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Abstract: Fine spectra of various matrix operators on different segeespaces have been examined by several authors. Recently,
some authors have determined the approximate point spectine defect spectrum and the compression spectrum ofuganiatrix
operators on different sequence spaces. Here in thiseavtielhave determined the spectrum and fine spectrum of the tdesegular
matrixB(r,0,s) on the sequence space In a further development, we have also determined the &jpade point spectrum, the defect
spectrum and the compression spectrum of the opeBtdd, s) on the sequence space
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1 Introduction operators and tridiagonal symmetric matrices over some
sequence spaces. Fine spectrum of the generalized
By w, we denote the space of all real or complex valueddifference operatord, on the sequence spadg was
sequences. Throughout the papecy, bv, cs bs /1, le investigated by Srivastava and Kuma#g]. Panigrahi and
represent the spaces of all convergent, null, boundedrivastava?4,25 studied the spectrum and fine spectrum
variation, convergent series, bounded series, absolutelgf the second order difference operatdg, on the
summable and bounded sequences respectively.BMgo  sequence spaa® and generalized second order forward
denotes the sequence spawe) co. difference operaton?,, on the sequence spaég Fine
The fine spectra of the Cesaro operaBgrover the  spectra of upper triangular double-band mattlxr,s)
sequence spackvp, (1 < p < «) was determined by over the sequence spaces and ¢ were studied by
Akhmedov and Basar2]. Okutoyi [23] determined the Karakaya and AltunZ(]. Karaisa and BasarlP] have
spectrum of the Cesaro opera@ron the sequence space determined the spectrum and fine spectrum of the upper
bv. The spectrum and fine spectrum of the Zweier Matrix traiangular matrixA(r,s,t) over the sequence spaég,
on the sequence spacésandbv were studied by Altay (0 < p < ). In a further development, they have also
and Karakus §]. Altay and Basar 3,4] determined the determined the approximate point spectrum, defect
fine spectrum of the difference operatdr and the spectrum and compression spectrum of the operator
generalized difference operat@(r,s) on the sequence A(r,st) on the sequence spadg, (0 < p < »).The
spacesy andc. Furkan, Bilgic and Kayadumanif] have  approximate point spectrum, defect spectrum and
determined the fine spectrum of the generalizedcompression spectrum of the operatB(r,s) on the
difference operatoB(r,s) over the sequence spacés  sequence spaces, C, p and by, (1 < p < «) were
andbv. Akhmedov and El-Shabrawyl] determined the studied by Basar, Durna and Yildirind]|
fine spectrum of the operatdy, ;, on the sequence space
c. Fine spectra of operatdd(r,s,t) over the sequence The notion of matrix transformations over sequence
spaces/1 and bv and generalized difference operator space has been studied from various aspects. Banach
B(r,s) over the sequence spadgsandbvp, (1 < p < o algebra of matrix maps have been investigated by Rath
were studied by Bilgic and Furkari,12]. Altun [6,7] and Tripathy P6]. Besides the above listed workers, the
determined the fine spectra of triangular Toeplitz spectrum and fine spectrum for various matrix operators
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has been investigated by Tripathy and P&o, 80|,
Tripathy and Saikia31] and many others in the recent
years.

T L
MRT)=X,

(1) R(T) #R(T) =X,

In this paper, we shall determine the spectrum and(m) R(T) # X.

fine spectrum of the lower triangular matf(r,0,s) on
the sequence spaces . Also,we will determine the

and
(1) T~ exists and is continuous,

approximate point spectrum, the defect spectrum and th%z)-rfl exists but is discontinuous

compression spectrum of the opera®(r,0,s) on the
sequence spaas. Clearly,

cs={X= (%) e w:limp.o 5L oX existg is a Banach
space with respect to the nofi®||cs = sup,| 3o Xi|-

2 Preliminaries and Background

Let X andY be Banach spaces aifd X — Y be a bounded
linear operator. BYR(T), we denote the range df, i.e.

RT)={yeY:y=Txxe X}.

By B(X) ,we denote the set of all bounded linear operator
on X into itself. If T € B(X), then the adjoinfT* of T

is a bounded linear operator on the didlof X defined
by (T*f)(x) = f(Tx), for all f € X* andx € X. Let X #
{6} be a complex normed linear space, whérés the
zero element and : D(T) — X be a linear operator with
domainD(T) C X. With T, we associate the operator

Ty =T—Al

whereA is a complex number arlds the identity operator
onD(T). If T, has an inverse which is linear, we denote it
by T, %, thatis

T, t=(T-Anh

and call it theresolventoperator ofT .
A regular valueA of T is a complex number such that
(R1)T, ~ exists,
(R2) T, * is bounded,
(R3) T[l is defined on a set which is dense Xhi.e.

R(T,) = X.

Theresolvent sebf T, denoted by (T, X), is the set
of all regular value? of T. Its complement
o(T,X) =C—p(T,X) in the complex plan€ is called
the spectrumof T. Furthermore, the spectrum(T, X) is
partitioned into three disjoint sets as follows:

The point(discrete) spectrurap(T, X) is the set such
thatT, * does not exist. Any such € ap(T,X) is called
an eigenvalue of .

The continuous spectrurae(T, X) is the set such that
T, * exists and satisfies (R3), but not (R2), thaffis}! is
unbounded.

Theresidual spectruna; (T, X) is the set such tha’g‘l

(3) T1 does not exist.
Applying Goldberg 7] classification tal, , we have three
possibilities forTy andT,*;
(D) T, is surjective,
(N R(M) #R(TM) =X,
() R(Ty) # X,
and
(1) T, is injective andT,\‘1 is continuous,
(2) T, is injective butTA*1 is discontinuous,
(3) T, is not injective.
If these possibilities are combined in all possible ways,
nine different states are created which may be shown as in

She Tablel.

Table 1. Subdivisions of spectrum of a linear operator

| 1] 1
1 p(T,X) Ur(Tvx)
2| oo(T,X) | 0c(T,X) | or(T,X)
3 | ap(T,X) | 0p(T,X) | 0p(T,X)

These are labeled big,l2,13,111, 12, 113, 1114, 1112 and
[z . If A is a complex number such thay € I, or
T, €l ,thenA is in the resolvent sed(T,X) of T . The
further classification gives rise to the fine spectrunT af
If an operator is in statell, for example, then
R(T) # R(T) = X and T~ exists but is discontinuous
and we writeA € l1,0(T,X). The statdl; is impossible
as if T, is injective, then from Kreyszig §2], Problem 6,
p.290]T/\*1 is bounded and hence continuous if and only
if R(T)) is closed.

Again, following Appell et al. 8], we define the three
more subdivisions of the spectrum called as the
approximate point spectrymdefect spectrumand
compression spectrum

Given a bounded linear operatérin a Banach space
X, we call a sequenci) in X as aWeyl sequencir T
if ||Xc|] =1 and||Tx]|| — 0ask— .

The approximate point spectrurof T ,denoted by
0ap(T,X) , is defined as the set

0ap(T,X) = {A € C: there is a Weyl sequence for ) T
1)

exists (and may be bounded or not), but does not satisfyl he defect spectrurof T,denoted byos(T, X) ,is defined

(R3), that is, the domain df[l is not dense irX.
From Goldberg17], if X is a Banach space and
T € B(X) , then there are three possibilities ®&(T) and

as the set

05(T,X)={A €C:T, isnotsurjective

)
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particular, self-adjoint) operators on Hilbert spaces are
most similar to matrices in finite dimensional spaces
(Appell et al. B]).

Let A andu be two sequence spaces ahe (an) be
an infinite matrix of real or complex numbeaigy, where
nk € No = {0,1,2,...}. Then, we say thaA defines a
matrix mapping fromA into u, and we denote it by
A: A — u, if for every sequencex = (x«) € A, the
sequenceAx = {(Ax)n}, the A-transform ofx, is in L,
twhere

The two subspectra given by equatiofsgdnd @) form a
(not necessarily disjoint) subdivisions

0(T,X) = 0ap(T,X)U05(T,X) 3)

of the spectrum. There is another subspectrum

Oco(T.X) ={A € C:R(Ty) #X}

which is often called theompression spectruof T. The

compression spectrum gives rise to another (no P

necessarily disjoint) decomposition (AX)p = z ankXk, N € Np. (5)
K=0

(T, X) = 0ap(T,X) U Geo(T, X) (4) By (A : ), we denote the class of all matrices such that

A:A — U. ThusAe (A : u)ifand only if the series on the

right hand side of equatiorb) converges for each € Ng

and everyk € A and we havé\x= {(AX)n }nen, € H for all

X € A. The lower triangular matriB(r,0,s) is an infinite

matrix of the form

Moreover, it is easy to verify that

0y (T, X) = 0co(T, X) \ 0p(T, X)
and

0¢(T,X) = o(T,X) \ [0p(T,X) U0co(T, X)].
B(r,0,s) =

OO wm O
owmw O = O
n O OO
[cBaNeoNeNo)

By the definitions given above, we can illustrate the
subdivisions spectrum in the Tal#te

wheres #£ 0.

Table 2: Subdivisions of spectrum of a linear operator The following results will be used in order to establish

T 2 3 the results of this article.
—T - —1 . —1 .
T oxets | Ty exsts dods ot Lemma 2.2[ Wilansky [32], Example 6B, Page 130The
is bounded | not bounded exist matrix A= (ank) gives rise to a bounded linear operator
T RM)= A€p(TX) A €0p(T.X) T € B(cs) from cs to itself if and only if
A € Gap(T.X)
A € oc(T,X) A € 0p(T,X) - sup m
| RM) = Aep(MX) | Acaap(T,X) | A€ aap(T,X) (1) " Skl 1 (@nk — @nk—1)| < oo.
A€ o5(T,X) A € 05(T,X)
A €0 (T,X) A €6 (T,X) A € 0p(T,X) .. .
| R £X | AeasTx) | Aeam™x) | Ae Ua"p(T’x) (i) > hank is convergent for each k
A €0e(T.X) | A€0s(T.X) | A€os(T,X) Lemma 2.3[ Goldberg [L7], Page 59T has a dense range
A € Oeo(T.X) | A€ GlT.X) if and only if T is one to one

Lemma 2.4 [ Goldberg [L7], Page 60T has a bounded

i ifandonly if Ti t
Proposition 2.1[Appell et al. 8], Proposition 1.3, p. 28] nverse it and onfyir T1s onfa

Spectra and subspectra of an operdtor B(X) and its
adjointT* € B(X*) are related by the following relations:

(@) 0(T*.X) = o(T.X). 3 Spectrum and Fine Spectrum of the

operator B(r,0,s) on the sequence space cs

(b) ac(T*,X*) C 0ap(T, X)

(©) Gap(T* ,X*):a(;(T,X). Theorem 3.1 B(r,0,s) : cs — cs is a bounded linear
(d) Ué(T* ,X*) = Oap(T, X). operator and| B(r,0,S) || (cscs < |r| + 5] -

(e) ap(T *’X *) = Oco(T. X). Proof: From Lemma 2.2, it is easy to show that

(f) Oco(T*,X*) D 0p(T, X). '

B(r,0,s) : cs— csis a bounded linear operator. Now,

n n-2
Z}rxi + Z}sx
i= i=

n n—-2

P

< (Irl+18) [ %[les

T,
(g) U(T,X) - Uap(TaX) U O-p(T*aX*)

el
—
L¥
X
*

B(r,0,8)(x)| =

The relations (c)-(f) show that the approximate point
spectrum is in a certain sense dual to defect spectrum, and
the point spectrum dual to the compression spectrum. The
equality (9) implies, in particular, that
0(T,X) = 0ap(T,X) if X is a Hilbert space and T is
normal. Roughly speaking, this shows that normal (in

<r| +1s]
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and hencej B(r,0,) [|(cscy < |r| + 5] . O]

Theorem 3.2 The spectrum of the operator(iBO,s) over
cs is given by

o(B(r,0,s),ce) ={aecC:|a—r|<|g}.

Proof: We prove this theorem by showing that
(B(r,0,s) — al )~ exists and is ir{cs: cs) for
|a —r| > ||, and then show that the operaRir,0,s) — al
is not invertible forla —r| <|g] .

Let a be such thata —r| > |g. Sinces# 0 we have
a #r and soB(r,0,s) — al is a triangle, therefore
(B(r,0,s) — al)™! exists. Lety = (yn) € cs .Solving
(B(r,0,s) — al)x =y for x in terms ofy we get

(B(r,0,s) —al)t
= (ank)

It is easy to show that for aih,

-

m

> (ank—ank-1)

n=1

<

|s?
r—af?
and henceStPy | ST (ank — ank-1)| < o,
as|a —r|>|g.
Since|a —r| > |9, so for allk, the series

1 s 3
;a"k:r—a_(r—a)2+(r—a)3_m ©

_|_

is also convergent. So, by Lemma 2(B(r,0,s) — al)~!

isin(cs:cs).

This shows that (B(r,0,s),cs) C{a € C: |a —r| < |g/}.
Now, leta € {a € C: |a —r| < ||} If a #r,then

B(r,0,s) — al is a triangle and henad(r,0,s) — al)~!

exists. Lety=(1,0,0,0,...).Theny € cs

Now, (B(r,0,s) — al)~ly = x gives

and
Xont1 = 0.

Since|a —r| < |9, so the series

e (9 1 "
=Y e a)

is not convergent and hence,= (x,) ¢ cs Therefore,
(B(r,0,s) — al)™* is not in (cs: cs and so
a € o(B(r,0,s),cs).

If a =r, then the operatoB(r,0,s) — al = B(0,0,s) is
represented by the matrix

00000---
00000O0---

B(0,0,s) =

Since, the range d@(r,0,s) — al = B(0,0,s) is not dense,
soa € o(B(r,0,s),cs). Hence,

{aeC:|a-r|<|g} Co(B(r,0,s),cs).

This completes the proadf]

Theorem 3.3 The point spectrum of the operato(rB0, s)
over cs is given by

0p(B(r,0,8),c9) = @.

Proof: Let a be an eigenvalue of the opera®fr,0,s) .
Then there existx # 6 = (0,0,0,...) in cs such that
B(r,0,s)x = ax. Then, we have

'Xo = OXo
X1 =0X1
SX +I'Xo = aXo

SX%_2+MXn=0QaXn, N>2

If Xn, is the first non-zero entry of the sequertgg) , then
a =r . Then from the relatiorsx,, + Xn,+2 = QXny+2 ,
we havesx, = 0. But s# 0 and hence,, =0 , a
contradiction.

Hencegp(B(r,0,s),cs) = ¢. O

If T:cs— csis a bounded linear operator represented

by a matrixA, then it is known that the adjoint operator
T*:cs' — cs is defined by the transpogé of the matrix
A. It should be noted that the dual spacg& of csis
isometrically isomorphic to the Banach spdwe of all
bounded variation sequences normed

[ X llov= Y0 Xn+1—Xa| + liMn—c0 [Xa].

Theorem 3.4 The point spectrum of the operatofrB0, s)*
over cs is given by

op(B(r,0,9)",cs"=bv)={aeC:|a—r|<|g}.

Proof: Let a be an eigenvalue of the opera®fr,0,s)*.
Then there existx # 6 = (0,0,0,...) in bv such that
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B(r,0,s)*x = ax. Then, we have
B(r,0,s)'x = ax

= IXo+S¥% = 0Xg

X1+ Sx% = axq

X2+ S¥ = aXo

M Xn+S¥ 12 =0a%X,, n>0

Then, we have

Since x = (xn) € bv ,s0 X = (X4) € ¢ and hence the
subsequencesxz,) and (xgn+1) are also convergent.
Now,the subsequencésy) and(xon11) are convergent

if and only if |a —r| < |§| .Hence,
op(B(r,0,9)*,cs"=bv)={aeC:|la—-r|< g} .0
Theorem 3.5 The residual spectrum of the operator
B(r,0,s) over cs is given by

o (B(r,0,s),cs) ={a € C: |a —r| < |g]}.
Proof: Since,

oy (B(r,0,8),c9) = 0p(B(r,0,5)%,cs") \ gp(B(r,0,s),cs),

so we get the required result by using Theorem 3.4 and

Proposition 2.10]

Theorem 3.6 The continuous spectrum of the operator

B(r,0,s) over cs is given by
o¢(B(r,0,s),cs)={a eC:|a—r|=]s]}.

Proof: Sinceg(B(r,0,s),cs is the disjoint union of
op(B(r,0,s),c9), or(B(r,0,s),cs) and o¢(B(r,0,s),cs) ,

Also fora =r, B(r,0,s) — al = B(0,0,s).

To prove the result, it is enough to show that the operator
B(0,0,s) is bounded below. It is easy to verify that for all

X € ¢S, we have

/8|
I1B(0,0,9)x |[= = || x|

which shows that the operatB(0, 0, s) is bounded below
and sdB(0,0,s) has a bounded inverse. This completes the
theorem[

Theorem 3.8If a #randa € g;(B(r,0,s),cs) , then
a € lll,o(B(r,0,s),cs).
Proof: Sinceg € g; (B(r,0,s),cs), therefore,from Table 2,

a e lllLo(B(r,0,s),cs)

or
a elll,o(B(r,0,s),cs).

Now,a € o;(B(r,0,s),cs) implies that|a —r| < |5 .
Therefore, the serie$)in Theorem 3.2 is not convergent
and hence, the operatBfr,0,s) has no bounded inverse.
Thereforeq € I11,0(B(r,0,s),cs). O

Theorem 39 If a € oc(B(r,0,s),c9
a €ll,0(B(r,0,s),c9).

Proof: If a € 0¢(B(r,0,s),cs) then|a —r| = |g. Therefore,
the series) in Theorem 3.2 is not convergent and hence,
the operatoB(r,0,s) has no bounded inverse. $os 2.

Now we shall show that the operatB(r,0,s) — al is not
onto.

Lety = (yn) = (1,0,0,0,...). Clearly(yn) € cs

Letx = (x) be a sequence such tH(r,0,5)x =Y.

Solving, we get

then

__ (9"
Xon = (r _ a)n+1
and
Xont1 = 0.

Now,the series

So=3 e e a)

therefore, by Theorem 3.2, Theorem 3.3 and Theorem

3.5, we geoe(B(r,0,s),c9) ={aeC:|la—r|=|9} .0
Theorem 3.7If o =r, thena € ll110(B(r,0,s),cs).

Proof: If a =r, the range oB(r,0,s) is not dense. So,
from Table 2 and Theorem 3.3, we
a € 6;(B(r,0,s),cs).

From Table 2,

o:(B(r,0,s),cs) =1 10(B(r,0,s),cs)Ulll .0 (B(r,0,s),cs).

Therefore,
a elll1o(B(r,0,s),c9

or
a € lll,o(B(r,0,s),cs).

is not convergent agr —r| = || and hence the operator
B(r,0,s) —al is notonto. Say € 1l.
This completes the proaof]

have Theorem 3.10 The approximate point spectrum of the

operator Br,0,s) over cs is given by

Oap(B(r,0,s),cs) ={a e C: |a—r| <|g}\{r}.
Proof: From Table 2,
0ap(B(r,0,s),cs) = a(B(r,0,s),cs) \ 11 10(B(r,0,s),cs).

By Theorem 3.7, lll10(B(r,0,s),cs) = {r} .This
completes the proof]
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