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Abstract: We present a first study on the reconfigurability of opticaémapors in the optical computing platform, ternary optical
computer (TOC), from the viewpoint of complex network. e tbptical operator reconfiguration network (OORN), versesi@and for
the basic operating units (BOUs) and the optical operatord,directed edges indicate the dynamic reconfigurati@tioas between
BOUs and operators. We find that the OORN has small-worlcepatind scale-free feature as other complex networks. ler dod
describe the clustering property of the OORN, we proposepanoach for characterizing the OORN by introducing a new erical
feature, density of vertex. Its density distribution fel® power-law distribution as its cumulative degree disttitm. In addition, we
find that it is reasonable and optimal to use 50 kinds of BOU=#@h TOC system by comparing the OORNSs with different kinfis o
BOUs.
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1 Introduction 21,29,30] and scale-free naturel(,21,30,31] in these
real networks. In recent years, some dynamic
The solution to the Konigsberg bridge problem by the reconfiguration networks have attracted some researchers’
Swiss mathematician Leonhard Euler started the metho@ttentions 2,3,10,11,32]. In this paper, we'll study
to describe the objective world by use of network. Largeanother dynamic reconfiguration network and its
and complex stochastic networks are conspicuous irfopological properties.
science and everyday life, and have attracted a great deal On the other hand, Jin et al. proposed the principle
of interest. In these networks, the individuals or and architecture of a ternary optical computer(TO&3 [
organizations are looked upon as nodes and theiB4]. Many achievements have been obtained in the past
relationships as edges. If the edges are directed in ane decade, especially in recent years. For instance, the
network, it is called directed one. Otherwise, it is called decrease radix design principle(DRDP35], which
undirected one. discussed how to build the configurable optical processor,
Biological [1,2,3,4,5,6,7] and chemical system$] was proposed. And a TOC experimental platform was
9], neural networks $0,11], social interacting species built according to the principle. Based on MSD number
[12,13/14], the Internet 15], the World Wide Web 16, system, the optical three-step addition and optical
transportation systems 17,18,19], communication vector-matrix multiplication 36] were performed on the
networks P0,21,22], natural language 23 24,25 and  experimental platform. Meanwhile, the principle of adder
disease transmission networkX6[27,28] are only a few in the TOC was proposed7]. A one-step MSD optical
examples of complex systems composed by a largedder, which improved the computation speed of the TOC
number of highly interconnected units. Obviously, the in some degree, was designed and implemer3&i A
communication networks and disease transmissiomovel TOC experimental platforn8g was built in 2011,
networks are directed. People have found that there araccording to the DRDP. It had some good features. For
some features, such as small-world propefty3[4,15, example, it had high computation accuracy for it was
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digital; it had computation flexibility for it could hardware structure, shown in FIG. In the structure, a
reconfigure dynamically optical processor according toliquid crystal cell (LCC) was sandwiched by two pieces
user requirement; it had high computation speed for theof polarizer, P1 and P2. A nonenergized LCC could twist
MSD adder was carry-free and the TOC was athe polarized light entering it by $0on exit and an
multiple-instruction multiple-data syster@9]. In orderto  electric field applied across the LCC could make the
make better use of these features and manage efficientlgolarized light go through without being twisted.
these optical operators, we will focus on the optical Moreover, P1 and P2 could be a piece of horizontal or
operator reconfiguration network(OORN) and their vertical polarizer.
principal topological properties. Aggregating all the BOUs with the same polarizers,
This paper is organized as follows. Sectirbriefs  we set up the optical operators of the TOC at Shanghai
the related work, including the DRDP and principal University in 2011. Obviously, these operators were made
properties of complex networks. Secti@npresents the up of four parts, called VV, VH, HH and HV, respectively.
reconfigurability of optical operators in the TOC from the Each part had 24 24 pixels i.e. 576 BOUs and an
viewpoint of complex networks. In the OORN, nodes experimental system was designed and implemented to
stand for the basic operating units (BOUs) and the opticainange these operator89. Based on the DRDP, the
operators, and directed edges indicate the dynamisystem was also a dynamically reconfigurable optical
reconfiguration relations between BOUs and operatorscomputing platform. In other words, any one-bit
Section 4 focuses on studying the key topological two-input tri-valued logic processor could be dynamically
properties of the OORN. The results show that the OORNreconfigured at runtime by no more than 6 BOUs in total,
is scale-free, small-world, and so on. At the same time, inand no more than 3 BOUs were needed in each part.
order to adequately describe the OORN, it presents a
novel idea, density and density distribution. In additiibn,
compares the OORNs with different numbers of BOUs.2 2 Principal properties of complex networks
Section 5 illustrates the concluding remarks and the
consideration of future work. In this subsection, we describe some significant
topological properties, such as average path length,
degree distribution, clustering coefficiert940], which

2 Related work appear to be common to real networks of many different
types.

In this section we discuss the related work, including the, 1he path lengttti; is the number of the edges or the

DRDP and principal properties of complex networks. length of the geodesic on the shortest path from ridde

node j in real networks. And the average path length
of a network can be obtained according to the following

. . L f la:
2.1 Decrease radix design principle ormdia 1

L=7ln(n_1)_zdij, 1)
Obviously, among these achievements about the TOC, the 2 =

most important one is the DRDP. According to it, any of where n is the number of the nodes. In most real
the n™ two-input n-valued logic operations can be networks, L is far less thann. The property is called

implemented by combination of some BOUs. And to Small-world pattern19,40,41,42,43 44,45, 46].

n-valued logic, there are? (n— 1) different BOUs. The The degreek of nodei is the number of edges
implementation of an operation by composing sometonnected to it. Average degréeof a networklls the
BOUs is called reconfiguratio8. mean of degrees over all of the nodes. Apid) is the

If n= 3, it can be easily seen that there are a|togetheprobability that a node chosen uniformly at random has

19,683 kinds of two-input tri-valued logic operations and

18 kinds of the most fundamental BOUs. To make full use

of the TOC hardware, these fundamental BOUs can be Lce
merged functionally according to some rules. After being P1 |
merged, there are 50 kinds of BOUs altogetBé[ For
convenience, these BOUs are numbered, the BOU witt
No. p written as BOL), the BOUs with No. fromp to ¢

as BOU,_q, and the BOUs with Nop andqg as BOU, .

After being numbered, BOl ;3 are the most
fundamental BOUs. Meantime, each of BQUs4 and
BOUs1 58 is merged functionally by two and three of
BOU; 16, respectively. For example, BQUis merged

by BOU; and BOW;, and BOW; by BOU;, BOU; and .
BOUs[39]. Nonetheless, all of the BOUs are the same in Fig. 1. Structure of a BOU.
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degreek. Thus, the degree distribution of a network can 2292 6566 7663 76841
be presented witp(k). An alternative way of presenting
degree data is to use the cumulative degree function K
Pk) =Y p(K). )
ka

It can describe the real networks which have great degre
nodes. In most of real networkB(k) follows power-law 9 25
distributions, that isP(k) ~ k™Y,y > 0. Networks with
power-law degree distributions are referred to as
scale-free networksl, 22,45, 46].

Clustering coefficien€ describes the clustering level
of nodes in a network109,29,31,40,43]. The way of
calculating the clustering coefficie®; of nodei is as
follows:

27

Fig. 2: Topology of the optical operator reconfiguration network
composed by operators and BOUs in Tahle

topological properties of the optical operator
A reconfiguration network in the TOC, we also model it as a
G = A 3) network where nodes represent optical operators and
! ) BOUs, and directed edges stand for the reconfigurable
where A; and A; are the numbers of triangles and relations between them. For instance, we consider a
transitive triples connected to nodg respectively. simple optical operator reconfiguration network. In this
ObViOUS'y, the number of the former is less than or equa|network, we investigate the Operators with No. 2292,
to the one of the latter. In other words,<0C; < 1. The = 6566, 7663 and 7684. The BOU usage of these operators
clustering coefficienC of a network is defined as the s shown in Tablel, where the digits stand for the Nos. of
mean of clustering coefficients over all nodes. That is togperators and BOUs. In other words, the table shows the
say, reconfiguration relations between these optical operators
C— EZQ (4) and BOU o5 27. For example, the operator with N0.2292
n4 is dynamically reconfigured with the BQUs.
. : Fig. 2 llustrates a simple optical operator
These properties are foundation to study many realreconﬁguration network according to the reconfiguration

networks. Besides them, there are some other. ProDert'elsnformation in Tablel. Here the directed edges stand for
such as degree correlatior?l], network resilience,

community structure47] and mixing pattern40j the reconfiguration relations with which the operators can
' be dynamically reconfigured by different BOUs.

Obviously, square and circle nodes stand for operators
. . . and BOUs, respectively.
3 Optical operator reconfiguration network There are some distinct features in the optical
in the ternary optical computer operator reconfiguration network as follows:

#1)There is no edge between BOU nodes or between
As mentioned above, any two-input tri-valued logic operator nodes. In other words, it is a bipartite graph.
operation can be implemented by use of 50 kinds of42)Itis directed.
BOUs. At the same time, there are three stable light#3)There is no node whose degree is 0 or 1 in the
states, no-intensity light, horizontally polarized lighid ~ network.
vertically polarized light, to present information in the
TOC. In order to achieve these logic operations, they In order to study the topological properties of OORN,
must be firstly mapped into the 8311 kinds of physicalwe must construct the OORN with all physical operators
operators which can be reconfigured with the 50 kinds ofand BOUs. Fig3 illustrates the OORN with all operators
BOUs. There are still 8310 kinds of physical operatorsand BOUs. Here circles stand for BOU nodes and squares
except for the operator whose optical states are alfor operator nodes, and the directed edges similarly stand
no-intensity light. These physical operators, includiig 5
kinds of BOUs, are numbered from 1 to 8310 to
distinguish them. Thus, each BOU has two Nos.. For
example, the operator No. of the B@{Jis 2227. Table 1: Operators and BOUs to reconfigure a simple optical
However, for each BOU, we don’t use its operator No. butOperator reconfiguration network.

its BOU No.. Operators BOUs
The first approach to capture the global properties of a 2292 9 25
complex system is to model it as a network where nodes 6566 9 27
represent the dynamic units, and edges stand for the 7663 25 27
interactions between nodes. Therefore, to research the 7684 9 25 Z
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for the reconfiguration relations between operators and According to Table2 and Table3, we can obtain the
BOUs. It can be easily seen that the operator nodes haveode degree information, shown in Taldleof the OORN.
small out-degrees and the BOU nodes have terribly grealn the table, we don’t distinguish out-degree and in-degree
in-degrees. To obtain the in-degree of each BOU node, we

firstly count each BOU usage, shown in TaBleWhere

‘Frequency’ means the times of each BOU when 83104 Topological properties of the optical
kinds of optical operators are reconfigured dynamically . .
with different BOUs. For example, it is 707 times for operator reconfiguration network

BOU, to reconfigure different optical operators. . . . - .
2 9 P P In this section, we discuss some principal topological

At the same time, in Tablg, the frequency of each properties of the OORN modeled with all physical
BOU includes the time it uses itself. In other words, the operators and BOUSs.
digits, decreased by one, in the second and the fourth
columns are the in-degrees of relevant BOUs in the
OORN. For example, the in-degree of B@Id 706. 4.1 Density distribution

On the other hand, we also count the numbers of
optical operators which can be reconfigured dynamicallyAs mentioned above, there is no edge to connect any two
with different numbers of BOUs, shown in Tah®e For BOU nodes or any two operator nodes in the OORN. In
example, there are 652 optical operators which can bether words, for each nodé A; is equal to zero.
reconfigured dynamically with 2 BOUs. Therefore, according to Eq3); its clustering coefficient
C; is zero, and the clustering coefficigbbf the OORN is
8Qlso zero, according to Eq.4) Thus, clustering
coefficient can't adequately describe the clustering
I%roperty of the OORN.

In order to better describe the clustering property of
e OORN, we propose an idea of the density. Deri3ijty
nodei represents the clustering level of the edges
which are connected to it. In other words; is involved
with not only the degrek; of nodei but also the number
of the edges between its adjacent nodes. The way of

As mentioned above, there is no node whose degre
is 0 or 1. Therefore, except for the first row, the digits in
the first column of Tabl@ are the out-degrees of operator
nodes and the digits in the second column are the numbe
of operator nodes with relevant out-degrees. For exampl
the second row illustrates that there are 652 operator node&
with out-degree 2 in the OORN with all physical operators
and BOUs.

Table 2: BOU usage in the OORN with all operators and BOUs.
No. Frequency No. Frequency

Table 3: Number of operators which are reconfigured with

T 207 58 200 different numbers of BOUs in the OORN with all operators and
2 707 29 400 BOUs.

3 809 30 262 Number of BOUs Number of operators

4 809 31 400 1 50

5 1309 32 268 2 652

6 1309 33 274 3 2674

7 815 34 400 4 3584

8 815 35 280 5 1266

9 917 36 160 6 84

10 917 37 280

11 1429 38 268

12 1429 39 274 Table 4: Degree information of the OORN with all operators and
13 1441 40 400 BOUs.

14 1441 41 280 Degree Number of nodes Degree Number of nodes
15 1561 42 160 2 652 814 2

16 1561 43 280 3 2674 808 2

17 2187 44 268 4 3584 706 2

18 2187 51 78 5 1266 399 8

21 394 52 78 6 84 393 2

22 400 53 78 2186 2 279 4

23 400 54 78 1560 2 273 2

24 262 55 78 1440 2 267 4

25 400 56 78 1428 2 261 2

26 268 57 78 1308 2 159 2
27 394 58 78 916 2 77 8
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Fig. 3: OORN with all operators and BOUs.

07 10'

calculating D; is similar to the one of calculating;. K
Supposing that there akenodes connected to the node
the way of calculatind; is shown in Eq. %):

E; B ‘ b
k(kiD)’ ONE S

—_—a 0

2

Di =

500 1000 1500 200 b= 10 10' 10t 10° 10*

wherek; (ki +1)/2 represents the number of all possible

edges between thie+ 1 nodes, ané; stands forthe actual  Fig. 4: DensityD(k;) distribution of the OORN with all operators

edges between them. Obviously, if the dedteef nodei and BOUs.

is equal to 1, itsD; is 1. Similarly, there is a regulation

thatD; is O if k; is equal to 0. The densiy(k;) is defined

as the mean of densities over all nodes with degréea

network, and the densit® as the mean of densities over shown on normal scales and Figib) shown on

all nodes. logarithmic scales. The line in Figib) is the nonlinear
In bipartite networkE; is equal to the degrdeofnode  regression of densitp(ki). In addition, its equation is

i since there is no edge betwelerBOU nodes or between Y = 1.49369%5, and their linear correlation coefficient is

operator nodes. Thus, Ed)(s changed into Eq6): 0.9995. In Fig4(a), it can be seen that th(k;) follows
power-law distribution. Moreover, according to tbe of
Di — 2 ©6) each node, we can easily obtain the denBitywhich is

I — 77 A~

(ki + 1) equal to 0.4394, of the OORN.

According to the formula, it can be easily seen that the

densityD; of each BOU node in Fig2 is 0.5 since its 4.2 Other important properties

degreek; is equal to 3. However, the clustering coefficient

Ci of each node in Fig2 is zero. In order to investigate other important properties of the
After eachD(k) being calculated, the densify(k;) OORN, it is looked upon as an undirected network. Thus,

distribution of the OORN with all physical operators and the average path lengthis equal to 27.2537. It can be

BOUs is shown in Fig4. Here the horizontal axis for easily found that. is terribly less than the number of

each panel denotes vertex degke@n-degrees for BOUs nodes, 8310, in the OORN with all physical operators and

and out-degrees for operators) and the vertical axiBOUs. In other words, the OORN has the small-world

indicates densityD(kj). At the same time, Figd(a) is  property.

(@© 2015 NSP
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Fig. 5: Cumulative degre®(k) distribution for the OORN in the
TOC system.

Fig. 6: DensityD(k;) distributions for the OORNSs with various
BOUs.

Meanwhile, the average degrkeobtained according clustering coefficient, density, average path
to Table4, is 3.6698. Obviously, the clustering coefficient average degree of the OORNSs, respectively.
of each node in the OORN is zero and its clustering
coefficientC is zero. And Fig.5 shows the cumulative
degree distributiorP(k) on logarithmic scales. Here the
horizontal axis is vertex degrdg and the vertical axis is
the cumulative probability distribution of degrees, ithe
fraction of vertices that have degree greater than or equ

o k. And the line is the nonlinear regression of unchangeable while the number of edges decreases with
cumulative degreeP(k). Moreover, its equation is g 9

y = 1.0296-992% and their linear correlation coefficient the increase of the number of BOUs. )
is 0.9171. It can be seen that the cumulative degrees ©On the other hand, the number of operators provided
approximately follow power-law distribution. Therefore, Py the TOC is unchangeable in real application.

the OORN with all physical operators and BOUs is nearly Therefore, the TOC can provide more data-bits, and
scale-free. process more data in parallel if more kinds of BOUs are

used in real system. In other words, if densiyand
average path length are greater and average degkeie
smaller, the chosen BOUs can make better use of the
parallelism of the TOC. However, there are up to 50 kinds
of BOUs to use in the TOC system. Consequently, it is
reasonable and optimal to use 50 kinds of BOUs in real
TOC system. Fig6 shows the densitp(k;) distributions

As mentioned above, the most fundamental BOUs can bédor the OORNs with various kinds of BOUs. Similarly,
emerged functionally to generate other kinds of BOUs,the horizontal axis is vertex degrkeand the vertical axis
BOU;;_4s and BOUsg. Thus, the dynamic is densityD(k). And they are both shown on logarithmic
reconfiguration of operators can be based on variou$cales. It can be seen that their density distributions all
BOUSs, such as 18 kinds of the most fundamental BOUs follow power-law distribution, regardless of the kinds of
26 kinds of BOUs (including BOW 15 and BOW;_sg), = BOUs used in the TOC system.

42 kinds of BOUs (including BOW 15 and BOW1_44)
and 50 kinds of BOUs (including BOMU1g, BOUz1 44
and BOU;_s5g). Therefore, different OORNSs with various
BOUs can be constructed.

length,

From Table5, we can see that there are the same
number of optical operators and the clustering coefficients
of these OORNs are all zero. At the same time, the
densities and average path lengths increase and average

egrees decrease with the increase of the number of
OUs. The reason is that the number of nodes is

4.3 Comparison of the optical operator
reconfiguration network with various kinds of
BOUs

Table 5: Comparison of different OORNSs with various BOUs.

Table 5 shows the comparison of the OORNs with BOU Operator Edge C D L K
various BOUs. Where 'BOU’ is the kinds of BOUs which 18 8310 39348 0 0.358 18.855 4.735
are used to construct the OORNSs, and 'Operator’, 'Edge’, 26 8310 38092 0 0.371 20.046 4.584
'C’, 'D’, 'L, and 'k are the number of physical 8310 31032 0 0.433 26745 3.734

8310 30496 0 0.439 27.254 3.670

operators(including BOUSs), the number of edges,
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5 Conclusions National Academy of Sciences of the United States of
Americal03 19518-19523 (2006) .

In this paper, we have investigated the reconfigurability of[4] D.S Goldberg, F.P Roth, Assessing experimentally defiv

optical operators in the TOC from the viewpoint of interactions in a small world, Proceedings of the National

complex networks. With the help of complex networks, Academy of Sciences of the United States of Amefiog,

we have obtained some important and interesting 4372-4376 (2003).

topological characteristics of the optical operator [5] H. Jeong, B. Tombor, R. Albert, Z.N Oltvai, A.-L Barabas

reconfiguration network, such as average path length, The large-scale organization of metabolic networks, Natur

clustering coefficient, average degree and degree 407 651-654 (2000). o

distribution. These numerical results have shown that thd6] P- Uetz, L. Giot, G. Cagney, et al, A comprehensive arialys

OORN simultaneously exhibits small-world effect and  ©f Protein-protein interactions in saccharomyces cefasis

scale-free degree distribution, and clustering coefficien _ Nature403 623-627 (2000).

can't adequately show the features of the networks, Inl/1A- Sethia, J. Eargleb, A.A Blacka, Z. Luthey-Schulten,

addition, we have proposed a novel method, density of ??’Qfen;'(;ﬁ' . ':)?t"gﬁ;kSNat'i';nalti'\égap;%te'”of g%ﬁgﬁf::sbf

node, to illustrate the features of the networks, studied - Unitengtates of Americk06, 6620_662{3 (2009)

their density distributions, and found that both its dgnsit ’

distribution and degree distribution follow power-law [8] C. Conradi, D. Flockerzi, J. Raisch, J. Stelling, Subrazk
distribution 9 P analysis reveals dynamic features of complex (bio)chemica

h d th ical networks, Proceedings of the National Academy of Sciences
Moreover, we have compared the optical operator o ihe United States of Americt04, 19175-19180 (2007).
reconfiguration network with various kinds of BOUs. On Igg] T. Scholak. Fernando de Melo. T. Wellens. F. Mintert

the basis of the comparison, we have drawn a conclusion * o~ gychleitner, Efficient and coherent excitation transfer
that it is reasonable and optimal to use 50 kinds of BOUS  4¢ross disordered molecular networks, Physical Reviéa; E
in real TOC system. To some degree, the conclusion 021912 (2011).
provides theoretical foundation for selecting the kinds of[10] G. Grinstein, R. Linsker, Synchronous neural activiity
BOUs in the TOC system. In the future, we will continue  scale-free network models versus random network models,
investigating the other topological properties, such as Proceedings of the National Academy of Sciences of the
network resilience, degree correlation, community  United States of Americh02 9948-9953 (2005).
structure and mixing pattern. [11] M. Zhao, C.S Zhou, Y.H Chen, B. Hu, B.H Wang,
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