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Abstract: We present a first study on the reconfigurability of optical operators in the optical computing platform, ternary optical
computer (TOC), from the viewpoint of complex network. In the optical operator reconfiguration network (OORN), vertexes stand for
the basic operating units (BOUs) and the optical operators,and directed edges indicate the dynamic reconfiguration relations between
BOUs and operators. We find that the OORN has small-world pattern and scale-free feature as other complex networks. In order to
describe the clustering property of the OORN, we propose an approach for characterizing the OORN by introducing a new numerical
feature, density of vertex. Its density distribution follows power-law distribution as its cumulative degree distribution. In addition, we
find that it is reasonable and optimal to use 50 kinds of BOUs inreal TOC system by comparing the OORNs with different kinds of
BOUs.
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1 Introduction

The solution to the Königsberg bridge problem by the
Swiss mathematician Leonhard Euler started the method
to describe the objective world by use of network. Large
and complex stochastic networks are conspicuous in
science and everyday life, and have attracted a great deal
of interest. In these networks, the individuals or
organizations are looked upon as nodes and their
relationships as edges. If the edges are directed in a
network, it is called directed one. Otherwise, it is called
undirected one.

Biological [1,2,3,4,5,6,7] and chemical systems [8,
9], neural networks [10,11], social interacting species
[12,13,14], the Internet [15], the World Wide Web [16],
transportation systems [17,18,19], communication
networks [20,21,22], natural language [23,24,25] and
disease transmission networks [26,27,28] are only a few
examples of complex systems composed by a large
number of highly interconnected units. Obviously, the
communication networks and disease transmission
networks are directed. People have found that there are
some features, such as small-world property [1,3,4,15,

21,29,30] and scale-free nature [10,21,30,31] in these
real networks. In recent years, some dynamic
reconfiguration networks have attracted some researchers’
attentions [2,3,10,11,32]. In this paper, we’ll study
another dynamic reconfiguration network and its
topological properties.

On the other hand, Jin et al. proposed the principle
and architecture of a ternary optical computer(TOC) [33,
34]. Many achievements have been obtained in the past
one decade, especially in recent years. For instance, the
decrease radix design principle(DRDP) [35], which
discussed how to build the configurable optical processor,
was proposed. And a TOC experimental platform was
built according to the principle. Based on MSD number
system, the optical three-step addition and optical
vector-matrix multiplication [36] were performed on the
experimental platform. Meanwhile, the principle of adder
in the TOC was proposed [37]. A one-step MSD optical
adder, which improved the computation speed of the TOC
in some degree, was designed and implemented [38]. A
novel TOC experimental platform [39] was built in 2011,
according to the DRDP. It had some good features. For
example, it had high computation accuracy for it was
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digital; it had computation flexibility for it could
reconfigure dynamically optical processor according to
user requirement; it had high computation speed for the
MSD adder was carry-free and the TOC was a
multiple-instruction multiple-data system [39]. In order to
make better use of these features and manage efficiently
these optical operators, we will focus on the optical
operator reconfiguration network(OORN) and their
principal topological properties.

This paper is organized as follows. Section2 briefs
the related work, including the DRDP and principal
properties of complex networks. Section3 presents the
reconfigurability of optical operators in the TOC from the
viewpoint of complex networks. In the OORN, nodes
stand for the basic operating units (BOUs) and the optical
operators, and directed edges indicate the dynamic
reconfiguration relations between BOUs and operators.
Section 4 focuses on studying the key topological
properties of the OORN. The results show that the OORN
is scale-free, small-world, and so on. At the same time, in
order to adequately describe the OORN, it presents a
novel idea, density and density distribution. In addition,it
compares the OORNs with different numbers of BOUs.
Section 5 illustrates the concluding remarks and the
consideration of future work.

2 Related work

In this section we discuss the related work, including the
DRDP and principal properties of complex networks.

2.1 Decrease radix design principle

Obviously, among these achievements about the TOC, the
most important one is the DRDP. According to it, any of
the nn2

two-input n-valued logic operations can be
implemented by combination of some BOUs. And to
n-valued logic, there aren2 (n−1) different BOUs. The
implementation of an operation by composing some
BOUs is called reconfiguration[35].

If n= 3, it can be easily seen that there are altogether
19,683 kinds of two-input tri-valued logic operations and
18 kinds of the most fundamental BOUs. To make full use
of the TOC hardware, these fundamental BOUs can be
merged functionally according to some rules. After being
merged, there are 50 kinds of BOUs altogether[39]. For
convenience, these BOUs are numbered, the BOU with
No. p written as BOUp, the BOUs with No. fromp to q
as BOUp−q, and the BOUs with No.p andq as BOUp,q.
After being numbered, BOU1−18 are the most
fundamental BOUs. Meantime, each of BOU21−44 and
BOU51−58 is merged functionally by two and three of
BOU1−16, respectively. For example, BOU21 is merged
by BOU1 and BOU3, and BOU51 by BOU1, BOU3 and
BOU5[39]. Nonetheless, all of the BOUs are the same in

hardware structure, shown in FIG.1. In the structure, a
liquid crystal cell (LCC) was sandwiched by two pieces
of polarizer, P1 and P2. A nonenergized LCC could twist
the polarized light entering it by 900 on exit and an
electric field applied across the LCC could make the
polarized light go through without being twisted.
Moreover, P1 and P2 could be a piece of horizontal or
vertical polarizer.

Aggregating all the BOUs with the same polarizers,
we set up the optical operators of the TOC at Shanghai
University in 2011. Obviously, these operators were made
up of four parts, called VV, VH, HH and HV, respectively.
Each part had 24× 24 pixels i.e. 576 BOUs and an
experimental system was designed and implemented to
mange these operators [39]. Based on the DRDP, the
system was also a dynamically reconfigurable optical
computing platform. In other words, any one-bit
two-input tri-valued logic processor could be dynamically
reconfigured at runtime by no more than 6 BOUs in total,
and no more than 3 BOUs were needed in each part.

2.2 Principal properties of complex networks

In this subsection, we describe some significant
topological properties, such as average path length,
degree distribution, clustering coefficient [29,40], which
appear to be common to real networks of many different
types.

The path lengthdi j is the number of the edges or the
length of the geodesic on the shortest path from nodei to
node j in real networks. And the average path lengthL
of a network can be obtained according to the following
formula:

L =
1

1
2n(n−1)

∑
i< j

di j , (1)

where n is the number of the nodes. In most real
networks,L is far less thann. The property is called
small-world pattern [19,40,41,42,43,44,45,46].

The degreeki of node i is the number of edges
connected to it. Average degreek of a network is the
mean of degrees over all of the nodes. Andp(k) is the
probability that a node chosen uniformly at random has

Fig. 1: Structure of a BOU.
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degreek. Thus, the degree distribution of a network can
be presented withp(k). An alternative way of presenting
degree data is to use the cumulative degree function

P(k) =
∞

∑
k′=k

p(k′). (2)

It can describe the real networks which have great degree
nodes. In most of real networks,P(k) follows power-law
distributions, that is,P(k) ∼ k−γ ,γ > 0. Networks with
power-law degree distributions are referred to as
scale-free networks [16,22,45,46].

Clustering coefficientC describes the clustering level
of nodes in a network [19,29,31,40,43]. The way of
calculating the clustering coefficientCi of node i is as
follows:

Ci =
∆i

Λi
, (3)

where ∆i and Λi are the numbers of triangles and
transitive triples connected to nodei, respectively.
Obviously, the number of the former is less than or equal
to the one of the latter. In other words, 0≤ Ci ≤ 1. The
clustering coefficientC of a network is defined as the
mean of clustering coefficients over all nodes. That is to
say,

C=
1
n ∑

i
Ci . (4)

These properties are foundation to study many real
networks. Besides them, there are some other properties,
such as degree correlation [21], network resilience,
community structure [47] and mixing pattern [40].

3 Optical operator reconfiguration network
in the ternary optical computer

As mentioned above, any two-input tri-valued logic
operation can be implemented by use of 50 kinds of
BOUs. At the same time, there are three stable light
states, no-intensity light, horizontally polarized lightand
vertically polarized light, to present information in the
TOC. In order to achieve these logic operations, they
must be firstly mapped into the 8311 kinds of physical
operators which can be reconfigured with the 50 kinds of
BOUs. There are still 8310 kinds of physical operators
except for the operator whose optical states are all
no-intensity light. These physical operators, including 50
kinds of BOUs, are numbered from 1 to 8310 to
distinguish them. Thus, each BOU has two Nos.. For
example, the operator No. of the BOU25 is 2227.
However, for each BOU, we don’t use its operator No. but
its BOU No..

The first approach to capture the global properties of a
complex system is to model it as a network where nodes
represent the dynamic units, and edges stand for the
interactions between nodes. Therefore, to research the

Fig. 2: Topology of the optical operator reconfiguration network
composed by operators and BOUs in Table1.

topological properties of the optical operator
reconfiguration network in the TOC, we also model it as a
network where nodes represent optical operators and
BOUs, and directed edges stand for the reconfigurable
relations between them. For instance, we consider a
simple optical operator reconfiguration network. In this
network, we investigate the operators with No. 2292,
6566, 7663 and 7684. The BOU usage of these operators
is shown in Table1, where the digits stand for the Nos. of
operators and BOUs. In other words, the table shows the
reconfiguration relations between these optical operators
and BOU9,25,27. For example, the operator with No.2292
is dynamically reconfigured with the BOU9,25.

Fig. 2 illustrates a simple optical operator
reconfiguration network according to the reconfiguration
information in Table1. Here the directed edges stand for
the reconfiguration relations with which the operators can
be dynamically reconfigured by different BOUs.
Obviously, square and circle nodes stand for operators
and BOUs, respectively.

There are some distinct features in the optical
operator reconfiguration network as follows:
�1)There is no edge between BOU nodes or between
operator nodes. In other words, it is a bipartite graph.
�2)It is directed.
�3)There is no node whose degree is 0 or 1 in the
network.

In order to study the topological properties of OORN,
we must construct the OORN with all physical operators
and BOUs. Fig.3 illustrates the OORN with all operators
and BOUs. Here circles stand for BOU nodes and squares
for operator nodes, and the directed edges similarly stand

Table 1: Operators and BOUs to reconfigure a simple optical
operator reconfiguration network.

Operators BOUs
2292 9 25
6566 9 27
7663 25 27
7684 9 25 27
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for the reconfiguration relations between operators and
BOUs. It can be easily seen that the operator nodes have
small out-degrees and the BOU nodes have terribly great
in-degrees. To obtain the in-degree of each BOU node, we
firstly count each BOU usage, shown in Table2. Where
’Frequency’ means the times of each BOU when 8310
kinds of optical operators are reconfigured dynamically
with different BOUs. For example, it is 707 times for
BOU2 to reconfigure different optical operators.

At the same time, in Table2, the frequency of each
BOU includes the time it uses itself. In other words, the
digits, decreased by one, in the second and the fourth
columns are the in-degrees of relevant BOUs in the
OORN. For example, the in-degree of BOU2 is 706.

On the other hand, we also count the numbers of
optical operators which can be reconfigured dynamically
with different numbers of BOUs, shown in Table3. For
example, there are 652 optical operators which can be
reconfigured dynamically with 2 BOUs.

As mentioned above, there is no node whose degree
is 0 or 1. Therefore, except for the first row, the digits in
the first column of Table3 are the out-degrees of operator
nodes and the digits in the second column are the numbers
of operator nodes with relevant out-degrees. For example,
the second row illustrates that there are 652 operator nodes
with out-degree 2 in the OORN with all physical operators
and BOUs.

Table 2: BOU usage in the OORN with all operators and BOUs.
No. Frequency No. Frequency
1 707 28 400
2 707 29 400
3 809 30 262
4 809 31 400
5 1309 32 268
6 1309 33 274
7 815 34 400
8 815 35 280
9 917 36 160
10 917 37 280
11 1429 38 268
12 1429 39 274
13 1441 40 400
14 1441 41 280
15 1561 42 160
16 1561 43 280
17 2187 44 268
18 2187 51 78
21 394 52 78
22 400 53 78
23 400 54 78
24 262 55 78
25 400 56 78
26 268 57 78
27 394 58 78

According to Table2 and Table3, we can obtain the
node degree information, shown in Table4, of the OORN.
In the table, we don’t distinguish out-degree and in-degree.

4 Topological properties of the optical
operator reconfiguration network

In this section, we discuss some principal topological
properties of the OORN modeled with all physical
operators and BOUs.

4.1 Density distribution

As mentioned above, there is no edge to connect any two
BOU nodes or any two operator nodes in the OORN. In
other words, for each nodei, ∆i is equal to zero.
Therefore, according to Eq. (3), its clustering coefficient
Ci is zero, and the clustering coefficientC of the OORN is
also zero, according to Eq. (4). Thus, clustering
coefficient can’t adequately describe the clustering
property of the OORN.

In order to better describe the clustering property of
the OORN, we propose an idea of the density. DensityDi
of node i represents the clustering level of the edges
which are connected to it. In other words,Di is involved
with not only the degreeki of nodei but also the number
of the edges between its adjacent nodes. The way of

Table 3: Number of operators which are reconfigured with
different numbers of BOUs in the OORN with all operators and
BOUs.

Number of BOUs Number of operators
1 50
2 652
3 2674
4 3584
5 1266
6 84

Table 4: Degree information of the OORN with all operators and
BOUs.

Degree Number of nodes Degree Number of nodes
2 652 814 2
3 2674 808 2
4 3584 706 2
5 1266 399 8
6 84 393 2

2186 2 279 4
1560 2 273 2
1440 2 267 4
1428 2 261 2
1308 2 159 2
916 2 77 8
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Fig. 3: OORN with all operators and BOUs.

calculating Di is similar to the one of calculatingCi .
Supposing that there areki nodes connected to the nodei,
the way of calculatingDi is shown in Eq. (5):

Di =
Ei

ki (ki+1)
2

, (5)

whereki(ki + 1)/2 represents the number of all possible
edges between theki +1 nodes, andEi stands for the actual
edges between them. Obviously, if the degreeki of nodei
is equal to 1, itsDi is 1. Similarly, there is a regulation
thatDi is 0 if ki is equal to 0. The densityD(ki) is defined
as the mean of densities over all nodes with degreeki in a
network, and the densityD as the mean of densities over
all nodes.

In bipartite network,Ei is equal to the degreeki of node
i since there is no edge betweenki BOU nodes or between
operator nodes. Thus, Eq. (5) is changed into Eq. (6):

Di =
2

(ki +1)
. (6)

According to the formula, it can be easily seen that the
densityDi of each BOU node in Fig.2 is 0.5 since its
degreeki is equal to 3. However, the clustering coefficient
Ci of each node in Fig.2 is zero.

After eachD(ki) being calculated, the densityD(ki)
distribution of the OORN with all physical operators and
BOUs is shown in Fig.4. Here the horizontal axis for
each panel denotes vertex degreeki (in-degrees for BOUs
and out-degrees for operators) and the vertical axis
indicates densityD(ki). At the same time, Fig.4(a) is

Fig. 4: DensityD(ki) distribution of the OORN with all operators
and BOUs.

shown on normal scales and Fig.4(b) shown on
logarithmic scales. The line in Fig.4(b) is the nonlinear
regression of densityD(ki). In addition, its equation is
y= 1.4936x0.955, and their linear correlation coefficient is
0.9995. In Fig.4(a), it can be seen that theD(ki) follows
power-law distribution. Moreover, according to theDi of
each node, we can easily obtain the densityD, which is
equal to 0.4394, of the OORN.

4.2 Other important properties

In order to investigate other important properties of the
OORN, it is looked upon as an undirected network. Thus,
the average path lengthL is equal to 27.2537. It can be
easily found thatL is terribly less than the number of
nodes, 8310, in the OORN with all physical operators and
BOUs. In other words, the OORN has the small-world
property.
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Fig. 5: Cumulative degreeP(k) distribution for the OORN in the
TOC system.

Meanwhile, the average degreek, obtained according
to Table4, is 3.6698. Obviously, the clustering coefficient
of each node in the OORN is zero and its clustering
coefficientC is zero. And Fig.5 shows the cumulative
degree distributionP(k) on logarithmic scales. Here the
horizontal axis is vertex degreeki and the vertical axis is
the cumulative probability distribution of degrees, i.e.,the
fraction of vertices that have degree greater than or equal
to ki . And the line is the nonlinear regression of
cumulative degreeP(k). Moreover, its equation is
y = 1.0296x0.9921, and their linear correlation coefficient
is 0.9171. It can be seen that the cumulative degrees
approximately follow power-law distribution. Therefore,
the OORN with all physical operators and BOUs is nearly
scale-free.

4.3 Comparison of the optical operator
reconfiguration network with various kinds of
BOUs

As mentioned above, the most fundamental BOUs can be
emerged functionally to generate other kinds of BOUs,
BOU21−44 and BOU51−58. Thus, the dynamic
reconfiguration of operators can be based on various
BOUs, such as 18 kinds of the most fundamental BOUs,
26 kinds of BOUs (including BOU1−18 and BOU51−58),
42 kinds of BOUs (including BOU1−18 and BOU21−44)
and 50 kinds of BOUs (including BOU1−18, BOU21−44
and BOU51−58). Therefore, different OORNs with various
BOUs can be constructed.

Table 5 shows the comparison of the OORNs with
various BOUs. Where ’BOU’ is the kinds of BOUs which
are used to construct the OORNs, and ’Operator’, ’Edge’,
’C’, ’ D’, ’ L’, and ’k’ are the number of physical
operators(including BOUs), the number of edges,

Fig. 6: DensityD(ki) distributions for the OORNs with various
BOUs.

clustering coefficient, density, average path length,
average degree of the OORNs, respectively.

From Table5, we can see that there are the same
number of optical operators and the clustering coefficients
of these OORNs are all zero. At the same time, the
densities and average path lengths increase and average
degrees decrease with the increase of the number of
BOUs. The reason is that the number of nodes is
unchangeable while the number of edges decreases with
the increase of the number of BOUs.

On the other hand, the number of operators provided
by the TOC is unchangeable in real application.
Therefore, the TOC can provide more data-bits, and
process more data in parallel if more kinds of BOUs are
used in real system. In other words, if densityD and
average path lengthL are greater and average degreek is
smaller, the chosen BOUs can make better use of the
parallelism of the TOC. However, there are up to 50 kinds
of BOUs to use in the TOC system. Consequently, it is
reasonable and optimal to use 50 kinds of BOUs in real
TOC system. Fig.6 shows the densityD(ki) distributions
for the OORNs with various kinds of BOUs. Similarly,
the horizontal axis is vertex degreeki and the vertical axis
is densityD(ki). And they are both shown on logarithmic
scales. It can be seen that their density distributions all
follow power-law distribution, regardless of the kinds of
BOUs used in the TOC system.

Table 5: Comparison of different OORNs with various BOUs.

BOU Operator Edge C D L k
18 8310 39348 0 0.358 18.855 4.735
26 8310 38092 0 0.371 20.046 4.584
42 8310 31032 0 0.433 26.745 3.734
50 8310 30496 0 0.439 27.254 3.670
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5 Conclusions

In this paper, we have investigated the reconfigurability of
optical operators in the TOC from the viewpoint of
complex networks. With the help of complex networks,
we have obtained some important and interesting
topological characteristics of the optical operator
reconfiguration network, such as average path length,
clustering coefficient, average degree and degree
distribution. These numerical results have shown that the
OORN simultaneously exhibits small-world effect and
scale-free degree distribution, and clustering coefficient
can’t adequately show the features of the networks. In
addition, we have proposed a novel method, density of
node, to illustrate the features of the networks, studied
their density distributions, and found that both its density
distribution and degree distribution follow power-law
distribution.

Moreover, we have compared the optical operator
reconfiguration network with various kinds of BOUs. On
the basis of the comparison, we have drawn a conclusion
that it is reasonable and optimal to use 50 kinds of BOUs
in real TOC system. To some degree, the conclusion
provides theoretical foundation for selecting the kinds of
BOUs in the TOC system. In the future, we will continue
investigating the other topological properties, such as
network resilience, degree correlation, community
structure and mixing pattern.
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