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Abstract: This paper proposes an aspect-oriented approach to modeling adaptive cyber physical system (CPS) using Petri nets. The
core concerns of CPSs are described as device model and task model, and dynamic variations of system behaviors or environment
conditions are extracted as crosscutting concerns. The models of runtime inspection as well as device adaptation and task adaptation
are designed as aspects nets. For the device adaptation strategy, fault types are analyzed and the control loop concept is integrated to
form the adaptation aspect model. For the task adaptation, arescheduling method using PSO-Pareto algorithm to find the best solution of
the backup devices is proposed. Via well-defined rules, these aspect nets can be weaved with the core concern nets into a comprehensive
adaptive CPS model. By theoretical analysis and a case study, we show the modeling approach is feasible and flexible, which simplifies
the design of adaptive CPSs.
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1 Introduction

Cyber physical system is a system consists of
computational elements and physical entities and their
interactions. The physical entities include sensors,
actuators and the interlink network. With its
characteristics related but not restricted to those
knowledge areas such as distributed system, real-time
system, embedded system, wireless network sensors,
ubiquitous computing, control theory and etc., CPS is
definition-complicated, behavior-intricate and
architecture-heterogeneous. As combination of
computation, controlling and communication, CPS is not
only sensitive to the system itself but also the
environment surrounded[1]. As a CPS might be extended
to ultra large in scale, the design method desires the
characteristics of flexibility, versatility, resilience and
dependency. Therefore, autonomous adaptation, also
known as self-adaptation, needs to be considered in the
construction of CPS as a runtime reconfiguration of the
system according to the perceived behavior changes,
quality of service changes and environment changes.

Petri net as a graphical description tool can strongly
describe the system behaviors [2]. With formal

specification associated, system behaviors can be
analyzed, verified and validated. Due to its clear visual
illustration of both structure and behaviors of the targeted
system, Petri net can not only handle the concurrent
events, but also well express the details of the system.
Besides, Petri net provides an easier way to transfer the
high-level system design to the low-level implementation.
From the modeling perspective, the traditional Petri net is
inadequate to deal with runtime adaptation of CPSs. We
need to extend the Petri net theory and seek a novel way
to demonstrate the CPS behaviors and runtime adaptation.
The approach and the model should both be flexible and
easy to be adjusted or expanded without interfering with
the ultimate system goals.

Aspect-oriented programming (AOP) [3] is first
presented as a modularized programming paradigm. It
separates the concerns from the business descriptions.
Traditional AOP methods and tools are concerned with
program elements at much lower level of source codes.
The concerns can be separated as core concern and
crosscutting concern. The latter are usually relevant to
non-functional properties that may crosscut multiple
business abstractions. Elevating the idea to software
engineering life-cycle, well-defined concerns can be any
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distinct facets in the system logic. This concept motivates
us to develop a modularized design approach with AOP
and Petri net for adaptive modeling. In our former work,
we propose a time-constrained aspect-oriented Petri net to
model the dynamics of CPSs. We show that the method is
feasible for capturing hybrid characteristics of CPSs with
discrete events and continuous activities. In addition, the
method supports separation of concerns in the design of
CPSs.

Different from software entities, the physical
processes are reflected in the Petri net model from two
aspects. Firstly, the quantitative capacities of physical
entities in CPSs are represented as markings of tokens in
Petri nets. In contrast, software entities could be
simultaneously invoked by several services anytime
anywhere with no quantity limitation. Secondly, similar to
the hybrid system theory presented in [4], we model the
physical entities as tokens of place in the Petri net in a
high abstract level. The tokens are generalized as
continuous variables. The discrete actions of software
entities are modeled as their value changes
instantaneously and then trigger the next step of the
model evolvement. Whilst, the continuous activities are
modeled by real-valued variables whose values change
continuously over time collapsing according to the laws
of physics such as the differential equations, etc.
Well-defined triggering rules will govern the model
execution.

In our CPS design, the bottom of the architecture is
described as component-based structure. To be more
specific, physical devices are the major entities in the
infrastructure and business processes are described as
tasks. We first present the core concern models as the
devices and tasks. Then we focus on the model of runtime
monitoring and adaptation for fault-tolerance. According
to fault types, we propose different adaptation strategies
that in turns are modeled as aspects. All these models are
presented using Petri nets. For the device adaptation, we
analyze the device fault types and combine the control
loop concept to form the adaptation aspect model. For the
task adaptation, we propose a rescheduling method with
PSO-Pareto algorithm to seek the best solution of the
backup devices. With the well-defined crosscutting
concern and pointcuts, we can weave the adaptation
aspects with the core concerns, which results in a
comprehensive CPS model. Theories of Petri nets help
prove the correctness of the integrated CPS model.

2 Related Work

In research areas of software engineering, adaptation is
not a brand new topic to be discussed. Its ideas and
technologies have already been applied in various areas
such as autonomic computing, autonomous robotics,
multi-agent systems, machine learning and even the
nowadays flourishing and prosperous areas like Cloud
computing, Big data and the Internet of Things. Also

some inspirations from the natural and biological systems
have enlightened the adaptive implementation in software
systems[5]. Since adaptation has partially been realized in
some specific domains and its importance keeps
increasing due to the current application situation,
introducing self-adaptation idea into software systems is
necessarily worthwhile. Cheng [5] and Kramer [6] et al.
present a general self-managing three-layer architecture
to implement adaptation. Dalpiaz et al. [7] present a
self-reconfiguring method to deal with the multiple
runtime needs. Salifu et al. [8] focus on the system
self-healing method for system maintenance. Chung [9]
focuses on the security aspect of the system, and proposes
a self-protecting method to deal with attacks. However,
the establishment of self-adaptation for CPS is little
depicted and endeavored in a systematical way. Zhang et
al. [10] present a model of fault diagnosis and using a
sensor activation decision to configure the system to
achieve the best quality satisfaction. Phan et al. [11]
propose a multi-model framework for facility adaptation.
Zhang et al. [12] present an agent based model and a
cooperation mechanism to achieve multiple adaptive
control. Other adaptation researches about CPS are
mainly focus on specific application areas. Though efforts
have been made on the researches of adaptive CPS, the
appropriate methods of modeling and realization of CPS
with the runtime adaptation still remain challenging.

As the CPS’s intrinsic characteristic with the mutual
interactions between the software and environment which
also been called as the cyber world and the physical
world, some of its behaviors are not predictable at the
design and development phase [1]. Also, at the execution
phase, the failures of hardware and software, and the
degradations of the quality of services are inevitable
either. So we need a runtime configuration and solution to
deal with the adaptation needs. Therefore, the modeling
methods should be flexible with the concerns of
adaptations. Former researchers demonstrated four
modeling dimensions asgoals, changes, mechanisms and
effects [13]. In adaptive CPS modeling, considering above
aspects, both functional and non-functional goals will
evolve and remain dynamic in a long-term duration and
multiple goals may interfere with each other. The cause of
CPS behavior changes can be both external and internal
which accordingly are represented as the impacts from
environment and the behavior changes of software itself.
Changes can occur frequently, and some of them are
unforeseeable. We should consider the autonomous
adjustments and make it the best efforts to fulfill the
system goals. Considering most of the adaptations are
within short-term duration and event triggered, one
applicable structure is centralized analysis and distributed
adaptation. Some of the adaptations are safety-critical and
others may be mission-critical, with non-deterministic
predictability. The execution of adaptations should not
affect the performance of system. One bad scenario is that
the whole system is busy adapting and adjusting while the
desired normal services are ignored or neglected.
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Therefore, the effects of the adaptation should be
light-weighted.

Comparing to the low-level implementation as
programming, high-level model expression is much easier
to be analyzed and manipulated. Modeling CPS through a
top-down method from business processes to code
generation following Model Driven Architecture (MDA)
approach is applicable. Communications between
components can be constructed based on Internet network
or Ad-Hoc, ZigBee, Bluetooth, DSRC technologies
which all of them are not the major focuses in this paper.

3 Architecture and Method

3.1 Design roadmap

In CPS, devices as entities can be used in different tasks
and provide certain services. These services may have
faults or failures that need a runtime adaptation. Unlike
the implementation of the pure software system, the
participation of hardware devices may change the whole
layout and structure of the system. So we need a flexible
and reusable approach to deal with the adaptation and
reconfiguration.

At the design phase, as we apply the MDA approach
to developing CPSs, the first step is requirement analysis.
Then the basic model with all the functional and
non-functional requirements is constructed according to
the business processes. At this point we use Petri net as
the modeling language to describe the basic model as core
concern model. Then we aim at the possible runtime
faults and failures in the CPS. Fault types are analyzed
and respective adaptation strategies are constructed for
faults recovery. These adaptation strategies are separated
as aspects and described using Petri nets too. Based on
the crosscutting concerns, pointcuts and the weaving
rules, the aspects can be weaved into the basic model to
form the final adaptive model. Respectively, the system
model will be presented as a composition of basic nets
and aspect nets as aspect-oriented Petri nets (AOPN)[14,
15]. At last we use theories of Petri nets to analyze the
model and to make sure its consistence, correctness and
compatibility. The design map is presented in Figure 1.

3.2 The AOPN modeling approach description

The structure of the CPS contains the hardware as
physical devices, software as tasks and the assigned
relationships between them. Several definitions of the
model and approach are given below.

Definition 1. (Requirement model) The requirement
model of the CPS isΨ =< De,T k,DC,RD >:
(1) De = (Sen,Act,Nod) is a finite set of devices includes
sensors, actuators and network nodes and their backups.
(2) T k = (SubTk,R,N,P,Re) is a finite set of tasks.
SubTk is the finite set of sub tasks,R is the finite set of
resources,N is the number of resources involved in
certain task.P is the properties of the task.∀tki ∈ T k,

CPS core concern model
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Hardware (Devices)

Software (Tasks)

Reconfiguration

Crosscutting 
Concerns

Adaptive Aspect Modeling

Crosscutting 

Concerns Modeling

Weaving Rules 

Description

Reconfiguration 

Strategy Modeling

Runtime 
System

Formal 
Specifications

V&V Methods

Formal Descriptions

Runtime data

 Weaving

Figure 1. The design roadmap of the adaptive CPS modeling

P(tki) = (In,Out,V,T) denotes the input, output and the
executive speed and time constraint of the task.
Re = {≻, ||,+, 6=} is the relationship between tasks as
sequential, parallel, selective, and mutual exclusion.
(3) DC : T k → De is the function that assigns the devices
for each task.
(4) RD : De → rv is the threshold value of each device for
reference.

Definition 2. (Composition model) The composition
model isAOPN =< Nb,Na, IO,Pt,Ad, Ia, tp,v,M0 >:
(1) Nb = (Pb,Tb;Fb) is basic net denoted by Petri net
structure.

Pb = {p1, p2, ..., pn} is a finite set of places.
Tb = {t1, t2, ..., tn}is a finite set of transitions.
Pb ∩Tb = /0 andPb ∪Tb 6= /0.
Fb ⊂ (Pb ×Tb)∪ (Tb ×Pb) is a finite set of arcs.

(2) Na = (Pa,Ta;Fa) shares the same structure definition
with Nb.
(3) IO ⊂ Pa ∪Ta ∪Fa is the set of start points and the end
points of the aspect net. The start point or the end point
can be a place or a transition or an arc and they are the
conjunction points between the basic net and the aspect
net.
(4) Pt ⊂ Nb is a finite set of pointcuts in the basic netNb.
It can be any elements in the basic net such as places,
transitions or arcs.
(5) Ad = {be f ore,a f ter,around} is the type of advice
net.
(6) Ia ⊂ P×T ∧ Ia∩F = /0 is the set of inhabit arcs. It is
non-null if the advice isaround type.
(7) tp ⊂ T represents an abstract transition of certain
pointcuts.
(8) v = vi(τ) → (0,R+) is the firing speed of certain
transitionti at timeτ. If the transition is discrete then the
speed is defined as 0 and if continuous then the speed is a
real number defined forehead according to the
requirement.
(9) M0 is the initial marking of the model.

DenotePre,Post ∈ N|P|×|T | as the input and output
matrix of the net. Forti ∈ T , •ti = {p j ∈ P|Pre ji ∈ F > 0}
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is the pre place set of transition ti,
ti• = {p j ∈ P|Posti j ∈ F > 0} is the post place set of
transition ti. Similarly, there is pi ∈ P,
•pi = {t j ∈ T |Pre ji ∈ F > 0} as the pre transition set of
place pi and pi

• = {t j ∈ T |Posti j ∈ F > 0} as the post
transition set of placepi.

Definition 3. (System state) Define the system state at
timeσ asS = (M,T S).

MarkingM denotes the resource distribution in system.
T S is the waiting time of markingM at timeσ . The initial
state isS0 = (M0,T S0), T S0 means all the tokens under
initial state is available. Then we know that as the time
elapsesω unit, the tokens in places will change and lead
the system to a new state. Denote asσ +ω(ω > 0), S[ω >
S′.

Assume at timeσ , the model is under markingM. For
∀pi ∈ P, there’s j tokens inpi, anddik(0 < k < j) is the
kth token.ctk is the create time ofdik anddti is the delay
time of place pi. Then T S(pi) = (T Si1,T Si2, ...,T Si j),
whereTS(dik) = max{dti − (σ − cti),0}. We callT S(dik)
as the waiting time interval, which means the system
needs to wait this time unit to use the entitydik. If it is
zero, means this entity is available. To diminish the
complexity, here we only discuss the situation that in
placepi, dti > 0 and there exists only one type of entities.
DefineT S(M,σ) as the set of waiting time under marking
M at timeσ . Ma andMu are the available and unavailable
entity distribution in markingM. |Ma(pi)| = k and
|Mu(pi)| = k means there isk entities available and
unavailable in placepi.

Definition 4. (Enabled transition set) LetET (S) be the
set of all the enabled transitions under stateS. For
transitiont j ∈ T , t j is enabled under markingm ∈ M, if
and only of∀pi ∈

•t j, |Ma(pi)|= k > 0. That means ift is
enabled,p as the pre set oft, needs to have at least one
token available.

Definition 5. (The biggest triggering transition set) Let
VT (S) be the set of all the valid triggering transitions
under stateS. Let CT (S) be the biggest set of the
concurrent transitions under stateS. Then the biggest
triggering transitions set under stateS is defined as
H(S) = {ti|ti ∈CT (S)∪VT (S)}.

ForS = (M,T S) as one state in system model,δ = 1/v
is the time threshold value. For transitionsti, t j ∈ ET (S), if
δi ≤ min(δ j) then we say that the triggering of transitionti
under stateS is valid.

For ∀ti, t j ∈ VT (S), if •ti ∩ •t j = /0, the transitionsti, t j
under stateS are concurrent. Otherwise they conflict. If
the relationship between two transitions is concurrent,
then the triggering of one transition will not affect the
other one.

Definition 6. (Reachability)S = (M,T S) is one state in
system model. The system evolves to a new stateS′

through all the valid triggering of transitions inH(S).
Denote asS[H(S)> S′, we callS′ is the reachable state of
stateS. For ∀ti ∈ H(S), ∀pi ∈

•t j ∩ t j
•, the marking will

evolve asM′(pi) = M(pi)− F(pi, t j) + F(t j, pi). Define
H1,H2, ...,Hm and S1,S2, ...,Sm as the trigger-able
sequence and the state sequence of the system model,
then S[H1(S) > S1[H2(S1) > S2...Sm−1[Hm(Sm−1) > Sm,
then we call the stateSm is reachable. The set of all the
reachable markings fromS is denoted asR(S) and
S ∈ R(S). According to the triggering rules discussed
above, we can construct the reachable state from the
initial stateS0.

Definition 7. (Advice operations)
(1) before: Na ≻ Nb represents that aspect netNa will
execute before the basic netNb proceeded when the
process flow come to the joint point. The computation of
Nb will suspend andNa must be completed beforeNb can
be continued.
(2) after: Na ≺ Nb represents that aspect netNa will
execute after the basic netNb proceeded when the process
flow come to the joint point. The computation at the joint
point in Nb is completed first thenNa can be started.
(3) around: NaΞNb represents that aspect netNa will
execute instead of the basic netNb when the process come
to the joint point with the conditions satisfied. The
computation of the joint point inNb will no longer be
executed in this case.

Graphical notations of AOPN have been elaborated in
our former work and will not be discussed in this paper
due to the limited space.

Definition 8. (Composition operation) Composed
aspect-oriented Petri net model isCN = (Nb,Na,OP):
(1) Basic netNb = {Pb,Tb;Fb, Ib,Ob,Pt} shares the same
definition with Petri net.
(2) Aspect netNa = {Pa,Ta;Fa, Ia,Oa} is mainly the
definition of the Introduction net.
(3) OperationsOP = {Na ≻ Nb,Na ≺ Nb,NaΞNb}.

Pt is the set of crosscutting concerns denoted by
pointcuts of joint points in the basic net. It has three types
such as place-pointcut, transition-pointcut, and
arc-pointcut.

A composed netCN = N′ = NbΘNa is a combination
of basic netNb and aspect netNa. An aspectA contains a
set of pointcutsPt, a set of advices denoted asA.V and a
set of introductions denoted asA.I.

Here we use a transition type of pointcut to discuss
the formal syntax of three types advices.tai ∈ Ia ⊂ I is the
start point of the aspect net. Also means the entry point
for an aspect. Here the start point is a transition in the
introduction net of the aspect. Similarly,tao ∈ Oa ⊂ O is
the end point of the aspect net also means the exit point
for an aspect.
(1) Na ≻ Nb

N′ = NbΘNa, where
P′ = Pb ∪Pa
T ′ = Tb ∪Ta
F ′ = Fb ∪Fa ∪{(pa, t)|(t ∈ Pt ∈ Tb)∧ (pa ∈

•tao)}
(2) Na ≺ Nb

N′ = NbΘNa, where
P′ = Pb ∪Pa
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T ′ = Tb ∪Ta
F ′ = Fb ∪Fa ∪{(t, pa)|(t ∈ Pt ∈ Tb)∧ (pa ∈ tai

•)}
(3) NaΞNb

N′ = NbΘNa, where
P′ = Pb ∪Pa
T ′ = Tb ∪Ta −{t|t ∈ Pt ∈ Tb}
F ′ = Fb ∪ Fa ∪ {(pb, tai)|(pb ∈ •t ∈ Pt) ∧ (tai ∈

Ta)}∪{(tao, pb
′)|(tao ∈ Ta)∧ (pb

′ ∈ t•)}−{{(pb, t)|(pb ∈
•t)∧ (t ∈ Pt)}∪{(t, pb

′)|(pb
′ ∈ t•)∧ (t ∈ Pt)}}

The description of the weaving mechanism that
weaves the aspect oftransition-pointcut with around
advice namedAroundTransition into the basic Petri net is
described as following[16].
CN weaving AroundTransition (BasicNet Nb, Aspect A)
{

For (∀pi ∈
•tcut)∧ (pi ∈ N)

{Nb.A = Nb.A ∪ {(pi,(
•tcut)•)} ∧ ((•tcut)• ∈

A.I)};
For (∀p j ∈ tcut•)∧ (p j ∈ N)

{Nb.A = Nb.A ∪ {(•(tcut•), p j} ∧ (•(tcut•) ∈
A.I)};

Nb.A = Nb.A−{(pi, tcut)}−{(tcut, p j)};
Nb.Pt = Nb.Pt −{tcut};
ReturnNb;

}

For the verification of the final adaptation model
weaved with aspects, we use the composition verification
approach referred to the method presented in [17]. The
graphical formal software architecture description model
(SAM) is a general framework based on two
complementary formalisms: Petri nets and temporal logic.
Petri nets are used to visualize and model both structure
and behaviors. And temporal logic is used to specify the
required properties of system. Each module in the
software architecture can be regarded as a component.
Here the component can either be the physical entity or
the software entity as well as other elements in the system
such as the adaptation aspects. And each component is
defined using a Petri net to visualize its internal logical
structure. Then the whole software architecture is defined
as a hierarchical model supports compositionality in both
software design and analysis.

Definition 9. (Verification of composition correctness)
The system can be defined by a set of compositions as
C = {C1,C2, ...,Ck}. Each composition denoted as
Ci = {Ci j,Csi} corresponds to a design level or the
concept of sub-architecture and consists of a set of
componentsCi j and a set of composition constrainsCsi.
Each componentCi j = (Si j,Bi j) in a compositionCi has a
temporal logic formula specified property specification
Si j and a Petri net described behavior modelBi j. A
composition constraint is defined as a property
specification often contains the connections of multiple
components. Then the correctness of the system
specification is defined in two levels.

First is the component correctness. The property
specificationSi j holds in the corresponding execution

sequences of the behavior modelBi j asBi j|= Si j.
Second is the composition correctness. The

conjunction of all constraints inCsi of Ci is implied by the
conjunction of all the property specificationsSi j of Ci j as
∧Si j| − ∧Csi. Then we can say the conjunction of all
constraints inCsi holds in the integrated behavior model
Bi of compositionCi asBi|= ∧Csi.

4 The Adaptation Model

From the perspective of runtime adaptation, we divide the
runtime adaptive requirements into the hardware facet
and software facet. The hardware facet is mainly about
the physical devices. The software facet is mainly about
the tasks. First of all we present the core concern models
of devices and tasks. Then the runtime inspection model
for fault discovery is given. After the analysis of different
types of faults, the respective adaptation models are
proposed with adaptation strategies.

4.1 The core concern model

The basic model of the CPS is constructed as the device
models. Device model described in Petri net is shown in
Figure 2. If there is an executive request then the device
will be invoked and initiated to a standby state, which is
denoted as a token in placepr of the model. According to
different roles of the devices, the request can be collecting
data or executing for services or adjusting to normal state.
The placepe will store the flag to keep the information
that the service execution or data collecting procedure is
finished.

For the modeling of tasks, we can abstract the task
into three states: standby, execution, and output. Then
according to the defined relationships as sequential,
parallel, selective and mutual exclusion between tasks,
the tasks will schematize the device resources and
connect them for scheduling. The composed task model
CMi will not be graphically elaborated in this paper.

pin tin

pex

pad tad

tout pout

pe

pa

tex

pr tco

ps

Figure 2. The Petri net model of deviceDeiM

4.2 System inspection and adaptation
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To support the runtime adaptation, we introduce the
reflection mechanism into the system design. The
self-representation capability of the reflection can make
the system correspondently response and react to its own
problem using two steps: inspection and adaptation.
Through weaving an inspection aspect module into the
system, the systems runtime surveillance can be achieved.
If adaptation needed, the well-designed strategic
adaptation aspects can be weaved into the system model
to adjust or replace certain behaviors or characteristic,
then bring the system back to normal.

Here we consider two situations. One is the value
deviation of devices. Runtime data of these devices will
be compared with the defined reference values, if the
deviation is beyond the threshold, the fault will be
outputted. This situation is most likely happened to
sensors. The other situation is the unavailability of device.
This situation is easier to deal with because lack of the
requested device will lead the task to suspend and throw
out an exception. The model is shown in Figure 3.

potfo

pre

pfo tfa

tcp pcr

prrtop

prs tco

prt

tco

pf

Figure 3. The modeling of runtime inspection and adaptation

In this model we define two crosscutting concerns
pointcuts t f o and p f o. Pointcut t f o = {DeiM.tin} is a
transition that leads the model to a process of checking
the error deviation of the device. And
p f o = {DeiM.pr} ∪ {CMi.p} will trigger an exception
when the device has error or is unavailable or the task is
suspended. When the placep f has token, it requires
adaptation mechanism to resolve the fault. We need to
weave the respective adaptation strategy into the core
concern model. The adaptation aspects will be discussed
in the following sections.

4.3 Device adaptation

According to the situations discussed in Section 4.2, we
need to consider two scenarios for device reconfiguration
respectively. Targeting at the abnormal execution of the
device, we can adjust the properties of the device as its
volt or parameters to make sure it back to track. Here we
use PID controller with feedback loop theory to adjust the
device. If the device is not available, we need to reboot it.
If the device has finished its service already and is

currently not occupied by any task, it needs to hibernate
so as to save energy. The aspect net is mainly about the
introduction net of aspect as shown in Figure 4.pdw will
store the state information of devices.

pdwtap

pad

prb trb

tPID prp

partad

prs

pct

tcp

pf

pde

prv

psd tsd

Figure 4. The modeling of device fault adaptation

4.4 Task adaptation

In our proposed CPS model, we assume that most tasks as
software procedures are well designed and will barely
have internal breakdown. We consider the situation of
task breakdown that mainly triggered by the fault of
devices or the unavailability of devices. We apply the
re-scheduling scheme for re-planning the resources that
required by tasks, to make sure the task continue fulfilling
the ultimate target. When the task is initiated, system
starts to execute and send the invoke requests to all the
required devices. At runtime, if some of the devices are
malfunctioned and start the device reconfiguration
processes as self-adaptation, there is no need to halt the
task to wait for the faulty device back to normal. And we
don’t know when the device will be reconfigured or the
effect of the device reconfiguration such as successfully
recovered or not. The implementation and deployment of
system like CPS must have redundant devices in various
types. Those idle devices can become the backups of
malfunctioned devices. So rescheduling is a feasible
approach to deal with the task breakdown. The model is
shown in Figure 5.

tap

pdw

tdfprs

pf

ptk

pdf

trs

tds
pds

pdb

tbe ptw

Figure 5. The modeling of task adaptation

Resources in CPSs are unlike the resources in Web
and Cloud, which the latter two are mainly about virtual
resources. That means one resource can be shared by
different tasks at the same time. Here in CPSs, resources
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are mostly devices and they provide certain services in
one task. So once the task is initiated and resources are
planned, these resources will be occupied till the task is
terminated. So one resource can only be invoked in one
task at the same time. Here the rescheduling in our paper
is not a start-over re-planning of the resources scheduling.
We keep a flag at the breakdown point of the runtime
state. All the results before the flag are reserved. There is
one situation we must consider. Before the task initiate,
all resources are available for scheduling and we can
make the best effort for the resource planning. But at
runtime, there may exist multiple tasks and some of the
resources are already occupied. How to find the most
applicable backup device for the rescheduling is our main
concern. We propose a PSO (Particle Swarm
Optimization) based Pareto optimization algorithm to find
the best solution.

In CPS, services of physical devices are usually
location-aware, energy-aware and time-critical. We
consider these criteria in the evaluation process of finding
the best solution. They are the complexity of the
reschedule path, the energy cost of the rescheduled
device, the time delay of the rescheduled device and the
service utility the device can provide.

B =
m

∑
i=1

pi ∗ li (1)

E = Einitial +Epath +Eexecution (2)

T = tresponse + tdelay (3)

Q = E−e (4)

The complexity of the reschedule path is calculated as
Formula (1). Assume there existm possible paths in the
system to reschedule the device.pi is the possibility of
pathi be chosen. Andli is the length of the pathi.

The energy cost of the rescheduled device is calculated
using Formula (2). If the device will be rescheduled in the
task, then it should start a process of initiation. The cost of
this process is pre-defined in the device manual.Epath =
ωi ∗ li , in whichωi is the cost of unit reschedule path, it’s
related to the interlink implementation.Eexecution = µ ∗ t,
µ is the execution cost of the device in unit time, andt is
the execution time defined by the task.

The time delay is calculated as Formula (3), in which
tresponse is the time from the task sending out the reschedule
requests to the task receiving the response from the device.
tdelay is the waiting time of the device to participate in the
task. For idle device, the waiting time is zero. But if there
is no idle device in the system, we need to consider those
devices already occupied in other task.

The service utility is the performance one device can
provide in the task execution that can be calculated using
Formula (4). We define it as related to the energy
consumption of the device.

To measure a device, theB, E, T is the lower the better
and the service utilityQ is the bigger the better. So we need
a tradeoff between the multi-objectives.

We define the path complexityB, energy costE, time
delayT and the service utilityQ as the four targets in PSO
as f1, f2 , f3 , f4 . In PSO [18], the search space iteration
formula are:

Vid =W ∗Vid +C1∗ ξ ∗ (Pgd −Xid)+C2∗η ∗ (Pid −Xid)
(5)

Xid = Xid + rVid (6)

In Formulas (5) and (6),Vid andXid are the speed and
position of particlei. Pid and Pgd are best position of
particle i as in an individual vision (p best) and best
position of all particles as in a global vision (g best). W is
the inertia weight, which make the particle capable to
explore the whole and new search space.C1 andC2 are
acceleration constants.ξ and η is a random value in
[0,1]. r is a constrain factor usually set to 1.

In the iteration of the PSO algorithm, the flying of
particle is determined by both the individual local best
solution and the global best solution. We need two
evaluation mechanisms to achieve the optimism of
multiple targets. The fitness evaluation function of local
best solution is presented in Formula (7).n is the number
of targets which should be 4 in our case.αi ∈ [0,1] is
random generated weight factor of each target and

n
∑

i=1
αi = 1.

f it(s) =
n

∑
i=1

αi ∗ fi (7)

There may exist tradeoffs between the four targets. So
the traditional multiple objectives weighting methods is
not applicable. We propose the Pareto optimization
method. In order to compare the pros and cons of the
solution, we use the dominated concept [19]. For a
minimization problem ofn objectives, if solutionx1
dominatesx2 then all targets value ofx1 should not be
bigger thanx2 and at least one objective value ofx1
should be smaller thanx2. So we have Formula (8), (9):

∀i ∈ (1,2, ...,n), fi(x1)≤ fi(x2) (8)

∃i ∈ (1,2, ...,n), fi(x1)< fi(x2) (9)

All mutual non-dominated solutions will form the set
of Pareto best solutions. Here we propose the PSO based
Pareto optimization algorithm as in Algorithm 1.

The Pareto optimization algorithm may output a set of
best solutions. So we randomly chose one as the
alternative device for the faulty one in the task. The
complexity of PSO is lower than genetic algorithm and
Ant Colony Optimization [20]. Its convergence speed is
quick so it can find the best solution in a relative short
time. And Pareto can solve the multiple objectives
tradeoff problem. The efficiency of the two methods
combined is applicable for our light-weighted reschedule
process.
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Algorithm 1 PSO-Pareto optimization solution finding
algorithm
Require: population size, max generation, W , C1, C2, αi,

number of targetn, and other needed parameters
Ensure: The best solution set

for eachparticle do
initialize particle;

end for
for Pareto Set do

initialize Pareto Set;
for i = (0, ...,n) do

calculatefi;
end for
Pareto Set == non-dominated (fi);
Setgeneration = 1;
while (generation < max generation) do

generation = generation+1;
calculatenext generation particles;
evaluatenew particles;
updatep best;
updateg best;
updatePareto Set;

end while
end for
return Pareto Set

5 Model Analysis

Temporal formulas are built from elementary formulas
(predicates and transitions) using logical connectives¬,
∧, and derived logical connectives∨, →, ↔, universal
quantifier ∀ and derived existential quantifier∃, and
temporal operators always�, sometimes♦, next timeX
and untilU .

The semantics of temporal logic is defined on
behaviors (infinite sequences of states). The behaviors are
obtained from the execution sequences of Petri nets where
the last marking of a finite execution sequence is repeated
infinitely many times at the end of the execution sequence
[17]. Models are the description of the system. So the
correct execution of business process is the first priority
we need to concern. Here we analyze and demonstrate
that our adaptive model with aspect-oriented method
integrated can correctly reflect the executive process of
the system.

Define the composed model asCMi, the device model
of deviceDeiM asDei.

Theorem 1.Ψ denotes the adaptive CPS model.R(Ψ) is
the set of reachable state,∀S ∈ R(Ψ), ∀De f ,Deg ∈ De,
∀tki ∈ T k(De f ) and∀tk j ∈ Tk(Deg):
(1) If Re(tki, tk j) =≻, then:

�(Execution(S∧ tki)→ ♦Execution(S′∧ tk j));
(2) If Re(tki, tk j) = ||, then:

�((S0 ∧ (Execution(tki) ∨ Execution(tk j))) →
♦(|M(De f .pe)|+ |M(Deg.pe)| ≤ 1));
(3) If Re(tki, tk j) = +, then:

�((S0 ∧ (Execution(tki) ∨ Execution(tk j))) →

♦(|M(De f .pe)| = |M(Deg.pe)| = 1 ∨ |M(De f .pe)| =
|M(Deg.pe)|= 0)).
Proof:
(1) As the two tasks execute in a sequence, iff = g, then
tki, tk j will be executed by the same device. From the
model we present above, there exist the transitionDe f .ti, j
that will transfer the execution result back to the input of
next task. So if the tasktki is is enable to execute under
the state S then there exist the stateS′ ∈ R(S),
De f .ti, j ∈ ET (S). Then tk j is enabled to execute. So
proposition (1) proved.
(2) Assume the proposed proposition (2) is not
established. That means:∃S ∈ R(S0), that makes
|M(De f .pe)| + |M(Deg.pe)| > 1. In our device model
there is a placepe keeping the marks, which denote the
termination of executions. So|M(De f .pe)| ≤ 1 and
|M(Deg.pe)| ≤ 1, and |M(De f .pe)| = |M(Deg.pe)|.
Because the executive order is parallel, so we know that
under some state there is no possibility that two tasks
execute at the same time. So the assumption is not
established. Then the proposition (2) is true.
(3) This proposition can be proved the same way as (2).
So the proposition (3) also is true.�

Theorem 1 proves our model can correctly describe
the execution of business process of the system.

Theorem 2. Ψ denotes the adaptive CPS model.
∀M ∈ R(Mσ ), λ (Mσ ,M) is the triggering transition
sequence from stateMσ to M. Mt (Ψ) is the set of normal
termination markings.∀M ∈ R(M0), if ∃CMi ∈CM makes
M(CMi.ps) 6= /0, then ∀M′ ∈ Mt (Ψ) ∪ R(M) and
∀λ k ∈ λ (M,M′), CMi.te ∈ λ k is established.
Proof:
BecauseM(CMi.ps) 6= /0 and •CMi.tin ∈ CMi.ps, so we
haveCMi.tin ∈ V T (M). BecauseCMi.p•s =CMi.tin, so we
know that CMi.tin ∈ H(M). For any set like H1,
M[H1 > M1, when the model is initiated and start to
execute tasks. According to the executive processes the
model will be executing until all the tasks are finished.
Then CMi.te is enabled. BecauseM′ ∈ Mt(Ψ ) so
VT (M′) = /0. That means∀λ k ∈ λ (M,M′), CMi.te ∈ λ k is
established.�

Theorem 2 proves that the model can sense the
dynamic changes of the runtime system. And through the
setting of triggering condition for the transitions, the
system can be executed dynamically.

Theorem 3.Let ψ be the adaptive CPS model.ConDe is
the crosscutting concern about devices. AssumeCut1 and
Cut2 are two pointcuts.∀Cut1,Cut2 ∈ ConDe, for ∀Dei,
weave the aspect into the device model at two pointcuts
sequential order getDe1,2

i andDe2,1
i . If M1(Dei.pin) = ε,

thenR(M1,De1,2
i ) = R(M1,De2,1

i ).
Proof:
Because the different weaving order won’t change the
structure of the composed model, so modelsDe1,2

i and

De2,1
i will have the same places, transitions, arcs and

other properties. BecauseM1(Dei.pin) = ε, so we know
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thatM1(De1,2
i .pin) = ε. Because•De1,2

i .tin = De1
i .pin and

De1
i .p

•
in = De1,2

i .tin, so we haveDe1,2
i .tin ∈ H(M1). This

means under the markingM1 , the biggest set of
triggering transitions includes the transitionDe1,2

i .tin. For
any H set like H1 andM1[H1 > M2, if the situation like
the error deviation of collected data value and reference
value of a sensor is bigger than the threshold, or the
situation of device unavailable, the respective transition td
will be triggered to output the fault. If the device is
terminated successfully then the respective transitionto
will be triggered and output the result.�

Theorem 3 proves that the weaving operations will
keep the model consistent and stable. All the pointcuts of
crosscutting concerns are compatible so the operation of
adaptive aspect weaving into the core concern model is
feasible.

Theorem 4.Let ψ be the adaptive CPS model.M0 is the
initial marking of the model.
(1)∀M ∈ T S(Ψ) and∀λ k ∈ λ (M0,M), thenCMi.t f a /∈ λ k;
(2) ∀M ∈ R(M0) and∀λ k ∈ λ (M0,M), if ∃Dei.t f a ∈ λ k

and∃M′ ∈ T S(Ψ), thenM′ ∈ R(M).
Proof:
Assume the proposition (1) is not established. Then
CMi.t f a ∈ λ k. For M0[S0 > M1[S1...M, there exist
Mi(CMi.p f a) 6= /0. So Mi(CMi.po) = /0. According to
Theorem 2, we can have∀M′ ∈ R(Mi), M′(CMi.po) = /0.
Then we have M′(pe) = /0, which will lead to
∀M′ ∈ R(Mi), M′ /∈ T S(Ψ). BecauseM ∈ R(Mi), so
M /∈ TS(Ψ) conflicts with the condition. So the
assumption is not established. Then proposition (1) is
proved. We also can prove the proposition (2) as the same
way.�

Theorem 4 proves that if the model terminates
normally at some position, the system can finish all the
requirements by executing tasks. When there is fault
happened to some device the system can keep executing
until to the termination.

6 Case Study

6.1 The case study description

In this section we use a case study to demonstrate how
our adaptation approach works. Assume a simple case
includes three tasks. Task 1 is the smoke-detecting task
that its workflow includes several location-fixed smoke
sensors’ cooperation. Task 2 is the temperature-sampling
task, which involves several location-fixed temperature
sensors coordinately working as a workflow too. All
sensors keep sampling the data in the environment. The
sampled data of temperature and smoke are both taken
into consideration by an analysis module. If the analyzed
data show that the environmental parameters are out of
normal range, then a sprinkling operation is needed in
order to improve the current environment situation. After
the decision is made, the sprinkling Task 3 is invoked to
execute. Sprinklers are movable in a certain range while

the sensors in Task 1 and 2 are all fixed installed. The
scheduling program will invoke the most appropriate
sprinkler to perform the task. The model of the combined
tasks is shown in Figure 6. Tasks consist of components
by the basic relationships as sequence, parallel, loop,
choice according to the business requirement.
Components are the physical devices as the smoke
sensors, the temperature sensors and the sparkling
actuators and other devices. Nonempty placepri will lead
to the process of the runtime inspection that may detect
and export fault in the task procedure. And token in place
p f a will call for the adaptation procedures.

To demonstrate, we assume there is a fault happened
to one temperature sensor in Task 2. And the fault is an
abnormal execution of the temperature that causes the
sensor cannot output the normal data. Then inspection
module will detect the fault and the placep f a will has a
token. This model state will call for the adaptation
procedure. The device and task adaptation model are
separately weaved into the task model as shown in Figure
7. For the device adaptation, with the reference threshold
value compared, the strategy is to adjust the core
parameters of the temperature sensor using a control loop
controlling method to bring it back to normal. The
strategy of the task adaptation is to do a PSO-Pareto
optimization for rescheduling the backup temperature
sensors to replace of the faulty one. This reschedule
computing process is represented as a transition in the
task adaptation. The two adaptation strategies are
performed separately and simultaneously. If the
adjustment of the device finished earlier, then the
temperature sensor will continuously providing service in
the task after its recovery. And if the task adaptation
finished earlier, that means before the current temperature
sensor finishing adjustment and back to normal, the
adaptation has already find the best alternative backup
temperature sensor for the task. Then the chosen backup
sensor will replace the faulty one. The backup
temperature sensor will be weaved into the task model
using anaround advice approach at the input and output
of the faulted sensor in Task 2 to replace the execution of
the current temperature sensor. Due to space limitation,
the graphic weaving demonstration of the faulted sensor
replacing will not be included.

6.2 Case analysis

Here we discuss the correctness of the composition model
after using weaving approach.

The weaving of two adaptation strategies for the
faulty temperature sensor can be refined to a sequential
order. As elaborated in Theorem 3, the different weaving
order won’t change the structure of the composed model.
As the situation is the error deviation of the collected data
value and reference data value of a sensor, the runtime
inspection aspect will output the fault top f a. Theorem 3
proves that the weaving operations will keep the model
consistent and stable, and the operation of adaptive
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Figure 6. A three-task case model of CPS

aspects weaving into the core concern model is feasible.
And the token in p f a will invoke the adaptation
procedure. Theorem 4 proves that when there is fault
happened to some device the system can keep executing
until to the termination. The adaptation will recover or
replace the faulty device, and lead the execution back to
the core model till the terminationpe.

From the hierarchical composition point of view, we
use the SAM theory to prove the correctness of the
composition. The system can be defined by a set of
compositions here in the case referred as the tasks
including the core tasks and the adaptation tasks. Each
task or adaptation consists of a set of components and its
relationships constraints. In the case these components
are devices such as sensors and sparkling actuators. Each
component can be described using a temporal logic
formula and a Petri net. Then as in this case, the
architecture property specifications include:

(1) All tasks will be eventually terminated.
�(Task(i)→ ♦Terminate(Task(i)))

(2) If Task 2 failed, then the adaptation procedure of
sensor recovery and task recovery must be invoked and
executed until Task 2 is normally terminated.

�(Fault(Task(2)) ∧ Adaptation(k) ∧ (k =
sensor∨ task)→ ♦(Resultout(z)∧Terminate(Task(2))))

(3) If Task 2 failed and start the adaptation procedure,
its sequential task as Task 3 won’t be initiated until Task 2
is terminated.

�(Fault(Task(2)) ∧ ∃Adaptation(Task(2)) →

♦(¬Initiate(Task(3))UTerminate(Task(2))))

According to the net of runtime fault inspection
shown in Figure 7, the corresponding property
specification is:

�(Invoke(Task(inspection)) ∧ DataIn(x) ∧ (x =
abnormality ∨ error) ∧ DataAnalysis(x) →
♦Resultout(y))

In the case situation when the sprinkling task is
needed, for all the movable sprinklers in the sprinkling
range, there should be at least one available for Task 3 to
invoke. That means not all of them are currently occupied
by other tasks. The corresponding property specification
is:

�(Invoke(Task(3)) ∧ ∃SprinklersInRange(i) →
♦(∃AvailableSprinklers(i)UInitiate(Task(3))))

Similarly, more detailed analysis such as processes
inside the Task 1 and 2 and adaptations can also be
specified using the same approach. Then the conjunction
of all constraints can be implied by the conjunction of all
the property specifications. Then we can say the
conjunction of all constraints holds in the integrated
behavior model of composition. Furthermore, symbolic
model checking tool can be used to verify these
specifications.
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7 Conclusion

Cyber physical systems are applied in critical areas such
as emergency response, health care and Smart Grid etc.
These systems desire the dependable and robust execution
during the runtime. Applicable runtime adaptation design
of the CPS is necessary and essential. From the
prospective of modeling, the approach should be
universal and simple. From the prospective of
reengineering, the approach should applicable for the
existing models and better not damage their structures.
From the prospective of system design, the adaptation
should be light-weighted and reusable and efficient.

We propose an aspect-oriented Petri net approach to
modeling adaptive cyber physical systems. The CPS
model is composed by core concern model and aspect
model. The core concern model is described as device
model and task model using Petri nets. The latter
represented as the workflow of certain business processes
execution with device model composed. The runtime
system behavior changes and environment changes are
monitored and fault information is outputted. Respective
fault types are separated as crosscutting concerns. The
models of fault inspection as well as device adaptation

strategy and task adaptation strategy are designed as
aspects using Petri nets. Then these aspect nets can be
weaved into the core concern nets when the adaptation
needed at the pointcuts using weaving rules.

For the device adaptation strategy, two fault types are
analyzed and the control loop concept is integrated. For
the task adaptation, we apply a rescheduling method with
PSO-Pareto algorithm to find the best solution of the
backup devices. This algorithm is capable for analysis the
trade-offs between the proposed four criteria of devices
and within short time and small cost, it can find out the
most applicable backup device for the suspended task to
continue.

Some characteristics of the model such as correctness
are analyzed by validation and verification methods. As
flexible and efficient and reusable, this approach can
make model resiliently composable and expandable for
ultra-large system.
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