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Abstract: In this paper, our aim is to study the digital version of SteerAlgebra. For this purpose, we define the digital cohomgylo
operations and deal with main properties of digital Steérsguares. Moreover, some related results are given faatigiages. We
finally explain the theory with nice examples.
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1 Introduction Gonzalez-Diaz and Realld] present a combinatorial
method for computing cup-products and Steenrod
Digital topology is a growing area in the mathematics andsquares of a simplicial set. Their aim is to obtain a
computer vision with nice applications. Since many method which gives an explicit formula for the
concepts in Algebraic Topology are useful, researchergomponent morphisms of a higher diagonal
benefit from these to getimportant results in this field.  approximation via face operators of. They give a
Cohomology operations are algebraic invariants for ageneralization of the method to Steenrod reduced powers.
space. These operations are beneficial because the |, 114 since there is no extensive knowledge about
cohomology and the cup product sometimes fail t0the aigorithmic structure of cohomology operations, it is
seperate two spaces. We can say that if two spaces hay&taplished an algorithm for computing homology which
isomorphic cohomology groups but the behaviour of theg|iows us the computation of the cup product and the
ring structure or cohomology operations is different, thengtfective evaluation of the primary and secondary
they are not homeomorphic. It is known that the cohomology operations on the cohomology of a finite

cohomology operations of a space are more usefukimpjicial complex. It is also given a program in
invariants than its homology. Researchers firstly construcy,sthematica for cohomology computations.

homology for their works and then since this structure is Gonzalez-Diaz and Reall§] develop a software to
not enough, they develop the cohomology. Cohomology btain simolicial f lation. It id P o desi
operations could not be directly produced from the 2Pral simplicial formuiation. It provides a way to design

algorithms previously mentioned for computing the an efficient algorlt'hm for computing any Steenrod
homology. Finding an effective method for the cohomology operation on any cohomology class of any
construction and computation of the cohomologydegree' ) )
operations is always desirable in algebraic topology. Gonzalez-Diaz and Reall] give a method to

Steenrod squares are important classes of cohomolog§@mpute cohomology operations on finite simplicial
operations in Algebraic Topology. Steenrod Squares cafomplexes. They also deal with a procedure for
be explanatory on the structure of a topological spacecalculating primary and secondary cohomology
There are several methods for constructing Steenro@pPerations. It is given a solution to the problem of
squares. It can be developed a method with usingfOMputing Steenrod squares, reduced pth powers and
cohomology operations. Adem secondary cohomology operations.

Up to now, many researchers have studied on In[17], it is determined combinatorial descriptions of
cohomology operations. Re&4] gives the formulae to  Steenrodkth powers in terms of face operators and
obtain an algorithm for calculating Steenrod squaresdeveloped some techniques to obtain a formula for
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cohomology operations. Gonzalez-Diaz and R&§] {ise

is called thex-neighborhood of p. A digital interval [4] is

formulas which are obtained by them to compute Ademdefined by
cohomology operations. They also improve an algorithm

for this process.
Ege et al. 12 deal with relative and reduced
homology groups of digital images. Ege and Karatd [

propose a mathematical construction that can be used f°6nl
defining the simplicial cohomology theory of digital

images. They show that the Kunneth formula for
cohomology doesn’t hold in digital images. It is also
defined the simplicial cup product and proved its some

properties for digital images. Karaca and Burd?|[

study the relative cohomology groups of digital images.
They give a method to compute the cohomology ring o
digital images and some examples about cohomology‘i"connected subset of,

ring.

Here is a summary of the present paper. In Section 2
we introduce the necessary backgrounds on digita
topology and digital cohomology theory. Section 3 is
dedicated to digital cohomology operations, digital
Steenrod squares and other related results. Finally, w

give a conclusion about these topics.

2 Preliminaries

Let X be a subset of" for a positive integen whereZ"
is the set of lattice points in the-dimensional Euclidean

[a,blz ={zeZ|a<z<b}

wherea,b € Z anda < b.

A digital image X C Z" is k-connected [21] if and
y if for every pair of different points,y € X, there is a
set{xo,X1,...,% } of points of a digital image such that
X=Xo, Y=X% andx andXx1 are k-neighbors where
i=0,1,...,r—1.

Definition 2.2. [5]. Let (X,kp) C Z", (Y,k1) C Z™ be
digital images and : X — Y be a function.

se If for every ko-connected subséd of X, f(U) is a

then f is said to be
(Ko, K1)-continuous.
e f is (Ko, K1)-continuouss= for everykp-adjacent points
(%o, 1} of X, eitherf (xo) = f(x1) or f(xo) andf(x) are
akp-adjacentiny.

A (2,k)-continuous functionf : [0,mz — X such

atf(0) =xandf(m) =y is called a digitalk-path []

romxtoyin a digital imageX. In a digital imagg X, k),
for every two points, if there is &-path, thenX is called
k-path connected. A simple closed-curve of m> 4
points P] in a digital image X is a sequence
{f(0),f(1),...,f(m— 1)} of images of the k-path
f:][0,m—1)y; — X such thatf(i) and f(j) are
k-adjacentif and only if =i+ modm.

Let (X,Ko) C Z", (Y,K1) C Z™ be digital images and

space and be represent a specific adjacency relation forf : X — Y be a function. Iff is (ko,K1)-continuous,

the members oX. A digital image consists diX, k).

Definition 2.1.[5]. Let |, n be positive integers, £ | <n
and two distinct points

p: (plava"'apn)a q: (Q1aCI2a---7CIn) GZn

p andq arek;-adjacent if there are at mdsindicesi such
that|pi — gi| = 1 and for all other indice$ such that

Ipj —qj| #1 and pj=q;.

The following statements can be obtained from

Definition 2.1:
e Two pointsp andq in Z are 2-adjacent ifp — g| = 1.
e Two points p and q in Z? are 8-adjacent if they are
distinct and differ by at most 1 in each coordinate.
e Two pointsp and g in Z? are 4-adjacent if they are
8-adjacent and differ in exactly one coordinate.
e Two pointsp andq in Z3 are 26-adjacent if they are
distinct and differ by at most 1 in each coordinate.
e Two pointsp andq in Z° are 18-adjacent if they are
26-adjacent and differ at most two coordinates.
e Two points p and q in Z3 are 6-adjacent if they are
18-adjacent and differ in exactly one coordinate.

A k-neighbor [5] of p € Z" is a point ofZ" that isk-
adjacent toqp wherek € {2,4,8,6,18 26}. The set

N« (p) = {q| qis k — adjacent tap}

bijective andf~1 is (k1, ko)-continuous, therf is called
(Ko, K1)-isomorphism [8] and denoted b =, ) Y.

A pointx € X is called ak-corner B] if xis k-adjacent
to two and only two pointy,z € X such thaty andz are
k-adjacent to each other.yfzare notk-corners and ik is
the only pointk-adjacent to botly, z, then we say that the
k-cornerx is simple R]. X is called a generalized simple
closedk-curve R3] if what is obtained by removing all
simplek-corners oiX is a simple closed-curve. For &-
connected digital imageX, k) in Z", there is a following
statement:

|X|X = N3n_1(X) NnX.

r—2
K e{zn (n>1),3"-1(n>2),3" - Z}c{‘z”*t—l
t=
1)
(2<r<n-1, n>3)},

whereC{' = i

n—O1t
Definition 2.3.[19. Let (X,k) be a digital image irZ",
n> 3 andX = Z"— X. ThenX is called aclosed k-surface
if it satisfies the following.
1. In case thatk,K) € {(k,2n),(2n,3"— 1)}, where the
k-adjacency is taken from (1) witk £ 3" — 2" — 1 andk
is the adjacency oK, then

e for each pointx € X, |X|* has exactly one
K-componenk-adjacent tog;
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e [X|* has exactly twa&-component&-adjacent tox;
we denote by andD** these two components; and

e for any pointy € N (x) N X, Ng(y) NC* = 0 and
Ng(y) ND* £ 0, whereN (X) means the-neighbors ok.
Further, if a closed-surfaceX does not have a simple-
point, thenX is called simple.
2.1n case thatk,K) = (3"—2"—1,2n), then

e X is k-connected,

e for each pointx € X, |X|* is a generalized simple
closedk-curve.
Moreover, if the imageX|* is a simple closek-curve,
then the closed-surfaceX is called simple.

Example 2.4[19 MSS; = {co (1,1,0),c; =
(07270)702 = (_17170)703 = (05070)504 = (0715_1)7
cs = (0,1,1)} ¢ Z® is a minimal simple closed
18-surface (see figure 1).

| (=

| |

1 : 1 :

| |

S |-
AN
| | 1 I

| e
k- ---
i /C4

Fig. 1: MSSg

Definition 2.5. [5]. Let (X,k1) C Z™ and (Y,k2) C Z™
be digital images andf,g : X — Y be two
(K1, K2)-continuous functionst andg are called digitally
(K1, K2)-homotopic inY if there is a positive integem
and a functiorH : X x [0,m)z — Y such that

o forall x e X, H(x,0) = f(x) andH (x,m) = g(x),

o for all x € X, Hy : [0,m]z — Y defined by

Hx(t) = H(x,t)

forallt € [0,m]z is (2, k2)-continuous,

e for all t € [O,m|z, Hi : X — Y defined by
H: (x) = H(x,t) for all x € X is (K1, K2)-continuous.

The functionH is called a digital (k1, k2)-homotopy
betweenf andg.

We notice that a digital imageX, k) is said to bex-
contractible [4] if its identity map is(k, k)-homotopic to
a constant functioe for somec € X which is defined by
c(x) =cforallxe X.

Let (X, k) be a digital image and its subset P& k).
(X,A) is called a digital image pair witk-adjacency and
when A is a singleton se{xg}, then (X,Xp) is called a
pointed digital image.

Definition 2.6.[26]. Let Sbe a set of nonempty subset a
digital image(X, k). Let the following statements hold:

e If pandq are distinct points o € S, thenp andq
arek-adjacent,

elf se Sand 0+t C s, thent e S
Then the members @are called simplexes ¢X, k).

An msimplex is a simplexS such that|]S| = m+ 1.
Let P be a digitalm-simplex. If Pisa nonempty proper
subset ofP, then P’ is called a face ofP. We write
Vert(P) to denote the vertex set oP. A digital
subcomplexA of a digital simplicial complexX with
k-adjacency is a digital simplicial complex contained in
X with Vert(A) C Vert(X).

Definition 2.7. [1]. Let (X,K) be a finite collection of
digital m-simplices, 0< m < d for some non-negative
integerd. If the followings hold, thenX,k) is called a

finite digital simplicial complex:

o If P belongs taX, then every face oP also belongs
to X.

o If PQ € X, thenPNQ is either empty or a common
face ofP andQ.

Let (X,k) C Z" be a digital simplicial complex. If
there is an ordering on the vertex set(&f, k), then it is
calledoriented simplicial complex [1].

Definition 2.8.[1]. Let (X,k) C Z" be a digital oriented
simplicial complex withm-dimension.C§ (X) is a free
abelian group with basis all digiték, g)-simplices inX.
A homomorphism

Jq 1 CK(X) — CK_1(X)

called the boundary operator. & = [vo,...,Vq] iS an
oriented simplex with 6< g < m, dq is defined by

q .
0q0 = 0g[Vo, ..., Vg = _Z}(—l)'[vo,...,\ii,...,vq]
i=

wherevi means the vertey is to be deleted from the array.
We remark that fog < 0,m < g, sinceC{ (X) is the trivial
group, the operatady is the trivial homomorphism fag <
0,m<qg.

We notice thatly_1 0 dyq = 0 [1] for g > 0.

Definition 2.9.[1]. Let (X,k) C Z" be a digital oriented
simplicial complex withm-dimension.

° Z{;(X) = Ker gy is called the group of digital
simplicial g-cycles.

e Bj(X) =Im Jqy1 is called the group of digital
simplicial g-boundaries.

e .H.(']((X) Z5(X)/Bg(X) is called theqth digital
simplicial homology group.

Let ¢ : (X,k1) — (Y,k2) be a function between
digital images. If for every digital(k1, m)-simplex P
determined by the adjacency relatien in X, ¢(P) is a
(k1,n)-simplex inY for somen < m, then¢ is calleda
digital ssimplicial map [10].

Definition 2.10.[11]. Let (X,k) be a digital simplicial
complex ancR be an abelian group. The digital simplicial
cochain complex%'(X), d) is defined as follows. For any
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g € Z, the g-dimensional digital cochain group with
coefficients inR is the group

C* (X, R) = Hom(CK (X),R).

If R=Z, thenRis omitted from the notation. Elements of
C%K(X) are called digital cochains and denoted &y
The value of a digital cochaief! on a chairndg is denoted
by < c%dqy >. The g-th coboundary map
&9 : CHK(X) — CILK(X) is the dual of the boundary
operatotdy, 1 defined by

< 899, dgy1 >=< ¢4, dg10g11 >

We have the following statements from]:

o Z%K(X) = Ker 89 is the group of digital simplicial
g-cocycles.

e B9%(X) = Im &9 is the group of digital simplicial
g-coboundaries.

o H¥(X) = Z¥*(X)/B**(X) is the gth digital
simplicial cohomology group.

Theorem 2.11[11]. If (X, k) is a single vertex, then

Z,q=0
g,k _ )
: (X)_{O,Q#O-

Ege and Karacalll] give the definition of digital

simplicial cup product for digital images. They define the

digital simplicial cup product
—: CPK(X,R) x CH¥(X,R) — CPT4¥ (X R)
of cochainxP andc? by the formula

<cP—c%|vo,...,Vprgl >= < cP[vo,...,vp] >.
<% [Vp,...,Vpiql >

wherevp < ... < Vpiq in the given ordering andis the
product inR. They also show that the digital simplicial

3 Digital cohomology operations

In this section, we define a digital cohomology operation,
digital Steenrod square and give some theorems with
examples.

Definition 3.1. Let (X, k) and(Y, k") be digital images. A
digital cohomology operation of typén,A;q,B) is a
transformation

6 : H™ (X,A) — H%¥(X,B)

defined for all digital images$X, k), with fixed positive
integersn,m and abelian group8;, G, and satisfying the
propertyf*0 = 6f*; that is, the following diagram

Hn,K’ (Y;G1) _e. H‘LK/ (Y;G2)

/| |

Hn’K(X; Gl) —6) HaK (X; Gz)

is commutative for all digital simplicial mapls: X — Y.
Let us give some important examples on digital
cohomology operations.

Example 3.2.Let (A k) and (B, k') be digital images. If
f : A— B is a digital homomorphism, thef induces
digital homomorphisms

f* i HM(X,A) — HY (X, B)
for all n. Thusf defines a digital cohnomology operation of
type(n,A;n,B) for anyn.
Example 3.3. Let R be a ring. If
0" : H™ (X,R) — H?"K(X,R) is a digital map defined
by
0" (X) = X — X,

where— is the digital simplicial cup product, thefh is a
natural transformation since

f*(x—x) = f*(x) — *(x).

cup product is bilinear. It is shown that there exists theAs a result,0" is a digital cohnomology operation of type

following equality:
o(cP— % =0dcP — 9+ (—1)PcP — ¢t

It is obtained the cup product on digital simplicial
cochains is associative. IfcP € HPKX(X,G;) and
c? € H%¥(X,Gp) are digital cocycles, then
cP — ¢ = (-1)Pc — cP. Let (X,k1) C Z™ and
(Y,K2) C Z" be digital images. Iff : (X,K1) — (Y,K2)
is a digitally continuous map anc € HP*(X,G;) and
c? € H%%(X,Gy) are digital cocycles, then
f*(cP — c%) = f*(cP) — f*(c%). They conclude that the
digital simplicial cohomology ring ofX is the graded
abelian groupH**(X) with the graded multiplication
given by the digital simplicial cup product.

(n,R;2n,R) for anyn.

We remark that & is not always a digital
homomorphism, sincé(x+y) # 8(x) + 6(y) in general.
So we can give the following.

Corollary 3.4. A digital cohomology operation does not
require it to be a digital homomorphism.

We deal with a digital Steenrod square and its
properties as a special digital cohnomology operation.
Definition 3.5. Theith digital Steenrod squarez> O, is a
digital cohomology operation

Sq' : HMK(X; Zg) — H™K (X Zs)

which is a digital homomorphism satisfying following
axioms:
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Axiom-1: Sq° = Letx,y € HO2(X;Z,). Since
Axiom-2: If degx— i, thensg' (x) = )
Axiom-3: If i > degx, thensq' (x) = a2 B i ni
Axiom-4: Sqt is a Bockstein homomorph|sm for the 9=ST(X—Yy)= ;Sq (x) — Sa™(y)
coefficient sequence N 0 ) 1 "
= S0 (%) — So°(y) + So(X) — S (y)+
0— Zp— Zg — Lo — 0. SPP(x) — SoP(y)
1 1
Axiom-5: (Adem relations) If 0< a < 2b, then =x—0+S4°(x) — Sq°(y) +0—y
=S4'(x) — Sqt(y) € Z3,

2y
wm—%(wﬂ

Theorem 3.6.(Cartan formula) Fox,y € H*¥(X,Z,) and
xxyeH"¥(X,Zy), we have

>Sqa+b JSqJ

S0cy) = 3 500 % S

Proof. The proof is the same as in Algebraic Topoldgy.
We now give a formula which exists in Algebraic
Topology.

Proposition 3.7. For xy € H"%(X,Zp) and

X —yeH"K(X,Z,), we have

(x—y) = %Sq

— g™ (y).

The following example shows that the Proposition 3.7

doesn'’t hold in digital images.

Example 3.8.Let X = [0,1]z x [0,1]z x [0,1]z
digital image with 6-adjacency (see figure 2).

be the

Ca cz
cs c"(
Aol 3l o
‘,f" C1 .’;f-CZ
g " ’J’*
Fig. 2: X
From [11], we have
Zo,n=0
HM(X;Zp) =< Z5,n=1
0, n#0,1.

we conclude that the Proposition 3.7 doesn't hold.

Proposition 3.9. Sy commutes withJ, that is, the
following diagram is commutative:

HMK (X x Y; Zp) —2 HMLK(X X Y; Z,)

. -

HMK(X X Y; Zs) — HMHHLK (X X Y, Z))

Proof. Letx x y € H™(X;Z,). Since
S (8(xxy)) = S (x x 8(y))
—Sq'(x) S9°(8(y)) (by Theorem3.6)
Sq'(x) x 8(y) (by Axiom 1)
= 3(Sd (%) xY)
= 5(sd (xxy))

(by Theorem 3.6, Axioms 1 and 3),

we get the required resul.

Theorem 3.10.1f f : (Y,k)
simplicial map, therf*Sq' =

— (X,K) is a digital
Sq £ for everyi.

Proof. Let a € H%(X) and consider the map
£+ - HOK(X) — H%¥ (Y). Since
*S(a) = f*(aua)
=f*(a)Uf*(a)
= sg(f* (@)
=Sq'f"(a),

we obtain the required restili.

The following theorem exists in Algebraic Topology
and thus we don't prove it but we give an example.

Theorem 3.11.Let k be a natural number anxl be a
generator witrdeg( )= 1.

a; Sq (Xk) ( )Xk+|

o X =0
Sq () = @ =2k
0, i#0,2%
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Example 3.12 Let Proof. Let (X,k) be a digital image andSX,«’) is the
suspension oX. Consider the following diagram.

MSSis :{pO = (Ov 0, 1)v P1= (1a 1 1)3 p2 = (17 2, 1)7

Ps=(0,3,1),pa = (~1,2,1),ps = (0,0,1), HM(XiZg) —> HM < (SXiZ2)
p6 = (0707 1)7 p7 = (0707 1)7 p8 = (Oa 07 1)3 Sqi lsql
Po=(0,1,2)}

Hn+i’K(X;Z2) — HN+H+1K (SX;ZZ)
with 18-adjacency. It is a minimal simple closed
18-surface ]9 (see Figure 3). Since o is a kind of coboundary operation, by the
Proposition 3.9, we conclude that

00 (x) = Sq 0 0(X)

9 g for all x € H™¥(X;Z,). As a consequence, we get the
: : | required resul]
L L L In the Euclidean space, the suspension of the unit
|-z ? - ? 4-44 ! circle St is the unit spher&? but this is not valid in digital

Pl - JS)* B 75\7*7 | J:‘ : images. Boxer ] defines sphere-like digital image as

: ; \' : 1 ; \' |2 | ~ fO”OWS.
| R | Si=[-L15"\ {Onya} c 2™,

e 2”6\7 m j’?\f o *\ where @, denotes the origin d&.".

Although there is a relatioy S" ~ S™*! wherey is a
suspension an8” is then-sphere in Algebraic Topology,
this relation doesn't hold in digital images. Let's show it
by the following example.

Example 3.15.Consider the digital 1-spherg; in 72
Karaca and Burak??] compute the cohomology groups Which is defined by

O MSS1s as follow: S1={e0=(1,0),c1=(L1),c= (0,1),63= (~1.1),
Cq = (_170)705 = (_17_1)706 = (07_1)707: (17_1)}

Fig. 3: MSSgg.

Z, q=0
HH18(MSSg) = { 78, q=1 with 4-adjacency (see Figure 4).
0, g>2.
Let x € HO18(MSS;g) with deg(x) = 1. If we takek = 1 c3 )

andi = 2, from the Theorem 3.14), it is easy to see that
2 1 1+2
Sq°(x) = o)X= 0. €4 o

In fact, we havesg?(x) € H>18(MSSg) = 0.

We recall that a cohomology operatiéns said to be
stable operation if it commutes with the suspension
isomorphism; notationally,c o 8 = 6 o o where
0 HMK(X: Zo) — H K (SX: 7).

Now let's define suspension for digital images.

Cs Cg cr

Fig. 4: Digital 1-spheres,

The suspension @&, is defined by
Definition 3.13. A suspensiorSX of a digital image is _
defined by S5 =51 x[0.412/S < {04}

So we have the following digital image:

SX:XX[07m]Z/XX{07m} .. . . . .

But the digital 2-spher&, with 6-adjacency is given as
wherem > 0 is an integer anfD, m|, is a digital interval. follows:
Theorem 3.14.The digital Steenrod square operation is As a result, we get the suspension the digital 1-spBere
stable. is not the digital 2-spherg, i.e.S§; # S.
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