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Abstract: Hesitant fuzzy sets (HFSs), which were generalized from fuzzy sets, constrain the membership degree of an element to be
a set of possible values between zero and one; furthermore iftwo or more decision-makers select the same value, it is onlycounted
once. However, a situation where the evaluation value is repeated several times differs from one where the value appearsonly once.
Multiset hesitant fuzzy sets (MHFSs) can deal effectively with a case where some values are repeated more than once in an HFS. In
this paper, the new comparison method and corresponding distance of multiset hesitant fuzzy elements (MHFEs) are introduced. Then,
based on the traditional TODIM and Choquet integral methods, a novel approach for multi-criteria group decision-making (MCGDM)
problems, where the criteria are interdependent or interactive and the decision makers have a bounded rationality, is proposed for ranking
alternatives. Finally, an example is provided in order to verify the developed approach and demonstrate its validity and feasibility.
Furthermore, comparative analysis is presented by utilizing the same example as well.
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1 Introduction

In many cases, it is difficult for decision-makers to
precisely express a preference when attempting to solve
multi-criteria decision-making (MCDM) problems with
inaccurate, uncertain or incomplete information. Zadehs
fuzzy sets (FSs)[1], where the membership degree is
represented by a real number between zero and one, are
regarded as an important tool to solve not only MCDM
problems [2,3] , but also for working with fuzzy logic and
approximate reasoning [4], and pattern recognition [5].
However, a major drawback of FSs is that single values
cannot convey information precisely.

In fact, the information regarding alternatives, when
referring to a fuzzy concept, may be incomplete, i.e., the
sum of the membership and non-membership degree of
element in the universe can be less than one. The FS
theory fails when it comes to managing the insufficient
understanding of membership degrees. Thus, Atanassov’s
intuitionistic fuzzy sets (IFSs) and interval-valued
intuitionistic fuzzy sets (IVIFSs), both extensions of

Zadehs FSs, were introduced [6,7,8]. To date, IFSs and
IVIFSs and their extensions have been widely applied in
solving MCDM problems [9,10,11,12,13,14,15,16,17] ;
however, in actual decision-making problems, the degrees
in FSs, IFSs and IVIFSs can be a set of real numbers or
intervals instead of only one.

To manage situations where people are hesitant in
expressing their preference regarding the relevant objects
in a decision-making process, hesitant fuzzy sets (HFSs),
another extension of traditional FSs, provide a useful
reference. HFSs were originally defined by Torra [18,19]
and allow a membership degree to have different possible
precise values between zero and one. Recently, HFSs
have been the subject of a great deal of research and have
been widely applied to MCDM or multi-criteria group
decision-making (MCGDM) problems. For example,
some work on the aggregation operators of HFSs have
been undertaken [20,21,22,23,24,25,26] and the
correlation coefficient, distance and correlation measures
for HFSs were developed [27,28,29,30]. Furthermore,
Zhang and Wei [31] developed the E-VIKOR method to
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solve MCDM problems with HFSs. Zhang and Xu [32]
proposed the TODIM method, which was based on
measured functions with HFSs. Qian and Wang [33]
generalized HFSs and utilized the aggregation operators
to solve MCDM problems. Zhu et al. [34,35] proposed
dual HFSs and outlined their operations and properties.
However, in any associated distance measures, two
hesitant fuzzy elements (HFEs) should be of equal length
and must be arranged in ascending order. If the two HFEs
being compared have different lengths, then the value of
the shorter one should be increased until both are equal.
In order to address these shortcomings, Wang et al. [36]
proposed an outranking approach with HFSs to solve
MCDM problems. Furthermore, Chen et al. [37] proposed
interval-valued hesitant fuzzy sets (IVHFSs) and some
aggregation operators and applied them to MCGDM
problems. Wei and Zhao [38] introduced Einstein
operations to IVHFSs and applied them to MCDM
problems. Farhadinia [39] discussed the correlation for
dual IVHFSs and Peng et al. [40] introduced a MCDM
approach with hesitant interval-valued intuitionistic fuzzy
sets (HIVIFSs), which is an extension of dual IVHFSs.
Having reviewed the extant research, Rodriguez et al. [41]
summarized the current state of, and proposed future
directions for, HFSs. However, four main shortcomings of
the existing methods of dealing with HFSs have emerged
from the research to date. (1) The aggregation operators
that are involved in those methods are related to different
operations, which also lead to different rankings.
Moreover, it is very difficult for decision-makers to
confirm their judgments when using operators that have
similar characteristics and which always need a large
amount of computation. (2) Both distance measures and
similarity measures should satisfy the condition that all
HFEs must be arranged in ascending order and be of
equal length as we discussed earlier. However, in such
cases, different methods of extension could produce
different results. (3) The existing comparison methods
have certain problems when reflecting the preferences of
decision-makers. (4) The existing methods do not clarify:
how to solve a situation where there is a repeated value in
the evaluation of alternatives; and in particular, whether
decision makers can give more than one value (possible
membership degrees of an element) for each criterion or
not. At the same time, the situation where the evaluation
value is repeated more than once is actually different from
that where a value appears only once. For example,
decision-makers may deem that the possible membership
degrees by which an alternative is assessed against the
criterion excellent are 0.5, 0.6 and 0.6, which is expressed
by 0.5, 0.6 in the form of an HFE. However, the set of
evaluation values 0.5, 0.6 are different from 0.5, 0.6, 0.6,
which can lead to information loss in the data collection
process. Fortunately, as they are generalized from HFSs,
multiset hesitant fuzzy sets (MHFSs) can overcome these
shortcomings and deal with the case where some values
may be repeated more than once in an HFS. Furthermore,
in those decision-making methods mentioned above, most

of the criteria are assumed to be independent of one
another. However in real life decision-making problems,
the criteria of the problems are often interdependent or
interactive. This phenomenon is referred to as correlated
criteria in this paper. The Choquet integral [42] is a
powerful tool for solving MCDM and MCGDM problems
with correlated criteria and has been widely used for this
purpose [43,44,45,46,47,48,49,50]. For example, Yager
[43] extended the idea of order induced aggregation to the
Choquet aggregation and introduced the induced Choquet
ordered averaging (I-COA) operator. Meyer and Roubens
[44] proposed the fuzzy extension of the Choquet integral
and applied it to MCDM problems. Yu et al. [45] used the
Choquet integral to propose a hesitant fuzzy aggregation
operator and applied it to MCDM problems within a
hesitant fuzzy environment. Tan and Chen [46]
introduced the intuitionistic fuzzy Choquet integral
operator. Tan [47] defined the Choquet integral-based
Hamming distance between interval-valued intuitionistic
fuzzy values and applied it to MCGDM problems.
Bustince et al. [48] proposed a new MCDM method for
interval-valued fuzzy preference relation, which was
based on the definition of interval-valued Choquet
integrals. Wei et al. [49] developed a generalized
triangular fuzzy correlated averaging (GTFCA) operator
based on the Choquet integral and OWA operator. Finally,
Wang et al. [50] developed some Choquet integral
aggregation operators with interval 2-tuple linguistic
information and applied them to MCGDM problems.

A further problem is that the aforementioned MCDM
and MCGDM methods that are used within a hesitant
fuzzy environment are based on rational choices.
However, a decision-maker is usually influenced by his or
her personality, psychological state and risk preference as
well as by environmental and other factors. Therefore in
the actual decision-making process, decision-makers have
a bounded rationality. As a means of overcoming this
shortcoming, prospect theory (PT) was firstly developed
by Kahneman and Tversky [51] in 1979. Subsequently
cumulative prospect theory (CPT), which introduced
capacity probability and contributed a solution for the
problem of strong dominance and any number of
outcomes not resolved by PT, was also developed by
Kahneman and Tversky in 1992 [52]. To date, PT and
CPT theories and applied research have been widely used
in the asset pricing model [53], behavioral finance [54],
tax decisions [55] and risk investment [56]. Subsequently,
Gomes and Lima [57,58] proposed the TODIM (an
acronym in Portuguese of interactive and multi-criteria
decision-making) method based on PT, which could solve
MCDM and MCGDM problems where the criteria values
were in the form of precise values. More recently, the
TODIM method has been widely applied to various fields,
such as the evaluation of residential properties [59], the
selection of natural gass destination [60], oil spills in the
sea [61] and project investment [62].

However, TODIM also plays an important role in
solving MCGDM problems where decision-makers have
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bounded rationality, whilst the Choquet integral has a
critical role in handing MCGDM problems with
correlated criteria. Therefore, developing a method of
combining these two methods in order to solve multiset
hesitant fuzzy MCGDM problems with correlated criteria
is seen as a valuable research topic.

The rest of this paper is organized as follows. In
Section 2, the Choquet integral is reviewed and a
definition, as well as the properties, of HFSs is provided.
Moreover, the accuracy function and comparison method
are also introduced. Section 3 provides a definition of
MHFSs and introduces a related operation and novel
comparison method. In Section 4 the extended TODIM
method based on the Choquet integral within a multiset
hesitant fuzzy environment is developed and applied to
MCGDM problems. In Section 5 an example to illustrate
the practical application of the developed approach is
provided. Finally, some conclusions are drawn in Section
6.

2 Preliminaries

In this section, fuzzy measure, the Choquet integral and
the definition of HFSs are reviewed. Some operations and
comparison laws of HFSs, which will be utilized in the
latter analysis, are also presented.

2.1 Fuzzy measure and the Choquet integral

Let X = {x1,x2, . . . ,xn} be the set of the criteria,P(X) be
the power set ofX , then the fuzzy measureµ is defined as
follows.
Definition 1[63].A fuzzy measureµ on the setX is a set
function µ : P(X) → [0,1] and satisfies the following
axioms:
(1)µ(∅) = 0,µ(X) = 1;
(2)i f B ⊆C ⊆ X ,thenµ(B)≤ µ(C);
(3)µ(B ∪ C) = µ(B) + µ(C) + ρ(B)µ(C),for
∀B,C ⊆ X ,B∪C =∅, whereρ ∈ (−1,+∞).
In Definition 1, if ρ = 0, then the third condition is
reduced to the additive measure:
for ∀B,C ⊆ X ,andB∩C =∅,µ(B∪C) = µ(B)+ µ(C).
If the elements ofB are independent, then for∀B ⊆ X ,

µ(B) = ∑
xi∈B

µ(xi). (1)

In Definition 1, if ρ = 0, then the fuzzy measure is a
probability measure and the elements are independent; if
−1 < ρ < 0, then a redundant relation exists among
elements; ifρ > 0, then a complementary relation exists
among elements.
Definition 2[42]. Let µ be a fuzzy measure on
(X ,P(X)), f : X → [0,+∞), then the Choquet integralf
on with respect toµ can be defined as follows:

∫

X
f dµ =

∫ +∞

0
µ({x : f (x) > t})dt,

where {x : f (x) > t} ∈ P(X) for ∀t ∈ R+. If
X = {x1,x2, . . . ,xn} is a finite set, then the discrete
Choquet integral can be described as:

∫

X
f dµ =

n

∑
1

f (xσ(i))(µ(Aσ(i)− µ(Aσ(i+1))), (2)

or
∫

X
f dµ =

n

∑
1

( f (xσ(i))− f (xσ(i−1)))µ(Aσ(i)). (3)

Where (σ(1),σ(2), . . . ,σ(n)) is a permutation of
(1,2, . . . ,n), such that 0≤ f (xσ(1)) ≤ f (xσ(2)) ≤ . . . ≤
f (xσ(n)), f (xσ(0)) = 0,Aσ(i) = {xσ(i),xσ(i+1), . . . ,xσ(n)}
andµ(Aσ(n+1)) = 0.
Example 1. Let X = {x1,x2,x3},x1 < x2 < x3, and

f (x) = 2x, then f (x1) < f (x2) < f (x3), so
σ(1) = 1,σ(2) = 2,σ(3) = 3,A1 = {x1,x2,x3},A2 =
{x2,x3},A3 = {x3}. Suppose µ(x1) = 0.3,µ(x2) =
0.25,µ(x3) = 0.37,µ{x1,x2} = 0.52,µ{x1,x3} =
0.65,µ{x2,x3} = 0.45,µ{x1,x2,x3} = 1; if they are
calculated by using Eq. (3), then the following is
obtained:∫

X f dµ = ( f (x1) − f (xσ(0)))µ(A1) + ( f (x2) −
f (x1))µ(A2) + ( f (x3) − f (x2))µ(A3) =
(2x1 −0)×1+(2x2−2x1)×0.45+(2x3−2x2)×0.37.
If x1 = 1,x2 = 2,x3 = 3, then we have

∫
X f dµ = 4.38.

2.2 HFSs and their operations

Definition 3[18,19].Let X be a universal set; an HFS onX
is in terms of a function that when applied toX returns a
subset of[0,1], which can be represented as follows:

E = {〈x,hE(x)〉|x ∈ X}, (4)

where hE(x) is a set of values in[0,1], denoting the
possible membership degrees of the elementx ∈ X to the
setE. hE(x) is called a hesitant fuzzy element (HFE) [20],
andE is the set of all HFEs.

Torra [18,19] defined some operations on HFEs, and
Xia and Xu [20] defined some new operations on HFEs as
well as the score functions.
Definition 4[20]. Let h1,h2 andh be three HFEs,λ ≥ 0,

and four associated operations can be defined as follows:
(1)

⊕
-union:h1

⊕
h2 = ∪γ1∈h1,γ2∈h2{γ1+ γ2− γ1× γ2};

(2)
⊗

-intersection:h1
⊗

h2 = ∪γ1∈h1,γ2∈h2{γ1× γ2};
(3) Multiplication:λ h = ∪γ∈h{1− (1− γ)λ};
(4) Exponentiation:hλ = ∪γ∈h{γλ}.
Example 2. Let h1 = {0.1,0.2} andh2 = {0.1,0.3,0.5}

be two HFEs,λ = 2, and then we could get:
(1) h2

1 = {0.12
,0.22}= {0.01,0.04};

(2) 2h1 = {0.19,0.36};
(3) h1

⊕
h2 = {0.28,0.37,0.55,0.44,0.60};

(4) h1
⊗

h2 = {0.02,0.03,0.05,0.06,0.1}.
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Definition 5[20]. For a HFEh, s(h) = 1
l(h) ∑γ∈h γ is called

the score function ofh, where l(h) is the number of
elements inh. For two HFEsh1 andh2, if s(h1) > s(h2),
thenh1 > h2; if s(h1) = s(h2), thenh1 = h2.

The shortcoming of using Definition 5 when
comparing two HFEs, is illustrated in the following
example.
Example 3. Let h1 = {0.5},h2 = {0.2,0.8} and

h3 = {0.2,0.5,0.8} be two HFEs. It becomes clear that
h1 6= h2 6= h3. However, by applying Definition 5,
s(h1) = s(h2) = s(h3) can be obtained, and thus
h1 = h2 = h3, which is contradictory to our intuition.

Moreover, it is noted that different aggregation
operators based on different operations could lead to
different aggregation results, which also lead to different
rankings [36].

In order to overcome this counterintuitive problem,
Farhadinia [64] defined a new score function.
Definition 6[64]. Let h = ∪γ∈h = {γ j| j = 1,2, . . . , l(h)}

be an HFE, wherel(h) is the number of elements inh.
Then the score function ofh is defined as

S(h) =
∑l(h)

j=1 δ ( j)γ j

∑l(h)
j=1 δ ( j)

, (5)

where {δ ( j)| j = 1,2, . . . , l(h)} is a positive-valued
monotonic increasing sequence of the indexj.

Compared to the score function in Ref. [20], the new
score function can overcome the counterintuitive
problem. However, this new score function was always
defined based on the assumption that: the values in the
concerned HFEs are arranged in an ascending order; and
if two HFEs are not of equal length, then the shorter one
should be extended by adding its largest number until
both HFEs are the same. Therefore, this extension method
has the same drawback to those approaches discussed
earlier.
Definition 7[65]. Let h1 andh2 be two HFEs on X, and

then the following comparison method exists:

h1 ≤ h2 iff γσ( j)
h1

≤ γσ( j)
h2

,1 ≤ j ≤ lhi . Note that all
elements in HFEs are arranged in ascending order, and

γσ( j)
h1

is referred to as thej-th largest value inh1. Two
HFEsh1 andh2 should have the same length. If there are
fewer elements inh1 than inh2, an extension ofh1 can be
created by subjectively repeating its maximum element
until it is of equal length toh2.

However, if HFEs are extended in the way outlined
above, the initial evaluation values of decision-makers
will be changed.

3 MHFSs and their operations

In this section, the definition of MHFSs, along with some
associated operations and a novel comparison method, is

introduced.
Definition 8[18].Let X be a universal set; an MHFS onX

is in terms of a function that returns a multi-subset of[0,1]
when applied toX . It can be represented in the following
way:

E = {〈x,HE(x)〉|x ∈ X}, (6)

whereHE(x) is a set of values in[0,1], denoting the set of
the possible membership degrees of the elementx ∈ X to
the setE. In any HE(x), the values are allowed to be
repeated several times.HE(x) is called a multiset hesitant
fuzzy element (MHFE), andE is the set of all
HFEs.Seemingly, any HFS is a special case of a MHFS.
Apparently, the operations on HFEs in Definition 4 can
also be suited for MHFEs.
Example 4. Let HA = {0.1,0.2,0.1,0.3} and

HB = {0.2,0.3,0.3} be two MHFEs and λ = 2.
According to Definition 4,the following results can be
obtained:
(1) H2

A = {0.12,0.22,0.12,0.32} =
{0.01,0.04,0.01,0.09};
(2) 2HA = {0.19,0.36,0.19,0.51};
(3) HA

⊕
HB = {0.28,0.37,0.44,0.51,0.37,0.51,0.28,0.37,0.36,0.44,0.37,

0.44};

(4)HA
⊗

HB = {0.02,0.03,0.04,0.06,0.03,0.06,0.02,0.03,0.06,0.09,0.03,0.09}.

Definition 9. For a MHFE HA,

a(HA) =
1

l(HA)−1 ∑γHA
∈HA

(sHA − γHA)
2 can be defined as

an accuracy function ofHA. Where sHA is the score
function defined in Definition 5 andl(HA) is the number
of elements inHA.

The accuracy function is similar to the sample
variance in statistics and can reflect the fluctuation of
evaluation values of MHFEs; the greater the amplitude of
fluctuation is, the larger the hesitant degree. Then the
ranking of any two MHFEs can be obtained by combining
the score function and the accuracy function.

Based on Definitions 5, 7 and 9, some new comparison
methods for MHFEs are defined as follows.

Definition 10. Let HA andHB be two MHFEs on X, all
elements in MHFEs be arranged in ascending order, and

γσ( j)
HA

andγσ( j)
HB

be referred to as thej-th largest value in
HA and HB respectively. Then the following comparison
methods can be given.

(1) HA ≤ HB iff γσ( j)
HA

≤ γσ( j)
HB

andγ
σ(lHA

)

A ≤ γ
σ(lHB )

B ,

where γσ( j)
HA

∈ HA,γ
σ( j)
HB

∈ HB, j = 1,2, . . . , lH , and
lH = min(lHA , lHB) (lHA and lHB represent the number of
elements inHA andHB respectively);
(2) HA = HB iff HA ≤ HB andHB ≤ HA;
(3) HA 
 HB and HA ≺ HB iff s(HA) < s(HB) or iff
s(HA) = s(HB) anda(HA)> s(HB).

Here s(·) and a(·) respectively represent the score
function referred to in Definition 5 and the accuracy
function referred to in Definition 9. Note that≺ means
inferior to. Apparently, ifHA < HB, thenHA ≺ HB.
Example 5. Let HA = {0.2,0.4,0.4,0.6} and
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HB = {0.3,0.4,0.5} be two MHFEs.
(1) By applying the score function in Definition 5,
s(HA) = 0.4 ands(HB) = 0.4. Heres(HA) = s(HB), and
thusHA = HB.
(2) According to the novel score function in Definition 6,
S(HA) = 0.46 and S(HB) = 0.46, whereHB becomes
{0.3,0.4,0.5,0.5} as required. ThenS(HA) = S(HB) can
be obtained, and thusHA = HB.
(3) According to the comparison method in Definition 7,

we haveγσ(4)
HA

� γσ(4)
HB

andHA � HB, whereHB becomes
{0.3,0.4,0.5,0.5} as required.
(4) According to the proposed comparison method in
Definition 10, we havelH = min(lHA , lHB) = lHB = 3 and

γσ(1)
HA

≤ γσ(1)
HB

,γσ(2)
HA

≤ γσ(2)
HB

and γσ(3)
HA

≤ γσ(3)
HB

, but

γσ(lHA ))A�γσ(lHB
))B

, i.e., 0.6 � 0.5, so we haveHA � HB.
Then a(HA) = 0.0267, and a(HB) = 0.01. Here
a(HA)> s(HB), and thusHA ≺ HB.

Apparently, if the comparison methods in Definition 7
are utilized by subjectively adding the maximum element
to MHFEs, then the initial evaluation values of
decision-makers will be changed and at the same time it
will influence the final ranking. However, the proposed
comparison method could overcome these shortcomings
and is also suitable for HFSs.
Definition 11. If A = {〈x,HA(x)〉|x ∈ X} and

B = {〈x,HB(x)〉|x ∈ X} are two MHFSs on
X = {x1,x2, . . . ,xn}, then A ≤ B iff
∀xi ∈ X ,HA(xi)≤ HB(xi).
Example 6.

Let A = {〈x1,{0.1,0.2,0.4}〉,〈x2,{0.2,0.3}〉} and
B = {〈x1,{0.1,0.2,0.5}〉,〈x2,{0.3,0.3}〉} be two
MHFSs. Based on Definition 10,
HA(x1) = {0.1,0.2,0.4} ≤ HB(x1) = {0.1,0.2,0.5} and
HA(x2) = {0.2,0.3} ≤ HB(x2) = {0.3,0.3} can be
obtained. SoA ≤ B.
Definition 12. Let A = {〈x,HA(x)〉|x ∈ X},

B = {〈x,HB(x)〉|x ∈ X} andC = {〈x,HC(x)〉|x ∈ X} be
three MHFSs onX , and d̃ represent the distance of two
MHFSs if it satisfies the following conditions:
(1) 0≤ d̃(A,B) = 1;
(2) d̃(A,B) = d̃(B,A);
(3) d̃(A,B) = 0 iff A = B;
(4) If A ≤ B ≤ C, then d̃(A,B) ≤ d̃(A,C) and
d̃(B,C)≤ d̃(A,C).
Definition 13. If A = {〈x,HA(x)〉|x ∈ X} and

B = {〈x,HB(x)〉|x ∈ X} are two MHFSs on
X = {x1,x2, . . . ,xn}, then a generalized multiset hesitant
normalized distance betweenA andB could be defined as
follows:

d̃(A,B) = [
1
n

n

∑
i=1

1
2
(

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γB(xi)∈HB(xi)

|γA(xi)− γB(xi)|
ρ

+
1

lHB(xi)
∑

γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi)− γA(xi)|
ρ)]

1
ρ .

(7)

HerelHA(xi) andlHB(xi) denotes the number of elements in
HA(xi) andHB(xi) respectively. Especially, a generalized
multiset hesitant distance of two MHFEsHA(xi) and
HB(xi) can be denoted as below:

d̃(HA(xi),HB(xi)) = [
1
2
(

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γB(xi)∈HB(xi)

|γA(xi)− γB(xi)|
ρ

+
1

lHB(xi)
∑

γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi)− γA(xi)|
ρ)]

1
ρ .

(8)

If HA(xi) =∅ or HB(xi) =∅ for all elementsxi ∈ X , then

d̃(A,B) = [1
n ∑n

i=1(
1

lHB(xi)
∑γB(xi)∈HB(xi) γB(xi)

ρ)]
1
ρ or

d̃(A,B) = [1
n ∑n

i=1(
1

lHA(xi)
∑γA(xi)∈HA(xi) γA(xi)

ρ)]
1
ρ .

(1) Apparently, if ρ = 1, then Eq.(7) is reduced to the
multiset hesitant normalized Hamming-Hausdorff
distance betweenA andB:

d̃(A,B) =
1
n

n

∑
i=1

1
2
(

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γB(xi)∈HB(xi)

|γA(xi)− γB(xi)|

+
1

lHB(xi)
∑

γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi)− γA(xi)|).

(9)

(2) If ρ = 2, then Eq.(7) is reduced to the multiset hesitant
normalized Euclidean-Hausdorff distance betweenA and
B:

d̃(A,B) = [
1
n

n

∑
i=1

1
2
(

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γB(xi)∈HB(xi)

|γA(xi)− γB(xi)|
2+

1
lHB(xi)

∑
γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi)− γA(xi)|
2)]

1
2 .

(10)

Proposition 1. Eq. (7) satisfies all the conditions in

Definition 11.
Proof. (1) Since xi ∈ X ,γA(xi) ∈ HA(xi),γB(xi) ∈

HB(xi),0 ≤ |γA(xi) − γB(xi)| ≤ 1, then
0 ≤ |γA(xi) − γB(xi)|

ρ ≤ 1,0 ≤
min

γB(xi)∈HB(xi)
|γA(xi) − γB(xi)|

ρ ≤ 1,

0 ≤ ∑γA(xi)∈HA(xi) min
γB(xi)∈HB(xi)

|γA(xi) − γB(xi)|
ρ ≤ lHA(xi),

0 ≤ 1
lHA(xi)

∑γA(xi)∈HA(xi) min
γB(xi)∈HB(xi)

|γA(xi)− γB(xi)|
ρ ≤ 1.

Similarly,
0 ≤ 1

lHB(xi)
∑γB(xi)∈HB(xi) min

γA(xi)∈HA(xi)
|γB(xi)− γA(xi)|

ρ ≤ 1.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2092 J. J. Peng et. al. : A Multi-Criteria Decision-Making Approach based on...

So 0≤ 1
lHA(xi)

∑γA(xi)∈HA(xi) min
γB(xi)∈HB(xi)

|γA(xi)− γB(xi)|
ρ +

1
lHB(xi)

∑
γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi) − γA(xi)|
ρ ≤ 2,0 ≤

1
2
(

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γB(xi)∈HB(xi)

|γA(xi) − γB(xi)|
ρ +

1
lHB(xi)

∑
γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi)− γA(xi)|
ρ)≤ 1.

Thus
0 ≤ 1

n ∑n
i=1

1
2(

1
lHA(xi)

∑γA(xi)∈HA(xi) min
γB(xi)∈HB(xi)

|γA(xi) −

γB(xi)|
ρ +

1
lHB(xi)

∑
γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi) −

γA(xi)|
ρ)) ≤ 1 i.e.,

0 ≤ [1
n ∑n

i=1
1
2(

1
lHA(xi)

∑γA(xi)∈HA(xi) min
γB(xi)∈HB(xi)

|γA(xi) −

γB(xi)|
ρ +

1
lHB(xi)

∑
γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi) −

γA(xi)|
ρ))]

1
ρ ≤ 1.

So 0≤ d̃(A,B)≤ 1.
(2) d̃(A,A) = 0 can be obtained.
(3) Clearly,d̃(A,B) = d̃(B,A).
(4) For any three MHFSs, IfA ≤ B ≤C,∀xi ∈ X ,γA(xi) ∈
HA(xi),γB(xi) ∈ HB(xi),γC(xi) ∈ HC(xi), then

γσ( j)
A (xi) ≤ γσ( j)

B (xi) ≤ γσ( j)
C (xi), and

γ
σ(lHA(xi)

)

A (xi) ≤ γ
σ(lHB(xi)

)

B (xi) ≤ γ
σ(lHC(xi)

)

C (xi) is obtained
according to Definition 10. Thus, it can be seen that
γC(xi)− γA(xi) ≥ γB(xi)− γA(xi) ≥ 0, |γC(xi)− γA(xi)| ≥
|γB(xi) − γA(xi)|. Therefore
|γA(xi) − γC(xi)| ≥ |γA(xi) − γB(xi)|,

min
γC(xi)∈HC(xi)

|γA(xi) − γC(xi)|
ρ) ≥ min

γB(xi)∈HB(xi)
|γA(xi) −

γB(xi)|
ρ),

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γC(xi)∈HC(xi)

|γA(xi) −

γC(xi)|
ρ) ≥

1
lHA(xi)

∑
γA(xi)∈HA(xi)

min
γB(xi)∈HB(xi)

|γA(xi) − γB(xi)|
ρ).

Similarly,
1

lHC(xi)
∑γC(xi)∈HC(xi) min

γA(xi)∈HA(xi)
|γC(xi) − γA(xi)|

ρ) ≥

1
lHB(xi)

∑
γB(xi)∈HB(xi)

min
γA(xi)∈HA(xi)

|γB(xi) − γA(xi)|
ρ).

Thus,̃d(A,C) = d̃(A,B). It can be proved that
d̃(A,C) = d̃(B,C).

4 The extended TODIM method based on the
Choquet integral for MCGDM with MHFEs

In this section, the extended TODIM method based on the
Choquet integral is proposed in order to solve MCGDM
problems within a multiset hesitant fuzzy environment.

The MCGDM ranking/selection problems with
multiset hesitant fuzzy information consists of a group of
alternatives, denoted byA = {a1,a2, . . . ,an}. The
alternatives could be of any type, and each alternative is
evaluated based on the criteria denoted by
C = {c1,c2, . . . ,cn}. ai j is the value of the alternativeai

for the criterionc j, andai j = {γk
i j|k = 1,2, . . . , l(ai j)}(i =

1,2, . . . ,n; j = 1,2, . . . ,m} are in the form of MHFEs,
which are given by several decision-makers. Furthermore
l(ai j) represents the number of elements inai j and the
corresponding weight vectorw = (w1,w2, . . . ,wm). This
method is suitable if the number of decision-makers is
small. A situation could arise where decision-makers
evaluate these alternatives based on the given criteria, and
one decision-maker could give several evaluation values.
In particular, in the case where two or more
decision-makers give the same value, it is counted
repeatedly.ai j is the set of evaluation values for all
decision-makers. The approach is an integration of
MHFSs and TODIM based on the Choquet integral to
solve MCGDM problems mentioned above.
Step 1. Normalize the decision matrix.
For MCGDM problems, the most common criteria are of
maximizing and minimizing types. In order to unify all
criteria, it is necessary to normalize the evaluation values.
(Note: if all the criteria are of the maximizing type and
have the same measurement unit, then there is no need to
normalize them). Suppose that the matrix
R = (ai j){n × m}, where ai j = {γ1

i j,γ2
i j, . . . ,γk

i j}(i =

1,2, . . . ,n; j = 1,2, . . . ,m;k = 1,2, . . . , l(ai j)) are MHFEs,
is normalized into the corresponding matrix
R̃ = (ãi j){n × m}, where ãi j = {γ̃1

i j, γ̃2
i j, . . . , γ̃k

i j}(i =

1,2, . . . ,n; j = 1,2, . . . ,m;k = 1,2, . . . , l(ai j)). l(ai j) is the
number of the elements ofai j.
For the maximizing criteria, the normalization formula is

γ̃k
i j = γk

i j,k = 1,2, . . . , l(ai j); (11)

for the minimizing criteria,

γ̃k
i j = 1− γk

i j,k = 1,2, . . . , l(ai j); (12)

Seemingly, the normalization values
ãi j = {γ̃1

i j, γ̃2
i j, . . . , γ̃k

i j}(i = 1,2, . . . ,n; j = 1,2, . . . ,m;k =

1,2, . . . , l(ai j)) are also MHFEs.
Step 2. Confirm the fuzzy measures of the criteria of C
and the criteria sets of C.

Based on these fuzzy measures, the corresponding the
weight of criteria can be obtained as follows:

wσ( j) = µ(Aσ( j))− µ(Aσ( j+1)), j = 1,2, . . . ,m. (13)

Here Aσ( j) = {cσ( j),cσ( j+1), . . . ,cσ(m),cσ(m)}=∅,and
(σ(1),σ(2), . . . ,σ(n)) is a permutation of(1,2, . . . ,n).
wl j =

wσ( j)
wσ(l)

( j = 1,2, . . . ,m) is the weight of the criterion

cσ( j) to the reference criterioncl andwσ(l) = wσ(m).
Step 3. Calculate the dominance degree.
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The dominance degree of the alternativeai over
alternative ak concerning the criterionc j can be
calculated using the following expression:
Φ j(ai,ak) =





λ

√
(d̃(ãi j ,ãk j))

λ wl j

∑n
j=1 wl j

, ãi j ≻ ãk j or ãi j > ãk j

0, ãi j > ãk j

− 1
θ

λ

√
(d̃(ãi j ,ãk j))

λ ∑n
j=1 wl j

wl j
. ãi j ≺ ãk j or ãi j < ãk j

(14)

Here λ ≥ 1 is regulating variable and can be
determined according to the decision-makers preference.
d̃(ãi j, ãk j) denotes the distance between two MHFEsãi j
and ãk j as defined in Definition 13.̃ai j and ãk j can be
compared by utilizing the ranking method of MHFEs in
Definition 10. Furthermore, (1) if̃ai j ≻ ãk j, then it will
represent the gain ofai over ak concerning the criterion
c j. (2) If ãi j = ãk j, thenΦ j(ai,ak) is nil. (3) If ãi j ≺ ãk j ,
then it will represent the loss ofai overak concerning the
criterionc j.
Step 4. Calculate the overall dominance degree.

Based on Step 3, the overall dominance degree ofai
over ak can be calculated according to the following
expression:

δ (ai,ak) =
m

∑
j=1

Φ j(ai,ak), i = 1,2, . . . ,n;k = 1,2, . . . ,n.

(15)
Step 5. Calculate the global value.

Based on Step 4, the global valueξ (ai) of ai can be
obtained using the following expression:
ξ (ai)

=

∑n
k=1 δ (ai,ak)−min

i∈m
{

n

∑
k=1

δ (ai,ak)}

max
i∈m

{
n

∑
k=1

δ (ai,ak)}−min
i∈m

{
n

∑
k=1

δ (ai,ak)}

(i = 1,2, . . . ,n)

(16)
Step 6. Rank the alternatives.

The greater the value ofξ (ai), the better the alternative
ai.

5 An illustrative example

In this section, an example is adapted from Schmeidler
[66] for further illustration of the feasibility of the
proposed approach. There is an investment company,
which wants to invest in a project. There are five possible
alternatives in which to invest:a1 is a car company;a2 is
a food company;a3 is a computer company;a4 is an arms
company; anda5 is a TV company. The investment
company must make a decision according to the
following four criteria:c1 is the environment impact;c2 is

the risk; c3 are the growth prospects; andc4 is the
social-political impact. The environmental impact refers
to the impact on the companys environment and the
processes used in making the product, such as the
management methods and work environment. The risk
involves more than one risk factor, including product risk
and development environment risk. The growth prospects
include increased profitability and returns. The
social-political impact refers to the governments and local
residents support for company. The four criteria are
correlated with each other in the assessment process. The
evaluation valuesai j(i = 1,2,3,4,5; j = 1,2,3,4) should
be in the form of MHFEs which are provided by two
decision-makers based on their knowledge and
experience. In the case where two decision-makers give
the same value, then it is counted repeatedly, andai j is the
set of evaluation values for two decision-makers.The five
possible alternativesai(i = 1,2,3,4,5) are to be evaluated
using the multiset hesitant fuzzy information of two
decision makers as presented in the following.

R =




0.4,0.5,0.7 0.5,0.5,0.8 0.6,0.6,0.9 0.5,0.6
0.6,0.7,0.8 0.5,0.6 0.6,0.7,0.7 0.4,0.5

0.6,0.8 0.2,0.3,0.5 0.6,0.6 0.5,0.7
0.5,0.5,0.7 0.4,0.5 0.8,0.9 0.3,0.4,0.5

0.6,0.7 0.5,0.7 0.7,0.8 0.3,0.3,0.4




5.1 An illustration of the proposed approach

The procedures of obtaining the optimal alternative, by
using the developed method, are shown as follows.
Step 1. Normalize the decision matrix.

Because all the criteria are of the maximizing type
and have the same measurement unit, there is no need for
normalization and̃R = (ãi j)5×4.
Step 2. Determine the fuzzy measure of the criteria ofC.

Suppose that
µ(c1) = 0.40,µ(c2) = 0.25,µ(c3) = 0.37,µ(c4) =
0.20,µ(c1,c2) = 0.60,µ(c1,c3) = 0.70,µ(c1,c4) = 0.56,
µ(c2,c3) = 0.68,µ(c2,c4) = 0.43,µ(c3,c4) =
0.54,µ(c1,c2,c3) = 0.88,µ(c1,c2,c4) =
0.75,µ(c2,c3,c4) = 0.73, µ(c1,c3,c4) = 0.84, and
µ(c1,c2,c3,c4) = 1. Assume the criteria sets of
C = {c1,c2,c3,c4} are ordered as:c4 ≺ c2 ≺ c1 ≺ c3,
according to Eq.(13), the following results can be
obtained.
wσ(1) = µ(Aσ(1)) − µ(Aσ(2)) =
µ(cσ(1),cσ(2),cσ(3),cσ(4)) − µ(cσ(2),cσ(3),cσ(4)) =

µ(c1,c2,c3,c4)− µ(c2,c1,c3) = 1−0.88;
wσ(2) = µ(Aσ(2)) − µ(Aσ(3)) =

µ(cσ(2),cσ(3),cσ(4)) − µ(cσ(3),cσ(4)) =
µ(c2,c1,c3)− µ(c1,c3) = 0.88−0.70= 0.18;
wσ(3) = µ(Aσ(3)) − µ(Aσ(4)) = µ(cσ(3),cσ(4)) −

µ(cσ(4)) = µ(c1,c3)− µ(c3) = 0.70−0.37= 0.33;
wσ(4) = µ(Aσ(4)) − µ(Aσ(5)) = µ(cσ(4)) − 0 =

µ(c3)−0= 0.37;
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So wl = wσ(4) = 0.37 and ∑n
1 wi j = 2.7027 can be

obtained.
Step 3. Calculate the dominance degree. According to Eq.
(14), for the convenience of analysis and computation,
θ = 2.25,λ = 1 andd̃(ãi j, ãk j) can be calculated by using
Eqs. (8)-(9). The evaluation values̃ai j and ãk j can be
compared by utilizing Definition 10. The dominance
degree matrices concerning the criteriac1,c2,c3 and c4,
could respectively be obtained as follows.
Φ1(ai,ak)

=




0 −0.2234−0.2643−0.1000−0.2119
0.1659 0 0.0732 0.1484 0.0742
0.1962−0.1000 0 0.1817 0.1285
0.0742−0.1998−0.2447 0 −0.1730
0.1573−0.1000−0.1730 0.1962 0




Φ2(ai,ak)

=




0 0.1025 0.1550 0.1162 −0.2139
−0.2532 0 0.1397 0.0949 −0.2342
−0.3826−0.3449 0 −0.2869−0.3826
−0.2869 0.2342 0.1162 0 −0.2869
0.0866 0.0949 0.1550 0.1162 0




Φ3(ai,ak)

=




0 0.1571 0 −0.2213−0.2311
−0.1887 0 0.1112−0.2750−0.2109

0 −0.1335 0 −0.3466−0.2583
0.1842 0.2290 0.2290 0 0.1360
0.1924 0.1756 0.2151−0.1634 0




Φ4(ai,ak)

=




0 0.0775 −0.2869 0.0949 0.1379
−0.2869 0 −0.3514 0.0448 0.0873
0.0775 0.0949 0 0.1095 0.1484
−0.3514−0.1658−0.5495 0 0.0448
−0.5106−0.3101−0.5495−0.1658 0




Step 4. Calculate the overall dominance degree.
According to Eq.(15), the overall dominance degree
matrix could be shown as follows:
δ (ai,ak)

=




0 0.1137 −0.3962−0.1102−0.5190
−0.5629 0 −0.0263 0.0130 −0.2872
−0.1089−0.4835 0 −0.3423−0.3641
−0.3798−0.3709−0.4490 0 −0.2791
−0.0743−0.1396−0.3525−0.0168 0




Step 5. Calculate the global value.
The global value of the alternativeai is calculated by

using Eq.(16), giving:
ξ (a1) = 0.6331;ξ (a2) = 0.6872;ξ (a3) = 0.2009;ξ (a4) =
0;ξ (a5) = 1.
Step 6. Rank the alternatives.

Based on Step 5,ξ (a4) < ξ (a3) < ξ (a1) < ξ (a2) <
ξ (a5) could be obtained, therefore the rankinga4 ≺ a3 ≺
a1 ≺ a2 ≺ a5 is obtained. Thus, the best alternative isa5.

5.2 A comparison analysis and discussion

In this section, in order to validate the feasibility of the
proposed multiset hesitant fuzzy MCGDM approach
based on TODIM and the Choquet integral, a comparative
study was conducted with other methods. These methods
can be divided into two categories: one is that the criteria
are independent of each other, as shown in Xu [20,21],
Wei [22], Zhang et al. [24], Chen et al. [27], Xu [28,29],
Farhadinia [30], Zhang and Wei [31], Zhang and Xu [32],
and Wang et al. [36]; and the other is that the criteria are
considered as correlated with one another, as shown in
Xia et al. [23] and Yu et al. [45].

The analysis was based on the same illustrative
example.
Case 1. The hesitant fuzzy methods with criteria are
assumed to be independent of one another. Suppose the
weight vector of criteria is known, which can be
determined in Step 2, then the compared results can be
obtained as shown in Table 1.

Table 1. Comparison of different methods in the case
that the criteria are independent

Methods Ranking of alternatives
Xu [20,21] a3 ≺ a1 ≺ a2 ≺ a5 ≺ a4
Wei [22] a3 ≺ a1 ≺ a4 ≺ a5 ≺ a2

Zhang [24] a3 ≺ a4 ≺ a1 ≺ a2 ≺ a5
Chen et al. [27] a3 ≺ a4 ≺ a2 ≺ a1 ≺ a5

Xu [28,29] a3 ≺ a1 ≺ a4 ≺ a2 ≺ a5
Farhadinia [30] a3 ≺ a4 ≺ a2 ≺ a1 ≺ a5

Zhang and Wei [31] a3 ≺ a4 ≺ a2 ≺ a1 ≺ a5
Zhang and Xu [32] a4 ≺ a3 ≺ a2 ≺ a1 ≺ a5

Wang et al. [36] a4 ≺ a3 ≺ a2 ≺ a1 ≺ a5
Proposed method a4 ≺ a3 ≺ a1 ≺ a2 ≺ a5
From Table 2, it can be seen that the result of the

proposed approach is different to the methods of Xu [20,
21] and [22], and the reason is because those methods use
an aggregation operator to deal with the hesitant fuzzy
formation. It should be noted that it is easy to use an
operator when using these methods. However, different
aggregation operators also lead to different rankings.
Furthermore, it is difficult for decision makers to choose
which kind of explicit operators are utilized. Compared
with the proposed approach, Zhang [24], Chen et al. [27],
Xu [28,29] and Farhadinia [30], Zhang and Wei [31],
Zhang and Xu [32] and Wang et al. [36], the ranking
results are the same and the best alternative is always .
However, those methods have certain shortcomings when
using aggregation operators and distance measures.
Especially, those distance measures should satisfy the
condition that all HFEs must be arranged in ascending
order and be of equal length. If the two HFEs being
compared have different lengths, then the value of the
shorter one should be increased until both are equal.
Moreover, the proposed method simultaneously considers
the bounded rationality of decision makers and the
correlated criteria.
Case 2. The hesitant fuzzy method with the criteria
considered to be correlated with one another.
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The methods proposed by Xia et al. [23] and Yu et al.
[45] based on the correlated criteria are used here in the
same illustrative example. In order to better validate the
method, the fuzzy measure with the values mentioned
previously is used. Subsequently the compared results can
be obtained as shown in Table 2.
Table 2. Comparison of different methods in the case that
the criteria are correlated

Methods Ranking of alternatives
Xia et al. [29] a3 ≺ a1 ≺ a2 ≺ a4 ≺ a5
Yu et al. [51] a3 ≺ a1 ≺ a4 ≺ a5 ≺ a2

Proposed method a4 ≺ a3 ≺ a1 ≺ a2 ≺ a5
From Table 2, it can be seen that the methods

proposed by Xia et al.[23] and Yu et al.[45] and the
method proposed in this paper have different rankings.
They all have considered the interactive phenomena
which might occur among criteria, but the method
proposed by Xia et al.[23] and Yu et al. [45] involves an
aggregation operator. Different aggregation operators
might produce different results as discussed earlier, while
the proposed approach could overcome those deficiencies
and ensure the reasonableness and effectiveness of the
decision-making results.

From the comparison analyses presented above, the
proposed method for MCDM problems with MHFSs has
the following advantages.

Firstly, MHFSs can express the evaluation
information more flexibly. They can take into account the
repetitive values in HFSs and retain the completeness of
original data or the inherent thoughts of decision-makers,
which is the prerequisite of guaranteeing accuracy of final
outcomes.

Secondly, the proposed comparison method and the
distance of MHFEs can overcome these shortcomings in
the existing methods and measures that they should
satisfy the condition that all elements in HFEs must be
arranged in ascending order and be of equal length as we
discussed earlier.

Finally, the proposed approach could consider the
bounded rationality of decision makers and interaction
might affect the criteria in the aggregation process at the
same time. This can avoid losing and distorting the
preference information provided, which makes the final
results better correspond with real life decision-making
problems.

6 Conclusion

HFSs are considered useful in handling decision-making
problems under uncertain situations where
decision-makers hesitate when choosing between several
values before expressing their preferences about weights
and data. MHFSs can deal effectively with the case where
some values are repeated more than once in an HFS. In
this paper, the operations and a comparison method of
MHFSs were discussed. Then a novel approach based on
TODIM and the Choquet integral was developed in order

to deal with MCGDM problems where the data are
MHFSs. Finally, an illustrative example was given to
verify the proposed approach. The primary characteristic
of the proposed approach is that MHFSs could overcome
the shortcomings in traditional HFSs where if two or
more decision-makers set the same value, it is only
counted once. The new comparison method can also
avoid the defects in the existing score functions of HFEs.
Furthermore, the proposed approach with MHFSs can
better cope with multiset hesitant fuzzy MCGDM
problems where the criteria are interdependent or
interactive and the decision makers have a bounded
rationality. Further research will investigate how to obtain
the optimal values of criteria by a specified model within
a multiset hesitant fuzzy environment.
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