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Abstract: Clustering data stream is an active research area that tastleemerged to discover knowledge from large amounts of
continuously generated data. Several clustering algosthave been proposed for static data. Nevertheless, datanstlustering
imposes several challenges to be addressed, such as de#lirdynamic data that arrive in an online fashion, capalblpesforming

fast and incremental processing of data objects, suitatidyessing time and memory limitations, and how to handleetf@ving
patterns that are important characteristics of streamatg dith dynamic distributions. In this paper, we proposelgorithm that
extends Affinity Propagation (AP) to handle evolving datast with dynamic distribution. Affinity Propagation was posed as a
clustering algorithm extracted a set of exemplars that tsgsesent the dataset using a message passing method. a¥at@esemi-
supervised clustering technique (SSAP) that incorporatesied exemplars into the AP algorithm to deal with charigebe data
distribution, which requires the stream model to be updagegoon as possible. Experimental results with stateeshthdata stream
clustering methods demonstrate the effectiveness anieefficof the proposed method.

Keywords: Affinity propagation, clustering data streams, exemplars.

1 Introduction dynamics of the data, which means algorithms should
o ] ) detect when new clusters may appear, or others disappear;
Mining streaming data that are generated continuously a{3) scale to the number of objects that are continuously
high rates is an area of data mining with many unresolvedyrriving; (4) provide a model representation that is not
challenges. Streaming data is the discipline specificallyponly compact, but that also does not grow with the
concerned with handling large-scale datasets in an onlingumber of objects processed; and (5) rapidly detect the
fashion [L,2]. Applications of streaming data include presence of outliers and act accordingly. There are many
mining data generated by sensor networks,data streaming algorithms have been adapted from
meteorological analysis, stock market analysis, andc|ustering algorithms, e.g., the partitioning method
computer network traffic monitoring. These applications k-means 5,6,7,8], the density based method DBSCAN
involve datasets that are far too large to fit in main[9 10}, and grid based methods{, 12].
memory and are typically stored in a secondary storage  gemj-supervised clustering algorithms are concerned
device. From this standpoint, mining the patterns iny;th finding good partitions of data in the presence of
streaming data imposes a great challenge for clustegige jnformation. Two popular forms of side information
analysis. _ ___are partial labels and instance-level constraints. In this
Clustering is one of the most important unsupervisedyaner, we propose an algorithm that extends Affinity
learning methods which partition a given set of ObjeCtsPropagation (AP) method.§] for streaming data (called
into subsets called clusters, such that objects in the samgsapstream). We incorporate the labeled exemplars into
cluster are similar and objects in different clusters arejne AP algorithm to handle the evolving data stream with
dissimilar. Clustering data stream continuously producegjynamic ~ distribution. The proposed algorithm

and maintains the clustering structure from the dataggapsiream involves three main steps described as
stream in which the data items continuously arrive in thegg|iow:

ordered sequence. Algorithms for clustering data streams

should ideally fulfill the following requirement8[4]: (1) 1. Using the AP method on the first bunch of data arrives
provide timely results by performing fast and incremental  at timety to identify the exemplars and initialize the
processing of data objects; (2) rapidly adapt to change stream model.
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2. As the stream flows in, each popis comparedto the high-dimensional data stream clustering, Aggarwal et al.
exemplars; if too far from the nearest exemppeis put  [15 proposed HPStream, which reduces the
in the buffer, otherwise the stream model is updated. dimensionality of the data stream via data projection

3. If the buffer is full or a change in the data stream is before clustering.
detected, the stream model is rebuilt based on the Based on the online maintenance and offline
current model and buffer using the set of labeledclustering strategy, Cao et abB][proposed a DenStream
exemplars. algorithm, which extends DBSCANLE] by introducing

. . microclusters to the density-based connectivity search. |

The .experlmental r_esults on synthetic anql real df“ﬁs an algorithm that forms local clusters progressively by
sets vqhdate the effectweness of our method in h"’mdImgoletecting and connecting dense data item neighborhoods.
dynamically evolving data streams. Also, we study theDuring the online phase microclusters are maintained

exeqution time a_nc_i memory usage of SSAPStream, WhiC'(While the final clusters are defined (offline) on demand by
are important efficiency factors for streaming algorithms. the user. Independently, Chen and TULLZ also

The rest of the paper is organized as follows. Sectionproposeol a density-based method termed D-Stream.
2 briefly reviews related work. Section 3 presents Affinity Rather than using microclusters, D-Stream partitions the
Pr(.)p.agation and plescribes the prop_osed Semi-Supervis ta space into grids and maps, new data points into the
Affinity Propagation (SSAP). Section 4 describes the o, oqhonding grid to store density information, which
proposed algorithm (SSAPStream) for streaming data re further clustered based on the density. One common
Section 5 shows the experimental results. Section imitation of the above algorithms is that they are

presents the conclusion and future work. computationally more expensive, requiring more memory
to store nonlinear cluster structures and more time to
update them.
2 Related Work Zhang et al. 17] presented a version of the AP
algorithm called StrAP that is closer to handling data
Data streaming is one of the major data mining tasksstreaming. The StrAP algorithm proceeds by
faces additional challenges compared to traditional dataincrementally updating the current model if the current
Recently, the clustering of data streams has beemlata item fits the model. Otherwise, detecting the data
attracting a lot of research attention. The methods thaitem as an outlier.
discuss the problem of data stream clustering can be Recently, Ackermann et al. proposed StreamKM++, a
categorized into: (1)one-pass methodthat assume a two-step algorithm that is merge-and reduc@. [The
unique underlying model of streaming data and cannoteduce step is performed by the coreset tree, considering
study the evolution of data distribution, (Bvolving that it reduces & objects tom objects. The merge step is
clustering methodthat take into account the behavior of performed by another data structure, namely the bucket
data as it may evolve over time. set, which is a set of buckets (also named buffers),
The first well-known algorithm performing clustering wherel is an input parameter. Each bucket can store
over entire data streams is the STREAM algorithm objects. The StreamKM++ algorithm can obtain better
proposed by Guha et al 5[14. It is a clustering results but takes more computing time, as its
Divide-and-Conquer algorithm that builds clusters running time dependent on the dimensionality of the data
incrementally and hierarchically using bi-criterion and thus, unsuitable for clustering high dimensional data.
approximation algorithms. The stream is processed in aoreover, produces clusters of the large data set when the
batch mode where a set of data points that fit in the mairalgorithm terminates, instead of forming clusters at any
memory are clustered into a smaller set of intermediatdime step when data flow in.
medians, each weighted by the number of data points It must be emphasized that both Divide-and-Conquer
assigned to it. The process is repeated for subsequemind two-level schemes keep their computational load
batches of data points until the set of intermediatewithin reasonable limits as they only build the data model
medians fit the memory space; they are then clustered andpon the users explicit request. In the rest of time, they
summarized into a higher level of intermediate medians.only maintain a summary of the data, which makes them
Such methods simply view data stream clustering as all-suited to applications such as system monitoring where
variant of one-pass clustering. the data model has to be continuously available at all
The CluStream framework proposed 8 [s effective  times.
in handling evolving data streams. It divides the
clustering process into online and offline components.
The online component uses microclusters to continuoushy3 Semi-Supervised Affinity Propagation
captures synopsis information from the data stream while
the offline component uses this information and otherin this section, we first describe the Affinity Propagation
user inputs to yield on-demand clustering results. The(AP) algorithm. An extension, Semi-Supervised AP, is
main drawback of this algorithm is that the number of then presented to find good partitions of data in the
micro-clusters needs to be predefined. Forpresence of side information (i.e. labeled data).
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3.1 Affinity Propagation to choose itenx, as its exemplar, taking into account
the support from other items that itexp should be an
Affinity Propagation (AP) 13| is a clustering method that exemplar. It is initialized as zero and updated as

takes as input similarities between data items. It aims to  follows:

identify exemplars among data items and forms clusters i {zi#kmax{o,r(i’,k)], i~k
a(i,k) =

around these exemplars. Each exemplar is characterized i ¥ )
min[O, r (k, k) + S ik max0,r (i ,k)]], i #k.

by a data item representative of the sample itself and some

other similar items. The objective of AP is to maximize (5)
the sum of similarities between the data items and their ~ After convergence, the exemplars are obtained by
exemplars. calculating the set of positiva(i,i)+r(i,i) messages for

Assume thatX = {x1,Xz,...,Xn} is a set of distinct eachx;, and the items are assigned to their respective
data items and le$(x;, xj) denote the similarity between exemplars (clusters) according to the following rule,
the data itemsx and x; , with i # j. AP algorithm  c(x) = argmax(a(i,k) +r(i,k)). The message passing
searches for a mappirgg-), which assigns each data item procedure stops after a specific number of iterations, or
X; to its nearest data item, referred to as exemplax;of after cluster structure does not significantly change for a
(i.e.c(xi)). This mapping should maximize the following given number of iterations.
objective function:

N N ;- .
S(c) = -Zis(xi’c(xi)HkZld‘(C) ) 3.2 Semi-Supervised AP (SSAP)

The original affinity propagation is an unsupervised
where &(c) is an exemplar consistency constraint suchclustering method. To utilize the partially labeled data,
that if data itemx; has selectedy as its exemplar, i.e., semi-supervised clustering aims to improve the clustering
c(x) = %, then data itemx, must select itself as an performance by learning from a combination of both
exemplar, i.e.¢c(xx) = Xk. labeled samples and unlabeled data.
Assume we have L labeled data set
. {(x1,¥1), (X2,¥2), ..., (X, ¥1) }» wherey; is the cluster label
_J oo, if e(X) # X but3x; (%) =Xk ; of data item x, and U unlabeled data items
&(C) = 0, otherwise (2) i
) . X+1,X 12, ,Xu- Let C be the set of exemplars in the
o . ] ) ) data set. For a certain labeled samplél <i <1) and
The objective function defined by (1) is solved using a unlabeled data iter; (I +1 < j < u) we can have two
message passing algorithm. AP algorithm takes as inpugossible situations where the labeled sample may be

the set of similarities {S(x,X;)}, which describe how associated with the unlabeled data item after a run of the
well the xj item is suited to serve as exemplar for the AP algorithm.

item. Usually, similarity is set to a negative squared error .
SX,Xj) = — % — xj||2. AP begins by simultaneously —The unlabeled data item) takes the labeled sample

considering all data items as potential exemplars, and &S the cluster exemplar. The message xi) +r(x,x)
iteratively exchanges messages between data items untila 'S PoSitive, i.e.x € C, and ifx; = argmaxa(xj, ) +
good set of exemplars and clusters emerges. The '(Xj:X«)}foreachk={1.2,..,Nj. _
messages can be combined at any stage to decide which~ 1 n€ labeled sampbe takes the unlabeled data iteq
data items are exemplars and, for every other item, which 2 the cluster exemplar. The message xi) +r(xi, x)
exemplar it belongs to. There are two kinds of messages IS Negative, i.ex; ¢ C, and ifx; = argmaxa(xi, ) +
exchanged between data iteri§]f r(x, %)} foreachk = {1,2,...,N}.

If one of the two conditions is satisfied, the unlabeled
data itemy; is the most similar to the labeled sample
Then, the unlabeled data itexyis selected and set to the
label of x;. Therefore, we can select the most similar
unlabeled data iter; as follows:

1.The responsibility messagé, k), sent from data item
X; to candidate exemplar itemxy, reflects the
accumulated evidence for how well-suited itegis
to serve as the exemplar for itemn

r(i,k) = S(x, %) — T;LX{S(XBXJ') +a(i,j)} () { ifx;i = argmax<g<n{alxj,x) +r(xj,)}andx € C
V =< X;

U
If k=i, the responsibility message is adjusted as: ifxj = argmax<k<n{alxi,x) +r(x, %) yandx ¢ C

. whereV is the new labeled sample set picked fraun
r(k k) = S %) = rpf}(X{S(X"XJ)} (4) Selecting the unlabeled data items is defined according to
the operational mechanism of the AP algorithm. This
2.The availability messaga(i,k), sent from candidate process repeats until no unlabeled data items left.iAt
exemplar itemx, to item x;, reflects the accumulated each iteration, the selection process takes advantage of
evidence for how appropriate it would be for itegn  the updated results of the AP algorithm.
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4 Clustering Streaming Data Proof. Let the data item¢x;} ™, with time stampgt;}™
be associated to the exempéeat timet;, we have:
4.1 Streaming Data Model

m
In clustering data stream, data evolve over time and thus w(et) = ;W(X"t') ©)
new clusters may appear, clusters may merge or deleted. a
The goal is to identify clusters of data and study the According to (6), we have that:
evolution of clusters over time. We consider the problem
of clustering a data stream in the damped window modely(x;, tn) = 2 t—t) = 2-At—ti) 2-A i —t)
in which the weight of data items decreases with time
according to the decay functiofi(t) = 2741, where, =2 ntw(x 1), for i=1,---.,m (10)
A > 0is a decay factor. In other words, the weight at time
t, of a data itemx; with time stampt; (i.e. an item that  Therefore, we have:
arrived at timd; ) will be given by:
w(etn) = Ti%; W(Xi,t) +W(Xn, tn)
w(x;,ty) = 27 ) (6)
: . S = ¥y W(Xi,tn) +27A )
Data items that have arrived at previous time cannot

be assumed to be available at future time. Therefore, we =M WX, ty) + 1= 3M, 27 At tw(x 1) 4+ 1
would like to maintain a succinct synopsis of data

generated during previous time, taking also into account —2 At s wix,t) +1

the weight of these historical data. The exemplars can be B

considered as representatives of the data in their clysters =2 At twet)+1

and thus we define an exemplar vector to provide a

synopsis of underlying data. The exemplar vector isFrom Proposition 1, we save huge amount of computation
consists of a set of 4-tuplge,ni,w;,t), wheree; ranges time. To update all exemplars at each time step requires
over the exemplarsy is the number of items associated o(N) computing time for weight update at each time step.

to exemplarg, w; is the weight ofe (see Definition 1), |n contrast, using Proposition 1 allows us to update only

tog.

Definition 1: Weight of exemplar. For an exemplarat a 4.2 SSAPStream Algorithm
given timet, let n be the set of data items that are

as;ociated te at or before ti.met. The weigh't ofe is . We develop SSAPStream a variation of the initially AP
defined as the sum of the weights of all data items that Sclustering  algorithm, that is capable of handling

associated te. Namely, the weight oéatt is: sequences of data in an online fashion under the limited

n memory constraints imposed by streaming applications.
wet) =% w(x;,t) (7)  The detailed procedure of SSAPStream is described in
=1 Algorithm 1.

Firstly, we apply AP clustering algorithm on the first
é)unch of data items that arrived at tireto identify the
xemplars and initialize the stream model (step 2). For

The weight of any exemplar is constantly changing.
However, we have found that it is unnecessary to updat
the weight values of all data items and exemplars at ever}‘; . S
time step. Instead, it is possible to update the weight of a ach new dgta Iterp, we try to mergep Into its nearest
exemplar only when a new data item is associated to tha?xemplara in the current model (w.rt. distanad). If

exemplar. For each exemplar, the time when it receive%(p’a) is less than some threshaddheuristically, set to

the last data item should be recorded so that the weight Othe iE:\\/igr?%r? ocljlsfan(;,e b;twte%ntdeg]allﬁmzls art1dr e?%rrlﬁlars n
the exemplar can be updated according to the following € initial mo ehpis a ecte _O @-ih cluster ai €
model is updated accordingly; otherwigeis put in the

result when a new data item arrives at the exemplar. buffer (steps 4-10).

In order to prevent the number of exemplars from
growing beyond control, one must be able to forget the
exemplars that have not been visited for a long time. In
other words, for each existing exempérif no new data
item is merged into it, the weight o& will decay
w(ety) =22t wet) +1 (8)  9radually and it should be deleted and its memory space
released for new exemplar. Accordingly, we compare the
weight of each exemplar with its lower limit of weight
(denoted ag)). If the weight of an exemplar is below its

Proposition 1. Suppose an exemplar receives a new
data itemx, at timet,, and suppose the time when
receives the last data recordtjif, > t), then the weight
of ecan be updated as follows:
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Algorithm 1. SSAPStream Algorithm

lower limit of weight, we can safely delete it (steps 1. Initialize Buffer ={}

12-14). The lower limit of weight is defined as: 2. Apply AP method on the first set of data arrived at tigne
3. While data stream is activéo

4. Read data iter;

5. Compute the nearest exempdato x;;
6. If d(x,&) < ethen
7

8

1— 27)\ (te—tj+1)
n(te,t) 1_27 (11)
wheret; is the current time and is the last update time Update the stream model ;
of the exemplag. This functionn (tc,t) is an increasing Else
function for fixedt; value. Thus, the longer an exemplar 9. Insertx into the Buffer ;
exists, the larger its weight is expected to be. 10. End If

A key difficulty in streaming data is to detect a change 11. numdif fexemplars-0;
in the generative process underlying the data stream, 12. For each exemplag in C do
referred to asconcept driff which requires the stream  13. If w; (weight of exemplag) < n(tc.ti)
model to be updated as soon as possible. The clustering14.  Deletes ;
results are said to be changed according to the following 15- Else
two criteria. The first criterion is based on the number of 1. |F
data items in the buffer; when it exceeds the buffer size,
the stream model should be updated. The second criterion
is based on the variation of clusters distribution, when the
ratio of data items in the clusters is changed dramatically,
e.g., the cluster that contains half of the data items in the
last clustering result has suddenly disappeared in the

ni ni
Numdiffexemplars++
18. EndlIf
19. End For
20. If Buffer is full or w@ ¢ then

21. Rebuild the stream model using SSAP ;

> 0 then

current clustering result. 22. Buffer={};
In order to detect the chan in streaming data, we 2> End If
e o teroar 1o Candes 1 STEATRND 0878 WE 24, End while

adopt a double-threshold method. One threslfotdhmed
exemplar variation thresholds utilized to determine that
the variation of the ratio of data items associated to an
exemplar is big enough. The exemplar that exceeds the A new model is rebuilt by launching SSAP on the

exemplar variation threshold is seen as a differentyaiaset and data items in the buffer. As mentioned
exemplar (steps 16-17). And then, the number of different, eyiously, we have two possible situations where the
exemplars is counted, and the ratio of different exemplarggpeled samples represented in the exemplars can be
is compared with the other threshajdnamedexemplar  gg50ciated with the unlabeled data items in the buffer. The

difference thresholdf the ratio of different exemplars is ¢t of selecting current exemplarto be the exemplar of
larger than the exemplar difference threshold, a larggj,iq itemy; is ordinary similarity—d(x;, &)2, while the

number of exemplars are varied in the ratio of data items gt of selecting; to be the exemplar of is increased
and thus the stream model should be updated (stepgy a factor ofn (i.e. n is the number of data items

20-21). , _ _ associated to exemplag). Therefore, the current
The variation of the ratio of data items associated Oexemplare will have more chance to be an exemplar

the exemplag between the last clustering result and the again. SSAP accordingly selects the set of data items

current temporal clustering result is calculated andom puffer that are most similar to the exemptarand

ot t = :
compared by a zero-one functidie, &), wheretj isthe ;5 merges them to the exemparThis process repeats
last update time an is the current time of exemplar. until no data items left in the buffer.

| nie .
fedy=¢ b Meg-z=a~%Y @2 5Experiments
0, otherwise

In this section, we evaluate the effectiveness and effigienc
whereC is the number of exemplars andis the number ~ 0of SSAPStream and compare it with several well-known
of data items associated to exemar data stream clustering algorithms, including CluStre@m [

Finally, the number of different exemplars is summed, , DenStreamq], StrAP [17] and StreamKM++T7]. All the
and the ratio of different exemplars is compared with ~ €xperiments are conducted on a 2.4 GHz Intel Core 2 PC
Thus, the stream model should be updated according téunning Windows XP with 2 GB main memory.
the following:

Yes ifthe buffer is ful 5.1 Data Sets and Evaluation

i Jfe . -
UpdateModel= ¢ ves if Ziczlf@Tﬂt) >¢) ¢ (13) To evaluate the effectiveness and efficiency of
No, otherwise SSAPStream algorithm, both synthetic and real data sets
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between 0 and 1. A higher Rand index indicates better
clustering results1g].

5.2 Parameter Setting

: The initialization of the SSAPStream algorithm considers
®) ' the first 1000 points of DS1 and DS2 and the first 1000
connections of the KDDCUP99 data set which totally
Fig. 1. Synthetic data sets. includes 494,021 network connection records, and the
first 1000 URLs of the 2,396,130 URLs data set. The
distance thresholct heuristically, set to the average
distance between data items and exemplars in the initial
are used. Two synthetic data sets, DS1 and DS2, aréodel, and the maximum number of data items stored in
generated as shown in Figures 1(a) and (b), respectivelghe buffer is 100 items. The parametgris the decay
Each of them contains 10,000 points. We generate afactor that controls the importance of historical data to
evolving data stream (denoted as EDS) by randomlycurrent clusters, we sat=0.98.
choosing one of the data sets (DS1 and DS2) 10 times, for The parameters for detecting evolving data
each time the chosen data set forms a 10,000 pointgistribution, i.e., exemplar variation threshol and
segment of the data stream, and the total length of th&xemplar difference threshofd may change for different
evolving data stream is 100,000. Because we know thé@pplication data. In our experiments, the exemplar
true cluster labels of each point in the data sets DS1 andariation thresholdé is set to 0.2, and, the exemplar
DS2, we can get the true cluster label of each point indifference thresholg is set to 0.4. Several observations
EDS. provide the clues to set these parameters:
Two real data sets, KDDCUP999 and URLs Pp(],
are employed for the evaluation. KDDCUP99 is a data set

— Detecting small changes requires a low threshold

that evolves significantly over time and has been widely value. . . .
: X — Detecting dramatic changes requires a high threshold
used to evaluate data stream clustering algorittgyig 9, value

17]. It consists of a series of TCP connection records of
LAN network traffic managed by MIT Lincoln Labs. The
complete data set contains approximately 4.9 million
records, and as in the previous worl6,9,17], a
sub-sampled subset of length 494020 is used. Each
connection is classified into either a normal connection or  The four compared algorithms and their parameter
specific kinds of attack (such asffer overflowftp write, settings are summarized as follow:

guess passwdnd neptung. Each connection record in , )
this data set contains 42 attributes, and assiff,p, 17), — CluStream §] separates the clustering process into an

all 34 continuous attributes are used for clustering. online microclustering and an offline microclustering.

The streaming URLs are studied to predict malicious ~ AS in [, the parameters are set as follows: the
URLSs from benign URLsZ0], and thus protect users from number  of  microclusters q = 10 x Kk,
accessing on rogue Web sites. The 120-day streaming data 'NitNumber= 1000, the maximum boundary factor
consists of more than 2 million URLs, each of which is  { = 2, the user-defined threshold = 512, the
described by lexical features, e.g., the unusual appearanc ~Pyramidal time frame parametes= 2 and| = 10,
of .com in the middle of a URL, and host-based features, ~&nd the time horizoh = 100. _ _

e.g., the ownership and IP prefix of a web site host. AURL — DenStream{] divides the clustering process into an
is labeled as benign or malicious. online part and an offline part. As in9]; the

For the performance measure we used the Rand index Parameters are set as followsitNumber= 1000, the
[18], which measures how accurately a cluster can classify ~ading factorA = 0.25, the maximum radius threshold

; ; ; ; & = 16, the weighting thresholgt = 10, and the
data items by comparing cluster labels with the underlying outlier threshold3 — 0.2.

—Detecting changes in unstable data sets requires a high
threshold value.

— Detecting changes in stable data sets requires a low
threshold value.

class labels. a+b — StrAP [17] splits the data set into some subsets,
Rl=—— followed by performing AP on each subset to generate
(o) exemplars with each being weighted by the number of

assigned data points. According tol7], the
wherea is the number of pairs of data items having the  parameters are set as followsitNumber= 1000, the
same cluster label and the same class label,baisdthe maximum number of outliers stored in reservoir
number of pairs of items having different cluster labels M = 100, the time lengtl/A = 50 and the PH test
and different class labels. The value of Rand index lies  thresholdA = 0.01.
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— StreamKM ++ [7] is an algorithm which processes . 12 qmSsAPstream  mDenstream i StAP
data streams in chunks bf data items. It summarizes g 1 {EstreamkMer = CluStream
each chunk by clustering its data intocenters. The g 08
chunk sizeM is set to 500. e 06
% 04
©
§ 02
>
< 0

5.3 Experimental Results

DS1 DS2 KDDCUP99  URLs

At first, we test the clustering quality of SSAPStream
algorithm and compare with state-of-the-art data stream
clustering methods. Figure 2 shows the average Rand
indices by the five algorithms. In general, SSAPStream
obtains the highest Rand indices on the three testing data
sets. On the two synthetic data streams, SSAPStream has
significantly outperformed the clustering methods such as
CluStream, StrAP and StreamKM++. For instance, on
DS1 data set, SSAPStream has obtained the average Rand
index as high as 0.95, which is 0.12 higher than the
second winner DenStream and is 0.22 higher than StrAP
algorithm. Similarly, on DS2 data set, SSAPStream has
obtained the average Rand index of 0.97, which is 0.09
higher than the second winner DenStream and is 0.18  Fig. 3: Execution time with different sizes of data sets.
higher than StrAP.

On the KDDCUP99 real data streams, SSAPStream
also outperforms the other four data stream clustering
methods. SSAPStream has obtained the average Rand
index of 0.77, which is slightly better than the second
winner StrAP by 0.09 and makes a significant
improvement compared with the three clustering methods
(i.e., CluStream, DenStream and StreamKM++).

The efficiency of algorithms is measured by the
execution time. The execution time includes the time used

Fig. 2: Clustering quality comparison.

W SSAPStream B DenStream StrAP
20 H StreamKM++ M CluStream

Time in Seconds

5 10 15 20 25 30
Size of data (unit K)

120 B SSAPStream M DenStream StrAP

100 - mstreamkM++  mCluStream

Time in Seconds

to update the cluster structure and the time used to realize 2 0 im0 %
cluster labeling, over the whole data stream. For instance,
In CluStream and DenStream, the execution time includes Fig. 4: Execution time with different dimensions.

two parts, the time used to assign the data item to the
nearest microcluster (online component) and the time
used to generate the final clusters (offline component).
We test and compare the execution time consumed by
the five algorithms on the KDDCUP99 data set. First, the  gne common feature for the algorithms applied to

algorithms are tested on the KDDCUP99 data with yata stream is their limited upper bounds for the memory
different sizes as shown in Figure 3. From the f'gure'usage. Since the memory usage may fluctuate in the
SSAPStream algorithm has a significant advantage OVehrogress of data streams. The memory usage is directly

its competitors in terms of the execution time, i.e., StrAP, j,a5sured by the peak memory usage of each algorithm
and StreamKM++. It can also be seen that SSAPStreangyring the stream clustering process. We used both
has better scalability since its clustering time growsgynthetic data sets and the KDDCUP99 data set to

slower with an increasing data size. evaluate the memory usage of SSAPStream.
Next, the algorithms are tested on the KDDCUP99

data with different dimensionality. We set the size of data  Figure 5 shows the proposed SSAPStream algorithm
set as 100K and vary the dimensionality in the range of 2has a significant advantage over its competitors in

to 40. We list the time costs under different memory usage. For instance, on the two synthetic data
dimensionality by the five algorithms as shown in Figure streams, SSAPStream requires, respectively, 56.5 and
4. SSAPStream is faster than other algorithms and scales7.8 KB memory, which are only about 22 percent of the

better with an increasing dimensionality. For instance,memory used by the second winner DenStream

when the dimensionality is increased from 2 to 40, thealgorithm. On KDDCUP99, SSAPStream consumes only

time of SSAPStream only increases by 20 seconds whicii8 percent of the memory used by DenStream and no
is better than the second faster DenStream that increasesore than 8 percent of the memory used by

by 50 seconds. StreamKM++.
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Fig. 5: Memory usage comparison. 0 025 05 1 2 4
Decay Factor
s u sien1d o5 . <100 Fig. 7: Clustering quality vsA.
E 1 u size=200 H size=500 H 5i2e=1000
s o8
3 06 .
?., 04 ranging between 0.1 and 0.5, SSAPStream generates poor
S 02 clustering results, achieving the minimum average Rand
z index. Also, whenA set to high values, it achieves the
bs1 DS2  KDDCUPS9  URLs minimum average Rand index. And it achieves the highest
@) average Rand index whehnis ranges from 0.5 to 2.
50 W size=10 M size=50 M size=100
7 W size=200 W size=500 W size=1000 H
ol 7T 6 Conclusion and Future Work
E 30
£ 20 In this paper, we propose SSAPStream, a semi-supervised
E w0 clustering algorithm that extends Affinity Propagation for
0 clustering evolving data streams. The algorithm uses the
Ds1 DS2  KDDCUPS9  URLs gxemplars to summarize |_nformat|on of the hlstor|_cal data
(b) items and thus, it has limited memory consumption. Our

goal is to make full use of both the existing labeled
Fig. 6: Average rand index and execution time with different exemplars and the unlabeled data items to improve the
buffer sizes. clustering performance in streaming data. Experimental
results on KDD99 data demonstrate the effectiveness and

efficiency of the proposed algorithm. This work opens

_ . several perspectives for further research. A main

5.4 Sensitivity Analysis limitation of AP is that it cannot model the category
consisting of multiple subclasses since it represents each

In this section, we report and compare the clusteringgsier py a single exemplar, such as scene analysis and
results by SSAPStream on the four testing data sets whegy, o acter recognition. To remedy this deficiency, we

using different buffer sizes and decay factor parameter gyiand the single-exemplar model to a multi-exemplar
We first analyze the performance in terms of average,,qqel.

Rand index and execution time when using different
buffer size on the four testing data streams. Figure 6
reports the results. From figure 6(a), it is clear that on all
testing streams, the average Rand index remains stab

when different buffer sizes are used, with the highes . .
average Rand index achieved in buffer size = 100 in mos%::e Research was supported in part by The National
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