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Abstract: Fine spectra of various matrix operators on different sequence spaces have been examined by several authors. Recently,
some authors have determined the approximate point spectrum, the defect spectrum and the compression spectrum of various matrix
operators on different sequence spaces. Here in this article we have determined the spectrum and fine spectrum of the lower triangular
matrixB(r,0,s) on the sequence spacecs. In a further development, we have also determined the approximate point spectrum, the defect
spectrum and the compression spectrum of the operatorB(r,0,s) on the sequence spacecs.
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1 Introduction

By w, we denote the space of all real or complex valued
sequences. Throughout the paperc, c0, bv, cs, bs, ℓ1, ℓ∞
represent the spaces of all convergent, null, bounded
variation, convergent series, bounded series, absolutely
summable and bounded sequences respectively. Alsobv0
denotes the sequence spacebv∩c0.

The fine spectra of the Cesàro operatorC1 over the
sequence spacebvp, (1 ≤ p < ∞) was determined by
Akhmedov and Başar [2]. Okutoyi [23] determined the
spectrum of the Cesàro operatorC1 on the sequence space
bv0. The spectrum and fine spectrum of the Zweier Matrix
on the sequence spacesℓ1 andbv were studied by Altay
and Karakuş [5]. Altay and Başar [3,4] determined the
fine spectrum of the difference operator∆ and the
generalized difference operatorB(r,s) on the sequence
spacesc0 andc. Furkan, Bilgiç and Kayaduman [14] have
determined the fine spectrum of the generalized
difference operatorB(r,s) over the sequence spacesℓ1
and bv. Akhmedov and El-Shabrawy [1] determined the
fine spectrum of the operator∆a,b on the sequence space
c. Fine spectra of operatorB(r,s, t) over the sequence
spacesℓ1 and bv and generalized difference operator
B(r,s) over the sequence spacesℓp andbvp, (1 ≤ p < ∞
were studied by Bilgiç and Furkan [11,12]. Altun [6,7]
determined the fine spectra of triangular Toeplitz

operators and tridiagonal symmetric matrices over some
sequence spaces. Fine spectrum of the generalized
difference operator∆v on the sequence spaceℓ1 was
investigated by Srivastava and Kumar [28]. Panigrahi and
Srivastava [24,25] studied the spectrum and fine spectrum
of the second order difference operator∆2

uv on the
sequence spacec0 and generalized second order forward
difference operator∆2

uvw on the sequence spaceℓ1. Fine
spectra of upper triangular double-band matrixU(r,s)
over the sequence spacesc0 and c were studied by
Karakaya and Altun [20]. Karaisa and Başar [19] have
determined the spectrum and fine spectrum of the upper
traiangular matrixA(r,s, t) over the sequence spaceℓp,
(0 < p < ∞). In a further development, they have also
determined the approximate point spectrum, defect
spectrum and compression spectrum of the operator
A(r,s, t) on the sequence spaceℓp, (0 < p < ∞).The
approximate point spectrum, defect spectrum and
compression spectrum of the operatorB(r,s) on the
sequence spacesc0, c, ℓp and bvp, (1 < p < ∞) were
studied by Başar, Durna and Yildirim [9].

The notion of matrix transformations over sequence
space has been studied from various aspects. Banach
algebra of matrix maps have been investigated by Rath
and Tripathy [26]. Besides the above listed workers, the
spectrum and fine spectrum for various matrix operators
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has been investigated by Tripathy and Pal [29,30],
Tripathy and Saikia [31] and many others in the recent
years.

In this paper, we shall determine the spectrum and
fine spectrum of the lower triangular matrixB(r,0,s) on
the sequence spacecs . Also,we will determine the
approximate point spectrum, the defect spectrum and the
compression spectrum of the operatorB(r,0,s) on the
sequence spacecs. Clearly,
cs= {x = (xn) ∈ w : limn→∞ ∑n

i=0xi exists} is a Banach
space with respect to the norm||x||cs= supn|∑n

i=0xi |.

2 Preliminaries and Background

Let X andY be Banach spaces andT : X →Y be a bounded
linear operator. ByR(T), we denote the range ofT, i.e.

R(T) = {y∈Y : y= Tx,x∈ X}.

By B(X) ,we denote the set of all bounded linear operators
on X into itself. If T ∈ B(X), then the adjointT∗ of T
is a bounded linear operator on the dualX∗ of X defined
by (T∗ f )(x) = f (Tx), for all f ∈ X∗ andx ∈ X. Let X 6=
{θ} be a complex normed linear space, whereθ is the
zero element andT : D(T)→ X be a linear operator with
domainD(T)⊆ X. With T, we associate the operator

Tλ = T −λ I ,

whereλ is a complex number andI is the identity operator
onD(T). If Tλ has an inverse which is linear, we denote it
by T−1

λ , that is

T−1
λ = (T −λ I)−1,

and call it theresolventoperator ofT.
A regular valueλ of T is a complex number such that

(R1)T−1
λ exists,

(R2)T−1
λ is bounded,

(R3) T−1
λ is defined on a set which is dense inX i.e.

R(Tλ ) = X.
The resolvent setof T, denoted byρ(T,X), is the set

of all regular valuesλ of T. Its complement
σ(T,X) = C− ρ(T,X) in the complex planeC is called
the spectrumof T. Furthermore, the spectrumσ(T,X) is
partitioned into three disjoint sets as follows:

The point(discrete) spectrumσp(T,X) is the set such
thatT−1

λ does not exist. Any suchλ ∈ σp(T,X) is called
an eigenvalue ofT.

Thecontinuous spectrumσc(T,X) is the set such that
T−1

λ exists and satisfies (R3), but not (R2), that is,T−1
λ is

unbounded.
Theresidual spectrumσr(T,X) is the set such thatT−1

λ
exists (and may be bounded or not), but does not satisfy
(R3), that is, the domain ofT−1

λ is not dense inX.
From Goldberg [17], if X is a Banach space and

T ∈ B(X) , then there are three possibilities forR(T) and

T−1:
(I) R(T) = X,
(II) R(T) 6= R(T) = X,
(III) R(T) 6= X.
and
(1) T−1 exists and is continuous,
(2) T−1 exists but is discontinuous,
(3) T−1 does not exist.
Applying Goldberg [17] classification toTλ , we have three
possibilities forTλ andT−1

λ ;
(I) Tλ is surjective,
(II) R(Tλ ) 6= R(Tλ ) = X,
(III) R(Tλ ) 6= X,
and
(1) Tλ is injective andT−1

λ is continuous,
(2) Tλ is injective butT−1

λ is discontinuous,
(3) Tλ is not injective.

If these possibilities are combined in all possible ways,
nine different states are created which may be shown as in
the Table1.

Table 1: Subdivisions of spectrum of a linear operator
I II III

1 ρ(T,X) σr (T,X)
2 σc(T,X) σc(T,X) σr (T,X)
3 σp(T,X) σp(T,X) σp(T,X)

These are labeled by:I1,I2,I3,II1, II2, II3, III 1, III 2 and
III 3 . If λ is a complex number such thatTλ ∈ I1 or
Tλ ∈ I2 ,thenλ is in the resolvent setρ(T,X) of T . The
further classification gives rise to the fine spectrum ofT .
If an operator is in stateII2 for example, then
R(T) 6= R(T) = X and T−1 exists but is discontinuous
and we writeλ ∈ II2σ(T,X). The stateII1 is impossible
as if Tλ is injective, then from Kreyszig [[22], Problem 6,
p.290]T−1

λ is bounded and hence continuous if and only
if R(Tλ ) is closed.

Again, following Appell et al. [8], we define the three
more subdivisions of the spectrum called as the
approximate point spectrum, defect spectrum and
compression spectrum.

Given a bounded linear operatorT in a Banach space
X, we call a sequence(xk) in X as aWeyl sequencefor T
if ||xk||= 1 and||Txk|| → 0 ask→ ∞ .

The approximate point spectrumof T ,denoted by
σap(T,X) , is defined as the set

σap(T,X) = {λ ∈ C : there is a Weyl sequence for Tλ}
(1)

Thedefect spectrumof T,denoted byσδ (T,X) ,is defined
as the set

σδ (T,X) = {λ ∈C : Tλ is not surjective} (2)
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The two subspectra given by equations (1) and (2) form a
(not necessarily disjoint) subdivisions

σ(T,X) = σap(T,X)∪σδ (T,X) (3)

of the spectrum. There is another subspectrum

σco(T,X) = {λ ∈C : R(Tλ ) 6= X}

which is often called thecompression spectrumof T. The
compression spectrum gives rise to another (not
necessarily disjoint) decomposition

σ(T,X) = σap(T,X)∪σco(T,X) (4)

Clearly,σp(T,X)⊆ σap(T,X) andσco(T,X)⊆ σδ (T,X) .
Moreover, it is easy to verify that

σr(T,X) = σco(T,X)\σp(T,X)

and

σc(T,X) = σ(T,X)\ [σp(T,X)∪σco(T,X)].

By the definitions given above, we can illustrate the
subdivisions spectrum in the Table2.

Table 2: Subdivisions of spectrum of a linear operator
1 2 3

T−1
λ exists T−1

λ exists T−1
λ

and and is does not
is bounded not bounded exist

I R(Tλ ) = X λ ∈ ρ(T,X) · · · λ ∈ σp(T,X)
λ ∈ σap(T,X)

λ ∈ σc(T,X) λ ∈ σp(T,X)

II R(Tλ ) = X λ ∈ ρ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σδ (T,X) λ ∈ σδ (T,X)

λ ∈ σr (T,X) λ ∈ σr (T,X) λ ∈ σp(T,X)

III R(Tλ ) 6= X λ ∈ σδ (T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σco(T,X) λ ∈ σδ (T,X) λ ∈ σδ (T,X)

λ ∈ σco(T,X) λ ∈ σco(T,X)

Proposition 2.1[Appell et al. [8], Proposition 1.3, p. 28]
Spectra and subspectra of an operatorT ∈ B(X) and its
adjointT∗ ∈ B(X∗) are related by the following relations:
(a) σ(T∗,X∗) = σ(T,X).
(b) σc(T∗,X∗)⊆ σap(T,X).
(c) σap(T∗,X∗) = σδ (T,X).
(d) σδ (T

∗,X∗) = σap(T,X).
(e) σp(T∗,X∗) = σco(T,X).
(f) σco(T∗,X∗)⊇ σp(T,X).
(g) σ(T,X) = σap(T,X)∪σp(T∗,X∗)
= σp(T,X)∪σap(T∗,X∗).

The relations (c)-(f) show that the approximate point
spectrum is in a certain sense dual to defect spectrum, and
the point spectrum dual to the compression spectrum. The
equality (g) implies, in particular, that
σ(T,X) = σap(T,X) if X is a Hilbert space and T is
normal. Roughly speaking, this shows that normal (in

particular, self-adjoint) operators on Hilbert spaces are
most similar to matrices in finite dimensional spaces
(Appell et al. [8]).

Let λ andµ be two sequence spaces andA= (ank) be
an infinite matrix of real or complex numbersank, where
n,k ∈ N0 = {0,1,2, ...}. Then, we say thatA defines a
matrix mapping fromλ into µ , and we denote it by
A : λ → µ , if for every sequencex = (xk) ∈ λ , the
sequenceAx = {(Ax)n}, the A-transform ofx, is in µ ,
where

(Ax)n =
∞

∑
k=0

ankxk,n∈ N0. (5)

By (λ : µ), we denote the class of all matrices such that
A : λ → µ . Thus,A∈ (λ : µ) if and only if the series on the
right hand side of equation (5) converges for eachn∈ N0
and everyx∈ λ and we haveAx= {(Ax)n}n∈N0 ∈ µ for all
x ∈ λ . The lower triangular matrixB(r,0,s) is an infinite
matrix of the form

B(r,0,s) =

















r 0 0 0 · · ·
0 r 0 0 · · ·
s 0 r 0 · · ·
0 s 0 r · · ·
0 0 s 0 · · ·
...

...
...

...
. . .

















wheres 6= 0.
The following results will be used in order to establish

the results of this article.
Lemma 2.2[ Wilansky [32], Example 6B, Page 130 ]The
matrix A= (ank) gives rise to a bounded linear operator
T ∈ B(cs) from cs to itself if and only if

(i) sup
n ∑k |∑m

n=1(ank−an,k−1)|< ∞.

(ii)∑nank is convergent for each k.
Lemma 2.3 [ Goldberg [17], Page 59]T has a dense range
if and only if T∗ is one to one.
Lemma 2.4 [ Goldberg [17], Page 60]T has a bounded
inverse if and only if T∗ is onto.

3 Spectrum and Fine Spectrum of the
operator B(r,0,s) on the sequence space cs

Theorem 3.1 B(r,0,s) : cs → cs is a bounded linear
operator and‖ B(r,0,s) ‖(cs:cs)≤ |r|+ |s| .
Proof: From Lemma 2.2, it is easy to show that
B(r,0,s) : cs→ cs is a bounded linear operator. Now,

|B(r,0,s)(x)| =

∣

∣

∣

∣

∣

n

∑
i=0

rxi +
n−2

∑
i=0

sxi

∣

∣

∣

∣

∣

≤ |r|

∣

∣

∣

∣

∣

n

∑
i=0

xi

∣

∣

∣

∣

∣

+ |s|

∣

∣

∣

∣

∣

n−2

∑
i=0

xi

∣

∣

∣

∣

∣

≤ (|r|+ |s|) ‖ x ‖cs
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and hence,‖ B(r,0,s) ‖(cs:cs)≤ |r|+ |s| . �

Theorem 3.2 The spectrum of the operator B(r,0,s) over
cs is given by

σ(B(r,0,s),cs) = {α ∈ C : |α − r| ≤ |s|}.

Proof: We prove this theorem by showing that
(B(r,0,s)−αI)−1 exists and is in(cs: cs) for
|α−r|> |s| , and then show that the operatorB(r,0,s)−αI
is not invertible for|α − r| ≤ |s| .

Let α be such that|α − r| > |s|. Sinces 6= 0 we have
α 6= r and so B(r,0,s) − αI is a triangle, therefore
(B(r,0,s) − αI)−1 exists. Let y = (yn) ∈ cs .Solving
(B(r,0,s)−αI)x= y for x in terms ofy we get

(B(r,0,s)−αI)−1

= (ank)

=





























1
r−α 0 0 0 0 0 · · ·

0 1
r−α 0 0 0 0 · · ·

− s
(r−α)2

0 1
r−α 0 0 0 · · ·

0 − s
(r−α)2

0 1
r−α 0 0 · · ·

s2

(r−α)3
0 − s

(r−α)2
0 1

r−α 0 · · ·

0 s2

(r−α)3
0 − s

(r−α)2
0 1

r−α · · ·

...
...

...
...

...
...

. . .





























It is easy to show that for allm,

∑
k

∣

∣

∣

∣

∣

m

∑
n=1

(ank−an,k−1)

∣

∣

∣

∣

∣

≤
1

|r −α|
+

|s|
|r −α|2

+
|s|2

|r −α|3
+ · · ·+

|s|m

|r −α|m+1

and hence,sup
m ∑k |∑m

n=1(ank−an,k−1)|< ∞,
as|α − r|> |s|.

Since|α − r|> |s|, so for allk, the series

∑
n

ank =
1

r −α
−

s
(r −α)2 +

s2

(r −α)3 −·· · (6)

is also convergent. So, by Lemma 2.2,(B(r,0,s)−αI)−1

is in (cs: cs).
This shows thatσ(B(r,0,s),cs)⊆ {α ∈C : |α − r| ≤ |s|}.

Now, let α ∈ {α ∈ C : |α − r| ≤ |s|}. If α 6= r,then
B(r,0,s)−αI is a triangle and hence,(B(r,0,s)− αI)−1

exists. Lety= (1,0,0,0, ...).Theny∈ cs.
Now, (B(r,0,s)−αI)−1y= x gives

x2n =
(−s)n

(r −α)n+1

and
x2n+1 = 0.

Since|α − r| ≤ |s|, so the series

∞

∑
n=0

xn =
∞

∑
n=0

(−s)n

(r −α)n+1 =
1

r −α

∞

∑
n=0

(

−
s

r −α

)n

is not convergent and hence,x = (xn) /∈ cs. Therefore,
(B(r,0,s) − αI)−1 is not in (cs : cs) and so
α ∈ σ(B(r,0,s),cs).
If α = r, then the operatorB(r,0,s)−αI = B(0,0,s) is
represented by the matrix

B(0,0,s) =

















0 0 0 0 0· · ·
0 0 0 0 0· · ·
s 0 0 0 0· · ·
0 s 0 0 0 · · ·
0 0 s 0 0 · · ·
...

...
...

...
...

. . .

















Since, the range ofB(r,0,s)−αI = B(0,0,s) is not dense,
soα ∈ σ(B(r,0,s),cs). Hence,

{α ∈C : |α − r| ≤ |s|} ⊆ σ(B(r,0,s),cs).

This completes the proof.�

Theorem 3.3 The point spectrum of the operator B(r,0,s)
over cs is given by

σp(B(r,0,s),cs) = φ .

Proof: Let α be an eigenvalue of the operatorB(r,0,s) .
Then there existsx 6= θ = (0,0,0, ...) in cs such that
B(r,0,s)x= αx. Then, we have

rx0 = αx0

rx1 = αx1

sx0+ rx2 = αx2

· · ·

sxn−2+ rxn = αxn, n≥ 2

If xn0 is the first non-zero entry of the sequence(xn) , then
α = r . Then from the relationsxn0 + rxn0+2 = αxn0+2 ,
we have sxn0 = 0. But s 6= 0 and hence,xn0 = 0 , a
contradiction.
Hence,σp(B(r,0,s),cs) = φ . �

If T : cs→ cs is a bounded linear operator represented
by a matrixA, then it is known that the adjoint operator
T∗ : cs∗ → cs∗ is defined by the transposeAt of the matrix
A. It should be noted that the dual spacecs∗ of cs is
isometrically isomorphic to the Banach spacebv of all
bounded variation sequences normed by
‖ x ‖bv= ∑∞

n=0 |xn+1− xn|+ limn→∞ |xn|.

Theorem 3.4 The point spectrum of the operator B(r,0,s)∗

over cs∗ is given by

σp(B(r,0,s)∗,cs∗ ∼= bv) = {α ∈ C : |α − r|< |s|}.

Proof: Let α be an eigenvalue of the operatorB(r,0,s)∗.

Then there existsx 6= θ = (0,0,0, ...) in bv such that

c© 2015 NSP
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B(r,0,s)∗x= αx. Then, we have

B(r,0,s)tx= αx

⇒ rx0+ sx2 = αx0

rx1+ sx3 = αx1

rx2+ sx4 = αx2

· · ·

rxn+ sxn+2 = αxn, n≥ 0

Then, we have

x2n =

(

α − r
s

)n

x0

x2n+1 =

(

α − r
s

)n

x1

Since x = (xn) ∈ bv ,so x = (xn) ∈ c and hence the
subsequences(x2n) and (x2n+1) are also convergent.
Now,the subsequences(x2n) and(x2n+1) are convergent
if and only if |α − r|< |s| .Hence,
σp(B(r,0,s)∗,cs∗ ∼= bv) = {α ∈ C : |α − r|< |s|} . �

Theorem 3.5 The residual spectrum of the operator
B(r,0,s) over cs is given by

σr(B(r,0,s),cs) = {α ∈C : |α − r|< |s|}.

Proof: Since,

σr(B(r,0,s),cs) = σp(B(r,0,s)∗,cs∗)\σp(B(r,0,s),cs),

so we get the required result by using Theorem 3.4 and
Proposition 2.1.�

Theorem 3.6 The continuous spectrum of the operator
B(r,0,s) over cs is given by

σc(B(r,0,s),cs) = {α ∈C : |α − r|= |s|}.

Proof: Since,σ(B(r,0,s),cs is the disjoint union of
σp(B(r,0,s),cs), σr(B(r,0,s),cs) and σc(B(r,0,s),cs) ,
therefore, by Theorem 3.2, Theorem 3.3 and Theorem
3.5, we getσc(B(r,0,s),cs) = {α ∈ C : |α − r|= |s|} . �

Theorem 3.7 If α = r, thenα ∈ III 1σ(B(r,0,s),cs).

Proof: If α = r, the range ofB(r,0,s) is not dense. So,
from Table 2 and Theorem 3.3, we have
α ∈ σr(B(r,0,s),cs).
From Table 2,

σr(B(r,0,s),cs)= III 1σ(B(r,0,s),cs)∪III 2σ(B(r,0,s),cs).

Therefore,
α ∈ III 1σ(B(r,0,s),cs)

or
α ∈ III 2σ(B(r,0,s),cs).

Also for α = r, B(r,0,s)−αI = B(0,0,s).
To prove the result, it is enough to show that the operator
B(0,0,s) is bounded below. It is easy to verify that for all
x∈ cs, we have

‖ B(0,0,s)x ‖≥
|s|
2

‖ x ‖

which shows that the operatorB(0,0,s) is bounded below
and soB(0,0,s) has a bounded inverse. This completes the
theorem.�

Theorem 3.8 If α 6= r and α ∈ σr(B(r,0,s),cs) , then
α ∈ III 2σ(B(r,0,s),cs).

Proof: Since,α ∈ σr(B(r,0,s),cs), therefore,from Table 2,

α ∈ III 1σ(B(r,0,s),cs)

or
α ∈ III 2σ(B(r,0,s),cs).

Now,α ∈ σr(B(r,0,s),cs) implies that |α − r| < |s| .
Therefore, the series (6) in Theorem 3.2 is not convergent
and hence, the operatorB(r,0,s) has no bounded inverse.
Therefore,α ∈ III 2σ(B(r,0,s),cs). �

Theorem 3.9 If α ∈ σc(B(r,0,s),cs) , then
α ∈ II2σ(B(r,0,s),cs).

Proof: If α ∈σc(B(r,0,s),cs) then|α−r|= |s|. Therefore,
the series (6) in Theorem 3.2 is not convergent and hence,
the operatorB(r,0,s) has no bounded inverse. So,α ∈ 2.
Now we shall show that the operatorB(r,0,s)−αI is not
onto.
Let y= (yn) = (1,0,0,0, ...). Clearly,(yn) ∈ cs.
Let x= (xn) be a sequence such thatB(r,0,s)x= y.
Solving, we get

x2n =
(−s)n

(r −α)n+1

and
x2n+1 = 0.

Now,the series

∞

∑
n=0

xn =
∞

∑
n=0

(−s)n

(r −α)n+1 =
1

r −α

∞

∑
n=0

(

−
s

r −α

)n

is not convergent as|α − r| = |s| and hence the operator
B(r,0,s)−αI is not onto. So,α ∈ II .
This completes the proof.�

Theorem 3.10 The approximate point spectrum of the
operator B(r,0,s) over cs is given by

σap(B(r,0,s),cs) = {α ∈ C : |α − r| ≤ |s|} \ {r}.

Proof: From Table 2,

σap(B(r,0,s),cs) = σ(B(r,0,s),cs)\ III 1σ(B(r,0,s),cs).

By Theorem 3.7, III 1σ(B(r,0,s),cs) = {r} .This
completes the proof.�
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Theorem 3.11 The compression spectrum of the operator
B(r,0,s) over cs is given by

σco(B(r,0,s),cs) = {α ∈ C : |α − r|< |s|}.

Proof: By Proposition 2.1 (e), we get

σp(B(r,0,s)∗,cs∗) = σco(B(r,0,s),cs).

Using Theorem 3.4, we get the required result.�

Theorem 3.12 The defect spectrum of the operator
B(r,0,s) over cs is given by

σδ (B(r,0,s),cs) = {α ∈ C : |α − r| ≤ |s|}.

Proof: From Table 2, we have

σδ (B(r,0,s),cs) = σ(B(r,0,s),cs)\ I3σ(B(r,0,s),cs).

Also,

σp(B(r,0,s),cs) = I3σ(B(r,0,s),cs) ∪ II3σ(B(r,0,s),cs)

∪ III 3σ(B(r,0,s),cs)

By Theorem 3.3, we haveσp(B(r,0,s),cs) = φ and
soI3σ(B(r,0,s),cs) = φ .
Henceσδ (B(r,0,s),cs) = {α ∈C : |α − r| ≤ |s|}. �

Corollary 3.13 The following statements hold:
(i) σap(B(r,0,s)∗,cs∗ ∼= bv) = {α ∈C : |α − r| ≤ |s|}.
(ii)σδ (B(r,0,s)

∗,cs∗ ∼= bv) =
{α ∈ C : |α − r| ≤ |s|} \ {r}.

Proof: Using Proposition 2.1 (c) and (d), we get

σap(B(r,0,s)
∗,cs∗ ∼= bv) = σδ (B(r,0,s),cs)

and

σδ (B(r,0,s)
∗,cs∗ ∼= bv) = σap(B(r,0,s),cs).

Using Theorem 3.10 and Theorem 3.12, we get the
required results.�
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[4] B. Altay and F. Başar,On the fine spectrum of the
generalized difference operator B(r,s) over the sequence
spaces c0 and c, Int. J. Math. Math. Sci., 2005:18 (2005),
3005-3013.
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