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Abstract: Polar codes are linear codes which split input channels to increase its transition performance and provably achieve the
capacity of symmetric binary discrete memoryless channels(B-DMC). The idea of Polar codes is related to the recursive construction
of Reed-Muller codes on the basis of 2-order square matrixG2, can achieve the symmetric capacity of arbitrary binary-input discrete
memoryless channels and to create fromN independent copies of a B-DMCW , N different channels through a linear transformation.
It has already been mentioned that in principle larger matrices can be employed to construct polar codes with better performances.
In this paper we consider a problem of systematic constructions of polar codes based on fast channel polarization of binary discrete
memoryless channel, which is an idea approach to construct code sequences as splitting input channels to increase the cutoff rate. We
analyzes a novel polar channel coding and decoding approachby using the 4×4 matrix G4 = G⊗2

2 as a core on dual binary discrete
memoryless channels (D-BDMC). In this paper, we characterize its parameters for a given core square standard matrixG4 and derive
upper and lower bounds on achievable exponents of derived polar codes based onG4n = G⊗n

4 with block-length 4n, through which
the performance can be improved with lower encoding and decoding complexity and achieve explicit construction. We investigate
polarization schemes whose salient features may be decodedwith a maximize likelihood (ML) decoder, which render the schemes
analytically tractable and provide powerful low-complexity coding algorithms. Moreover, we give a general family of polar codes
based on Reed-Mull codes with fast channel polarization.

Keywords: Polar code, dual binary discrete memoryless channels, Reed-Mull code.

1 Introduction

Polar codes, introduced by Arikan [1], achieve the
capacity of arbitrary binary-input symmetric DMCs.
Moreover, they have low encoding and decoding
complexity and an explicit construction. The channel
polarization may be consisted of code sequences using a
belief propagation (BP) decoder with symmetric high rate
capacity in given binary-input discrete memoryless
channels (B-DMC). It is a commonplace phenomenon
that is almost impossible to avoid as long as several
similar channels are combined in a sufficient density with
certain elegant connections [2]. The investigation of
channel polarization not only has become an interesting
theoretical problem, but also have lots of practical
applications in signal sequence transforms, data
processing, signal processing, and code coding theory [3],

[4]. Following Ariank’s paper [1], authors of [5] had
introduced a list successive-cancellation (SCL) decoding
algorithm with consideration ofL SC decoding paths,
where the results showed that performance of SCL was
very close to that of maximum-likelihood (ML) decoding.
Then, to decrease the time complexity of the SCL,
another decoding algorithm derived from SC called stack
successive-cancellation (SCS) was proposed in [6].
Furthermore, it was proven in [8] that, with cyclic
redundancy check (CRC) aided, SCL even outperformed
more than some turbo codes.

The proposed symmetric capacity is the highest
coding rate achievable subject to using the input alphabets
of the channel with equal probability. It is known that
polar code is the first provably capacity achieving codes
for an arbitrary B-DMC with low encoding and decoding
complexity [7,9,10,11]. In [12], the polarization

∗ Corresponding author e-mail:moonho@jbnu.ac.kr

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090443


2038 W. Duan et. al. : On Fast Channel Polarization of...

phenomenon has been studied for arbitrary kernel
matrices, rather than Ariank’s original 2× 2 polarization
kernel, and error exponents were derived for each such
kernel. The construction of polar codes is based on the
transformation ofG⊗n

2 to a block ofN = 2n bits that are
transmitted to the output of independent copies of a
B-DMC W , where the notion ‘⊗’ denotes Kronecker
product. Asn grows large, the channels seen by individual
bits start being polarized. Namely, some channels
approach to either a noiseless channel or a pure-noise
channel, where the fraction of channels becoming
noiseless is close to the symmetric capacityI(W ) that is
the high rate of reliable communication channel.

Motivated by a fascinating aspect of Shannons
channel coding theorem that shows the existence of
capacity achieving code sequences, we show a novel
construction of provably capacity-achieving sequences
with low coding complexities with BP decoders. This
paper is an attempt to meet this elusive goal for B-DMC,
which is an extension of work where channel combining
and splitting were used to to improve the sum cutoff rate
[1], [3], [4].

In this paper, we consider the construction of polar
codes based on the transformation ofG⊗n

4 to a block of
N = 4n bits transmitted to independent copies of a dual
binary discrete memoryless channels (D-BDMC)W4. A
channel is called as D-BDMC of it is composed of two
pair of channelsW2 that are used as a core for channel
polarization by Arikan [1]. As n grows large, the channels
seen by individual bits start being fast polarized with a
lower complex computation.

The organization of the paper is as follows: Section II
reviews polar code and describes our proposed
polarization construction. In Section III, we propose a
novel polar coding algorithm. The simulation results are
presented to show the good performance of the proposed
method in Section IV, and section V concludes the paper.

2 Polarization Construction

In this section, we briefly review polar codes and consider
a novel construction of polar codes which is based on D-
BDMC and generate them from four copies of a generic
B-DMC W with special characters.

First, we define two important parameters of
symmetric B-DMCs: the mutual information and the
Bhattacharyya parameter. Consider a generic B-DMC
W : X 7→ Y with input alphabetX = {0,1}, output
alphabetY and transition probabilitiesW (y|x) for x ∈ X

andy ∈ Y , there are two channel parameters [1], i.e., the
symmetric capacity

I(W ) = ∑
x∈X

∑
y∈Y

1
2

W (y|x) log
W (y|x)

1
2W (y|0)+ 1

2W (y|1)
, (1)

and the Bhattacharyya parameter

Z(W ) = ∑
y∈Y

√
W (y|0)W (y|1). (2)

The two parameters are much useful while consider
the measurements of rate and reliability of D-BDMC.
I(W ) is a measure of rate in a channel. It is well-known
that reliable communication is possible over a symmetric
B-DMC at any rates up toI(W ). The Bhattacharyya
parameter is a measure of the reliability of a channel
since Z(W ) is an upper bound on the probability of
maximum-likelihood (ML) decision error for uncoded
transmission overW .

Furthermore, note thatZ(W ) and 1− I(W ) are
expectations of the functionsf (x) = 2

√
x(1− x) and

g(x) = −xlog(x)− (1− x)log(1− x) over the distribution
P, respectively.

Denote the length of codewords we will transmit over
W by n = 2m. Given y = (y1,y1, ...yn) ∈ Y n and
u = (u1,u1, ...un) ∈ X n, thus the total underlying
memoryless channel can be expressed as

W n(y|u) =
n

∏
i=1

W (yi|xi).

Thus, the corresponds ton independent uses of the channel
W . Let G2 be the standard polarization matrix, shown as

G2 =

(
1 0
1 1

)
,

for which G−1
2 = G2.

Let G⊗m
2 be them-fold Kronecker product ofG and

Bn be then× n bit-reversal permutation matrix. Thus, the
transition probabilities is

Wi(y,ui−1|ui) = ∑
v∈(0,1)

1
2n W n(y|(ui−1,ui,v)BnG⊗m

2 ) (3)

The maximum-likelihood decision rule for estimatingui is

ûi = max{Wi(y,ui−1|0),Wi(y,ui−1|1)}. (4)

This is the decision rule used in successive cancellation
decoding.

In this paper, we use the notationaN
1 to denote a row

vector(a1, · · · ,aN). For a given vectoraN
1 , we writea j

i to
denote the subvector(ai, · · · ,a j) for j > i. Moreover, we
write aA to denote the subvector(ai : i ∈ A ), and write
a j

1,o to denote the subvector(ai : 1≤ i ≤ j, i odd) with odd

indices, anda j
1,e to denote the subvector(ai : 1≤ i ≤ j, i

even) with even indices. Also, we writea j
1,l to denote the

subvector(ai : 1≤ i ≤ j, i = 4l+k) with indicesi = 4l+k
for k ∈ {1,2,3,4}. The notationW N is used for denoting
the combined channel corresponding toN uses ofW , and
hence one hasW N : X N 7→ Y N with

W N(yN
1 |x

N
1 ) =

N

∏
i=1

W (yi|xi).

Channel polarization over D-BDMC is an operation
by which one manufactures out of independentN copies
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Fig. 1: The combined channelW4 with its lower-level channelW .

of a given B-DMCW for N = 4n generate a second set of
N channels{W i

N : 1 ≤ i ≤ N} that show an affection of
channel polarization in a sense that, asn becomes large,
for some indices 1≤ i ≤ N the symmetric capacity terms
{I(W i

N) : 1 ≤ i ≤ N} tend towards 0 or 1. This operation
consists of a channel combining phase and a channel
splitting phase.

For channel combining phase, it combinesN copies
of a given B-DMCW in a recursive manner to produce a
combined vector channelWN for N = 4n. This recursion
begins at the zero level with one copy ofW and hence we
let W1 = W . Consequently the first level of the recursion
combines four independent copies ofW as shown in Fig. 1
and obtains the channelW4 : X 4 7→Y 4 with the transition
probabilities being calculated as

W4(y4
1|u

4
1) =W (y1|⊕

4
i=1 ui)W (y2|u2⊕ u4) (5)

·W (y3|u3⊕ u4)W (y4|u4), (6)

where ⊕n
i=1ui , u1 ⊕ ·· · ⊕ un. In Fig.2, R4 is the

permutation operation that maps an input(s1,s2,s3,s4) to
v4

1 = (s1,s2,s3,s4). The mappingW4 : u4
1 → y4

1 from input
of W4 to output ofW 4 can be denoted by

W4(y4
1|u

4
1) =W 4(y4

1|x
4
1) =W 4(y4

1|u
4
1G4),

wherex4
1 = u4

1G4 and the element ofG4 determine whether
an element ofu4 apperas as a summand in the encoded
word or nor, at here we consider the

G4 = G⊗2
2 =




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


 ,

for whichG−1
4 = G4. Thenu4

1G4 is defined as

[u1u2u3u4]×




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1


=




u1+ u2+ u3+ u4
u2+ u4
u3+ u4

u4


 ,
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Fig. 2: The transformation of the combined channelW16 from its
lower-level channelW4.

Using this convention, we can define a group code based
on the given binary matrix without actually defining a
multiplication operation for the group.

The second level of the recursion is shown in Fig.2
where four independent copies ofW4 are combined to
create the channelW42 with transition probabilities

W42(y16
1 |u16

1 ) =W4(y
4
1|⊕

4
i=1 ui,⊕

8
i=5ui,⊕

12
i=9ui,⊕

16
i=13ui)

·W4(y
8
5|⊕

3
i=2 ui,⊕

7
i=6ui,⊕

11
i=10ui,⊕

15
i=14ui)

·W4(y
12
9 |⊕4

i=3 ui,⊕
8
i=7ui,⊕

12
i=11ui,⊕

16
i=15ui)

·W4(y
16
13|u4,u8,u12,u16),

The general form of the recursion is shown in Fig. 3
where four independent copies ofWN/4 are combined to
produce the channelWN for N = 4n. It is obvious that the
mappingWN : uN

1 → yN
1 from the input of the synthesized

channel to the input of the underlying raw channels is
linear overGF(2). Thus it is represented by a matrixGN
so that

WN(yN
1 |u

N
1 ) =W N(yN

1 |v
N
1 ) =W N(yN

1 |u
N
1 GN),
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Fig. 3: A recursive construction ofWN based on four lower-order
channelsWN/4.

whereyN
1 ∈ Y N , uN

1 ∈ X N , andGN = G⊗n
4 .

For channel splitting phase, having synthesized the
vector channelWN out ofW N , we splitWN back into a set
of binary-input coordinate channels

W (i)
N : X → Y N × X i−1 for any 1≤ i ≤ N, which is

defined by the transition probabilities

W (i)
N (yN

1 ,u
i−1
1 |ui) = ∑

uN
i+1

1
4N−1WN(yN

1 |u
N
1 ). (7)

where the notation(yN
1 ,u

i−1
1 ) represents the output of

W (i)
N for the given inputui. It’s clear that whenuN

1 is a

priori uniform onX N , thenW (i)
N is the effective channel

seen by theith decision element. In the basic case,N = 2,
using chain rule of mutual information, the linear
transform between(u1,u2) and (X1,X2) is a one-to-one
mapping, which is shown as follow

I(u1,u2;Y1,Y2) = I(u1;Y1,Y2)+ I(u1;Y1,Y2, I(u1). (8)

It’s clear that

I(y1,y2 | u1)+ I(y1,y2,u1 | u2) = 2I(W ), (9)
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Fig. 4: Bhattacharyya bound distribution with increase ofn and
beginning 0.5.

Z(y1,y2 | u1)≤ 2Z(W )−Z(W )2, (10)

Z(y1,y2,u1 | u2) = Z(W )2, (11)

To analyze the behavior of these channels, we may define
a random process processing as the Bhattacharyya bound
distribution with increase of layersn i.e., the layer of 23 is
3, in Fig. 4.

Proposition 1: For any D-BDMC with respect toN =

4n, the channelsW (i)
N can be polarized with largen, i.e.,

for any fixedδ ∈ (0,1), asn goes to infinite, the fraction

of indicesi ∈ {1, · · · ,N} for whichW (i)
N ∈ (1− δ ,1] goes

to I(W ) and the fraction for whichW (i)
N ∈ [0,δ ] goes to

I(W ).

The channel capacityI(W (i)
N ) for any i ∈ {1, · · · ,N}

can be calculated using the following recursive relations

I(W (4i−3)
N ) = I(W (i)

N/4)
4

I(W (4i−2)
N ) = I(W (4i−1)

N ) = I(W (i)
N/4)

2,

I(W (4i)
N ) = 4I(W (i)

N/4)−2I(W (i)
N/4)

2− I(W (i)
N/4)

4, (12)

where I(W (1)
1 ) = I(W ). In addition, to describe the

performance of the proposed polar codes, the speed with
which the polarization takes hold as a function ofN is
important. Thus, we consider to define the following
parameters over splitting channel

Z(W (i)
N ) = ∑

yN
1

∑
ui−1

1

√
W (i)

N (yN
1 ,u

i−1
1 |0)W (i)

N (yN
1 ,u

i−1
1 |1),

(13)
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For any given D-BDMC based on any B-DMCW , the
goal is to show that the blockwise channel transformation
can be broken recursively into single-step channel
transformations. Thus, we define a single-step
transformation of four independent copies of a
binary-input channelW as follows

(W,W,W,W )→(W (1)
4 ,W (2)

4 ,W (3)
4 ,W (4)

4 ), (14)

where

W (1)
4 (y4

1|u1) = ∑
u4

2

1
4

W (y1|⊕
4
i=1 ui)W (y2|u2⊕ u4)

·W (y3|u3⊕ u4)W (y4|u4)

W (2)
4 (y4

1,u1|u2) = ∑
u4

3

1
4

W (y1|⊕
4
i=1 ui)W (y2|u2⊕ u4)

·W (y3|u3⊕ u4)W (y4|u4)

W (3)
4 (y4

1,u2|u3) = ∑
u4

1
4

W (y1|⊕
4
i=1 ui)W (y2|u2⊕ u4)

·W (y3|u3⊕ u4)W (y4|u4)

W (4)
4 (y4

1,u3|u4) =
1
4

W (y1|⊕
4
i=1 ui)W (y2|u2⊕ u4)

·W (y3|u3⊕ u4)W (y4|u4) (15)

Generally, for anyN = 4n and 1≤ i ≤ N the above
definition can be similarly extended with the following
results

(W (i)
N ,W (i)

N ,W (i)
N ,W (i)

N )→(W (4i−3)
4N ,W (4i−2)

4N ,W (4i−1)
4N ,W (4i)

4N ),
(16)

where

W (4i−3)
4N (y4N

1 ,u4i−4
1 |u4i−3)

= ∑
u4i

4i−2

1
4

W (i)
N (yN

1 ,⊕
4
i= ju

4i−4
1, j | ⊕4i

j=4i−3 u j)

W (i)
N (y2N

N+1,u
4i−4
1,2 ⊕u4i−4

1,4 |u4i−2⊕ u4i)

W (i)
N (y3N

2N+1,u
4i−4
1,3 ⊕u4i−4

1,4 |u4i−1⊕ u4i)

W (i)
N (y4N

3N+1,u
4i−4
1,4 |u4i) (17)

W (4i−2)
4N (y4N

1 ,u4i−3
1 |u4i−2)

= ∑
u4i

4i−3

1
4

W (i)
N (yN

1 ,⊕
4
i= ju

4i−4
1, j | ⊕4i

j=4i−3 u j)

W (i)
N (y2N

N+1,u
4i−4
1,2 ⊕u4i−4

1,4 |u4i−2⊕ u4i)

W (i)
N (y3N

2N+1,u
4i−4
1,3 ⊕u4i−4

1,4 |u4i−1⊕ u4i)

W (i)
N (y4N

3N+1,u
4i−4
1,4 |u4i) (18)

Fig. 5: The channel transformation withN = 4 channels.

W (4i−1)
4N (y4N

1 ,u4i−3
1 |u4i−1)

=∑
u4i

1
4

W (i)
N (yN

1 ,⊕
4
i= ju

4i−4
1, j | ⊕4i

j=4i−3 u j)

W (i)
N (y2N

N+1,u
4i−4
1,2 ⊕u4i−4

1,4 |u4i−2⊕ u4i)

W (i)
N (y3N

2N+1,u
4i−4
1,3 ⊕u4i−4

1,4 |u4i−1⊕ u4i)

W (i)
N (y4N

3N+1,u
4i−4
1,4 |u4i) (19)

W (4i)
4N (y4N

1 ,u4i−3
1 |u4i)

=
1
4

W (i)
N (yN

1 ,⊕
4
i= ju

4i−4
1, j | ⊕4i

j=4i−3 u j)

W (i)
N (y2N

N+1,u
4i−4
1,2 ⊕u4i−4

1,4 |u4i−2⊕ u4i)

W (i)
N (y3N

2N+1,u
4i−4
1,3 ⊕u4i−4

1,4 |u4i−1⊕ u4i)

W (i)
N (y4N

3N+1,u
4i−4
1,4 |u4i) (20)

whereuw
1, j = (u4k+ j : 1 ≤ 4k + j ≤ w; j = 1,2,3,4) for

any w > 1. The full set of such transformation form a
fabric as shown in Fig[Processing] forN = 4. The figure
starts with two copies of transformation

(W,W ) 7→ (W (1)
2 ,W (2)

2 ) and in the next layer, each
representing a channel transformation of the form

(W (1)
2 ,W (2)

2 ),(W (1)
2 ,W (2)

2 ) 7→ (W (1)
4 ,W (3)

4 ,W (2)
4 ,W (4)

4 ).
Independent copies are halved at each step.

From the above discussions, it is shown that the block-
wise channel transformation fromW N to W (i)

N breaks out
at a local level into single-step channel transformations.
As an example, we consider a set of such transformations
illustrated in Fig.2 forN = 16, in which the figure starts
with four copies of the transformation

(W,W,W,W )→ (W (1)
4 ,W (2)

4 ,W (3)
4 ,W (4)

4 )

and continues in butterfly-like patterns. This
transformation can be generalized to represent another
family of channel transformation

(W (k)
4i ,W

(k)
4i ,W

(k)
4i ,W

(k)
4i )→(W (4k−3)

4i+1 ,W (4k−2)
4i+1 ,W (4k−1)

4i+1 ,W (4k)
4i+1 ).
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The four channels at the right endpoints are always
identical and independent. There are 16 independent
copies ofW at the rightmost level. Consider the second
level to the left, there are four independent copies of

{W (k)
4 : k = 1,2,3,4}, and so on. Each step to the left

quadruples the number of channel types, but quarters the
number of independent copies.

Proposition 2: For any D-BDMC andN = 4n the
transformation

(W (i)
N ,W (i)

N ,W (i)
N ,W (i)

N )→ (W (4i−3)
4N ,W (4i−2)

4N ,W (4i−1)
4N ,W (4i)

4N )

is rate-preserving and reliability-improving in the sense
that

3

∑
j=0

I(W (4i− j)
4N ) = 4I(W (i)

N )

3

∑
j=0

Z(W (4i− j)
4N )≤ 4Z(W (i)

N ) (21)

Channel splitting moves the rate and reliability of channels
away from the center in the sense that

I(W (4i−3)
4N )≤ I(W (4i−2)

4N )= I(W (4i−1)
4N )≤ I(W (i)

N )≤ I(W (4i)
4N )

Z(W (4i−3)
4N )≥Z(W (4i−2)

4N )=Z(W (4i−1)
4N )≥Z(W (i)

N )≥Z(W (4i)
4N )

with equality iff equalsI(W ) = 0 or I(W ) = 1. The
reliability of channels satisfies the following condition

Z(W (4i−3)
4N )≤ 4Z(W (i)

N )−Z(W (i)
N )4

Z(W (4i−2)
4N )≤ 2Z(W (i)

N )−Z(W (i)
N )2

Z(W (4i−1)
4N )≤ 2Z(W (i)

N )−Z(W (i)
N )2

Z(W (4i)
4N ) = 2Z(W (i)

N )2+Z(W (i)
N )4. (22)

The cumulative rate and reliability of the channels satisfy
the condition

N

∑
i=1

Z(W (i)
N ) = N(I(W ));

N

∑
i=1

Z(W (i)
N )≤ NZ(W ). (23)

In a special case of a BDMCW : X → Y such that
W (y|0) = W (y|1), we haveI(W ) = 1− ε andZ(W ) = ε,
and the termZ(W ) is called as erasure probabilityε for
erasure channelW . Thus we have the following results.

Proposition 3: Consider a binary erasure channelW

with erasure probabilityε, each polarized channelW (i)
N has

the erasure probabilityε(i)N that can be calculated from the
recursive relation

ε(4 j−3)
4k = 4ε( j)

k − (ε( j)
k )4,

ε(4 j−2)
4k = ε(4 j−1)

4k = 2ε( j)
k − (ε( j)

k )2,

ε(4 j)
4k = (ε( j)

k )4+2(ε( j)
k )2. (24)

whereε(1)1 = Z(W ) = ε.

3 Polar Coding Algorithm

In this section, we will consider the encoding and
decoding of the present polar codes. Therefore forN = 4n

we present an explicit algebraic expression for encoder,
the generator matrixGN for polar coding. When consider
the encoding operationuN

1 GN of the polar codes, we
exploit the fast transform methods popular in signal
processing.

We will carry out the class ofGN-coset codes for a
class of polar codes. Recall that individualGN-coset codes
are identified by(N,K,A ,µA c). For the fixed parameters
(N,K,A ), we keep a freeµA c ∈ X N−K .

As an example, forN = 16 we takeG16 = G⊗2
4 , i.e.,

G16 =




1000000000000000
1100000000000000
1010000000000000
1111000000000000
1000100000000000
1100110000000000
1010101000000000
1111111100000000
1000000010000000
1100000011000000
1010000010100000
1111000011110000
1000100010001000
1100110011001100
1010101010101010
1111111111111111




(25)

First we compute the reliability terms of channel
polarization on the base of the vector
z(N) = (zN,1,zN,2, · · · ,zN,N) through the recursion

z4k, j =





4zk, j − z4
k, j, for 1≤ j ≤ k;

2zk, j−k − z2
k, j−k, for k+1≤ j ≤ 2k;

2zk, j−2k − z2
k, j−2k, for 2k+1≤ j ≤ 3k;

2z2
k, j−3k + z4

k, j−3k, for 3k+1≤ j ≤ 4k,

(26)

for any k = 1,4,42, · · · ,4n−1 starting with z1,1 = 1/4.
Next, we form a permutationπN = (i1, · · · , iN) of the set
(1, · · · ,N) so that for any 1≤ j < k ≤ N, the inequality
zN,i j < zN,ik is true.

The generator matrixGP(N,K) of an (N,K) polar
code is defined as the sub-matrix ofGN consisting of
rows with indices{i1, · · · , iK} ⊆ {1, · · · ,N}. It is easy to
see that the computational complexity of this code
construction method isO(N log4 N).

Consider the matrixG16, we have

z16 =(0.004,0.016,0.035,0.049,0.016,0.063,0.063,0.141,

0.016,0.063,0.063,0.141,0.035,0.141,0.141,0.316),

which gives

π16= (16,15,14,12,8,13,4,11,10,7,6,4,9,5,3,2,1).
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Thus a polar code can be constructed with the parameters
(16,5,{16,15,14,12,8}), which has the generator matrix

G16 =




1111111100000000
1111000011110000
1100110011001100
1010101010101010
1111111111111111


 , (27)

which is also the generator of a Reel-Muller code with the
parameters(16,5,8).

Proposition 4: For any polar code(N,K) of a block
length N = 4n on D-BDMC, there is an encoder and
decoder with the computational complexityO(N log4 N).

Consider the decoder for an arbitraryGN-coset code
with parameter(N,K,A ,µA c). The source vectoruN

1
consists of a random sub-vectorµA and a frozen
sub-vectorµA c . The vectoruN

1 is transmitted acrossWN

and a channel outputyN
1 is obtained with probability

WN(yN
1 |u

N
1 ). The decoder generates an estimateûN

1 of uN
1

for the given(yN
1 ,µA c).

The SC decoder generates an estimate ˆuN of uN by
observing the channel outputyN . The decoder takesN
decisions for eachui. If ui is a frozen bit, the decoder will
fix ûi to its known value. Ifui is an information bit, the
decoder waits to estimate all the previous bits. For one
hand, ifi ∈ A c, i.e., the elementui is known, then thei-th
decision element is ˆui = ui. For another, ifi ∈ A , then the
i-th decision element has to be waited until it has received
the previous decisionŝui−1

1 . After that, we computes the
likelihood ratio (LR) as follows

L(i)
N (yN

1 , û
i−1
1 ) =

W (yN
1 , û

i−1
1 |0)

W (yN
1 , û

i−1
1 |1)

, (28)

and generates its decision as

ûi =

{
0, if L(i)

N (yN
1 , û

i−1
1 )≥ 1;

1, otherwise.
(29)

which is then sent to all succeeding decision elements.
This processing is a single-pass algorithm, with no
revision of estimates. The complexity of this algorithm is
determined essentially by the complexity of computing
the LRs.

A straightforward calculation using the recursive
formulas (17)-(20) gives

L(4i−3)
N (yN

1 , û
4i−4
1 )

=
∏4

j=1L
(i)
N ( j)+∑4

j1< j2 L
(i)
N ( j1)L

(i)
N ( j2)+1

∑4
j=1L

(i)
N ( j)+∑4

j1< j2< j3 L
(i)
N ( j1)L

(i)
N ( j2)L

(i)
N ( j3)

L(4i−2)
N (yN

1 , û
4i−3
1 )

=
(L

(i)
N (1))φ(1) ∏4

j=2L
(i)
N ( j)+P1+1

L
(i)

N (1)φ(1)+∑4
j=2L

(i)
N ( j)+P2

L(4i−1)
N (yN

1 , û
4i−2
1 )

=
∏2

k=1(L
(i)
N (k))φ(k) ∏4

j=3L
(i)
N ( j)+P3+1

∑2
j=1L

(i)
N (k)φ(k)+∑4

j=3L
(i)
N ( j)+P4

L(4i)
N (yN

1 , û
4i−1
1 )=

3

∏
j=1

(L
(i)

N ( j))φ( j) ·L
(i)
N (4), (30)

whereφ(k) = 1− 2û4(i−1)+k. In [1], it is shown that the
block error probability of the SC decoder decays to zero
for rates belowI(W ); consequently, polar codes achieve
the capacity of symmetric B-DMCs using the SC decoder.
The notationsP(i) for i ∈ {1,2,3,4} may be expressed as

P1 =
4

∑
j2

L
(i)
N (1)φ(1)

L
(i)
N ( j2)+

4

∑
j1< j2

L
(i)
N ( j1)L

(i)
N ( j2),

P2 =
4

∑
j2< j3

L
(i)
N (1)φ(1)

L
(i)

N ( j2)L
(i)

N ( j3)+
4

∑
j1< j2< j3

3

∏
k=1

L
(i)

N ( jk)

P3 =
2

∑
k=1

4

∑
k< j2

L
(i)

N (k)φ(k)
L

(i)
N ( j2)+

4

∑
2< j1< j2

L
(i)

N ( j1)L
(i)

N ( j2)

P4 =
2

∏
k=1

L
(i)
N (k)φ(k)(

4

∑
j=3

L
(i)

N ( j))+(
2

∑
j=1

L
(i)
N (k)φ(k))

4

∏
j=3

L
(i)

N ( j),

where j1 6= 1, j2 6= 1, andL
(i)
N ( j) are function defined by

L
(i)
N (1) = L(i)

N (yN/4
1 ,⊕4

i= jû
4i−4
1, j )

L
(i)
N (2) = L(i)

N (L(i)
N (yN/2

N/4+1, û
4i−4
1,2 ⊕ ûk

1,4),

L
(i)
N (3) = L(i)

N (y3N/4
N/2+1, û

k
1,3⊕ û4i−4

1,4 ),

L
(i)
N (4) = L(i)

N (y4N
3N+1, û

4i−4
1,4 ). (31)

Thus, the calculation of an LR at lengthN is reduced to the
calculation of two LRs at lengthN/4. This recursion can
be continued down to block length 1, at which the LRs are

calculated with the formulaL(1)
1 =W (yi|0)/W (yi|1).

By transmitting the information bits over B-DMC W,
polar-code sequences of block-lengthN = 4n can be
constructed starting with any polarizing core matrixG4.It
is clear that the encoding and successive cancellation
decoding complexities of such codes can be much lower
than that of the previous schemes with complexities
O(NlogN). The steps of how to build the encoding and
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decoding construction are summarized as shown as
follow:

1: Derive the relation between the channelsW (i)
ln+1 and

W (i)
ln .

2: Derive the recursive formulas betweenZ(W (i)
ln+1) and

Z(W (i)
ln ).

3: DeriveL(W (i)
ln+1) andL(W (i)

ln ) for ML decoding.
4: Go to 1.

4 Simulation and Discussion

In this section, we show the performance of the proposed
scheme in terms of the BER performance and bounds on
probability of block error with different block lengths
with some simulation results. In Fig.7, we investigate the
error performances under ML estimation of the polar
codes for (64,32) by the use ofG2 and proposed method
G4, where BPSK modulation is applied. In this case, the
proposed method achieved equivalent performance as
existing polar code. Moreover, as shown in Fig.8, our
proposed method does better error performance than
existing polar code at high SNR regime with increasing
block length, where we fixed the codes length as (128,64)
in this case. Fig. 9 shows the rate versus reliability
tradeoff for W using polar codes with block lengths
N ∈ {43,44,45}. This figure is obtained by using codes
whose information sets are of the form
A(η) = {i ∈ {1, ...,N} : Z(W (i)

N < η)}, where 0≤ η ≤ 1
is a variable threshold parameter. The bounds are plot of

R(η) = |A(η)|/N versusB(η) = ∑i∈A(η) Z(W (i)
N ). The

parameter is varied over a subset of[0,1] to obtain the
curves. It shows that the achievable capacity as the block
length is increase [1].

5 Conclusion

In this paper, we suggest a polar code at block-length
N = 4n, based on a specific matrixG4 and suggest the
overall encoding/decoding structures and systems of the
Polar code on D-BDMC, to improve the logarithm
expression of encoding/decoding of the Polar code with
the previous code which was proposed by Arikan. Also
we derive the steps of how to build the encoding and
decoding construction in detail. By transmitting the
information bits over the BDMC channelW , polar codes
of blocklength 4n can be efficiently constructed starting
with any polarizing matrixG⊗n

4 . The complexity of the
proposed encoding scheme are much lower that the
previous which is proposed by Arikan. It can be shown
that polar codes of blocklength 4n can be constructed
from generator matrices of the formG4n in which G4 is a
polarizing matrix of size 4. The encoding and successive
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Fig. 6: Bit error rates for (64,32) polarG2 andG4 codes on BPSK
channel.

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
Polar(128,64), G

2

Pola(128,64),G
4

Fig. 7: Bit error rates for (128,64) polarG2 and G4 codes on
BPSK channel.

cancellation decoding complexities of such codes are
O(N log4 N), which is better than Arikan’s codes with
complexitiesO(N log2 N) for anyN ≥ 4.
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