwd, and neptune). Each connection record in
this data set contains 42 attributes, and as in [6,7,9,17],
all 34 continuous attributes are used for clustering.

The streaming URLs are studied to predict malicious
URLs from benign URLs [20], and thus protect users from
accessing on rogue Web sites. The 120-day streaming data
consists of more than 2 million URLs, each of which is
described by lexical features, e.g., the unusual appearance
of .com in the middle of a URL, and host-based features,
e.g., the ownership and IP prefix of a web site host. A URL
is labeled as benign or malicious.

For the performance measure we used the Rand index
[18], which measures how accurately a cluster can classify
data items by comparing cluster labels with the underlying
class labels.

RI =
a+b

(
n
2)

wherea is the number of pairs of data items having the
same cluster label and the same class label, andb is the
number of pairs of items having different cluster labels
and different class labels. The value of Rand index lies

between 0 and 1. A higher Rand index indicates better
clustering results [18].

5.2 Parameter Setting

The initialization of the SSAPStream algorithm considers
the first 1000 points of DS1 and DS2 and the first 1000
connections of the KDDCUP99 data set which totally
includes 494,021 network connection records, and the
first 1000 URLs of the 2,396,130 URLs data set. The
distance thresholdε heuristically, set to the average
distance between data items and exemplars in the initial
model, and the maximum number of data items stored in
the buffer is 100 items. The parameterλ is the decay
factor that controls the importance of historical data to
current clusters, we setλ = 0.98.

The parameters for detecting evolving data
distribution, i.e., exemplar variation thresholdθ and
exemplar difference thresholdϕ , may change for different
application data. In our experiments, the exemplar
variation thresholdθ is set to 0.2, and, the exemplar
difference thresholdϕ is set to 0.4. Several observations
provide the clues to set these parameters:

– Detecting small changes requires a low threshold
value.

– Detecting dramatic changes requires a high threshold
value.

– Detecting changes in unstable data sets requires a high
threshold value.

– Detecting changes in stable data sets requires a low
threshold value.

The four compared algorithms and their parameter
settings are summarized as follow:

– CluStream [6] separates the clustering process into an
online microclustering and an offline microclustering.
As in [6], the parameters are set as follows: the
number of microclusters q = 10 × k,
InitNumber= 1000, the maximum boundary factor
t = 2, the user-defined thresholdσ = 512, the
pyramidal time frame parametersα = 2 and l = 10,
and the time horizonh= 100.

– DenStream [9] divides the clustering process into an
online part and an offline part. As in [9], the
parameters are set as follows:InitNumber= 1000, the
fading factorλ = 0.25, the maximum radius threshold
ε = 16, the weighting thresholdµ = 10, and the
outlier thresholdβ = 0.2.

– StrAP [17] splits the data set into some subsets,
followed by performing AP on each subset to generate
exemplars with each being weighted by the number of
assigned data points. According to [17], the
parameters are set as follows:InitNumber= 1000, the
maximum number of outliers stored in reservoir
M = 100, the time length∆ = 50 and the PH test
thresholdλ = 0.01.
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– StreamKM ++ [7] is an algorithm which processes
data streams in chunks ofM data items. It summarizes
each chunk by clustering its data intok centers. The
chunk sizeM is set to 500.

5.3 Experimental Results

At first, we test the clustering quality of SSAPStream
algorithm and compare with state-of-the-art data stream
clustering methods. Figure 2 shows the average Rand
indices by the five algorithms. In general, SSAPStream
obtains the highest Rand indices on the three testing data
sets. On the two synthetic data streams, SSAPStream has
significantly outperformed the clustering methods such as
CluStream, StrAP and StreamKM++. For instance, on
DS1 data set, SSAPStream has obtained the average Rand
index as high as 0.95, which is 0.12 higher than the
second winner DenStream and is 0.22 higher than StrAP
algorithm. Similarly, on DS2 data set, SSAPStream has
obtained the average Rand index of 0.97, which is 0.09
higher than the second winner DenStream and is 0.18
higher than StrAP.

On the KDDCUP99 real data streams, SSAPStream
also outperforms the other four data stream clustering
methods. SSAPStream has obtained the average Rand
index of 0.77, which is slightly better than the second
winner StrAP by 0.09 and makes a significant
improvement compared with the three clustering methods
(i.e., CluStream, DenStream and StreamKM++).

The efficiency of algorithms is measured by the
execution time. The execution time includes the time used
to update the cluster structure and the time used to realize
cluster labeling, over the whole data stream. For instance,
In CluStream and DenStream, the execution time includes
two parts, the time used to assign the data item to the
nearest microcluster (online component) and the time
used to generate the final clusters (offline component).

We test and compare the execution time consumed by
the five algorithms on the KDDCUP99 data set. First, the
algorithms are tested on the KDDCUP99 data with
different sizes as shown in Figure 3. From the figure,
SSAPStream algorithm has a significant advantage over
its competitors in terms of the execution time, i.e., StrAP,
and StreamKM++. It can also be seen that SSAPStream
has better scalability since its clustering time grows
slower with an increasing data size.

Next, the algorithms are tested on the KDDCUP99
data with different dimensionality. We set the size of data
set as 100K and vary the dimensionality in the range of 2
to 40. We list the time costs under different
dimensionality by the five algorithms as shown in Figure
4. SSAPStream is faster than other algorithms and scales
better with an increasing dimensionality. For instance,
when the dimensionality is increased from 2 to 40, the
time of SSAPStream only increases by 20 seconds which
is better than the second faster DenStream that increases
by 50 seconds.

Fig. 2: Clustering quality comparison.

Fig. 3: Execution time with different sizes of data sets.

Fig. 4: Execution time with different dimensions.

One common feature for the algorithms applied to
data stream is their limited upper bounds for the memory
usage. Since the memory usage may fluctuate in the
progress of data streams. The memory usage is directly
measured by the peak memory usage of each algorithm
during the stream clustering process. We used both
synthetic data sets and the KDDCUP99 data set to
evaluate the memory usage of SSAPStream.

Figure 5 shows the proposed SSAPStream algorithm
has a significant advantage over its competitors in
memory usage. For instance, on the two synthetic data
streams, SSAPStream requires, respectively, 56.5 and
57.8 KB memory, which are only about 22 percent of the
memory used by the second winner DenStream
algorithm. On KDDCUP99, SSAPStream consumes only
18 percent of the memory used by DenStream and no
more than 8 percent of the memory used by
StreamKM++.
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Fig. 5: Memory usage comparison.

(a)

(b)

Fig. 6: Average rand index and execution time with different
buffer sizes.

5.4 Sensitivity Analysis

In this section, we report and compare the clustering
results by SSAPStream on the four testing data sets when
using different buffer sizes and decay factor parameterλ .

We first analyze the performance in terms of average
Rand index and execution time when using different
buffer size on the four testing data streams. Figure 6
reports the results. From figure 6(a), it is clear that on all
testing streams, the average Rand index remains stable
when different buffer sizes are used, with the highest
average Rand index achieved in buffer size = 100 in most
cases. The execution time however strongly depends on
the buffer size as shown in figure 6(b). Based on the
above analysis, considering both the effectiveness and
efficiency, a rational choice for size equal 100, which is
used as the default parameter in this paper.

An important parameter of SSAPStream is the decay
factorλ that controls the importance of historical data to
current clusters. In our pervious experiments, we set it to
0.98, which is a moderate setting. We test the clustering
quality on the KDDCUP99 data set by varyingλ from 0.1
to 4 as shown in Figure 7. By settingλ to the values

Fig. 7: Clustering quality vs.λ .

ranging between 0.1 and 0.5, SSAPStream generates poor
clustering results, achieving the minimum average Rand
index. Also, whenλ set to high values, it achieves the
minimum average Rand index. And it achieves the highest
average Rand index whenλ is ranges from 0.5 to 2.

6 Conclusion and Future Work

In this paper, we propose SSAPStream, a semi-supervised
clustering algorithm that extends Affinity Propagation for
clustering evolving data streams. The algorithm uses the
exemplars to summarize information of the historical data
items and thus, it has limited memory consumption. Our
goal is to make full use of both the existing labeled
exemplars and the unlabeled data items to improve the
clustering performance in streaming data. Experimental
results on KDD99 data demonstrate the effectiveness and
efficiency of the proposed algorithm. This work opens
several perspectives for further research. A main
limitation of AP is that it cannot model the category
consisting of multiple subclasses since it represents each
cluster by a single exemplar, such as scene analysis and
character recognition. To remedy this deficiency, we
extend the single-exemplar model to a multi-exemplar
model.
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