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1 Introduction

Delay differential equations (DDEs) appear in the models
throughout the several applications, see for example [1].
Much of the work that has been done treats DDEs with
one or a few discrete delays. A number of realistic
physiological models however include distributed delays
and a problem of particular interest is to determine the
stability of the steady state solutions. For applications in
physiological systems, see [2, 3, 4]. The results
concerning existence, uniqueness and continuous
dependence of Eq (4) can be found in [5, 6, 7] and the
asymptotic behavior of the solutions has been studied
elsewhere, see, e.g., [8]. From the theoretical point of
view the most important class of functionsf (t) for which
the Sumudu transform is defined is the set of
exponentially bounded functions. A functionf (t), defined
on [0,∞), is exponentially bounded there if there is a
positive K ∈ R+ and a real number,1γ , such that

| f (t)| < Ke
x
γ , t ∈ [0,∞). It is straightforward to see, for

example, that all of the generalized exponential functions
lie in this class of functions.

In this study we prove a criteria as sufficient condition
in order to determine whether solution is oscillatory or
non oscillatory for delay differential equation. The
present approach is based on the method of Sumudu
transform which was not used yet to study oscillation of

delay differential equations. Further we also obtain a
polynomial as an approximation to determine the stability
of the solutions. First of all we need the some
preliminaries.

Proposition 1.If the function f(t) is exponentially
bounded, i.e., if for some K> 0 and some real1γ we have

| f (t)| < Ke
t
γ , t ∈ [0,∞) then the corresponding Sumudu

integral

F(u) = S[ f (t)] =
1
u

∫ ∞

0
e−

t
u f (t)dt

converges, and thus the Sumudu transform is defined, for

all u > γ or
1
α

<
1
γ

.

Proof.See [9]

Remark.For related current studies with Sumudu
transform we refer to ([10] - [14]). We further note that,
under these circumstances,F(u) is defined for all

complex u=
1
α
+

i
β

for which Reu=
1
α

<
1
γ

so that

F(u) is defined in the whole right half complex plane

Reu< 1
γ The smallest value of1γ for which | f (t)| < Ke

t
γ ,

t ∈ [0,∞) for some K > 0 is called the abscissa of
convergence ofF(u).
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Consider the system of

dy
dt

= py+
∫ t

0
D(t − s)y(s)ds+F(t), (1)

and
dy
dt

= py+
∫ t

0
D(t − s)y(s)ds, (2)

in which p is an n× n constant matrix,D(t) an n× n
matrix of functions continuous on [0,∞), and
F : [0,∞) → Rn continuous. We suppose further that
|F(t)| and|D(t)| may be bounded by a functionKeat for
K > 0 anda > 0. That is,F and D are said to be of
exponential order.

Theorem 1.Let Z(t) be the n× n matrix whose columns
are solutions of Eq(2) with Z(0) = I . Then the solution of
Eq (1) satisfying y(0) = y0 is given by

y(t) = Z(t)y0+

∫ t

0
Z(t − s)F(s)ds. (3)

Proof.Notice thatZ(t) satisfies Eq(2) thus

dZ
dt

= pZ(t)+
∫ t

0
D(t − s)Z(s)ds.

We first suppose thatF and D are in L1[O,∞). If we
convert Eq(1) into an integral equation, we have

y(t) = y(0)+
∫ t

0
F(s)ds+

∫ t

0

[

p+
∫ t

s
D(x− s)dx

]

y(s)ds,

and asD andF are inL1, we have

|y(t)| ≤ |y(0)|+ k+ k
∫ t

0
|y(s)|ds,

somek > 0 and 0≤ t < ∞. By Gronwall’s inequality we
have

|y(t)| ≤ [|y(0)|+ k]ekt
.

Thus bothy(t) andZ(t) are of exponential order, so then
the transform exists and taking their Sumudu transforms,
we have

dZ(t)
dt

= pZ+
∫ t

0
D(x− s)Z(s)ds

and upon transforming both sides, we obtain

Z(u)−Z(0)
u

= pZ(u)+uZ(u)D(u)

further we have

Z(0) =
(

I −up−u2D(u)
)

Z(u)

and because the right side is nonsingular, so it follows
that

(

I −up−u2D(u)
)

is also nonsingular for appropriate

u. (Actually, Z(u) is an analytic function of s in the
half-planeReu≥ a, where|Z(t)| ≤ kekt. Then we have

Z(u) =
(

I −up−u2D(u)
)−1

.

Now, by taking Sumudu transform for both sides of Eq(1)

Y(u)− y(0)
u

= pY(u)+uY(u)D(u)+F (u) ,

or
(

I −up−u2D(u)
)

Y (u) = y(0)+uF(u)

so that we get

Y(u) = Z(u)y(0)+uZ(u)F(u)

= Z(u)y(0)+S

(

∫ t

0
Z(t − s)F(s)ds

)

= S

(

Z(t)y(0)+
∫ t

0
Z(t − s)F(s)ds

)

.

Sincey, Z, andF are of exponential order and continuous.
Thus, the proof is complete forD andF being inL1[0,∞).

We provide some sufficient conditions under which
oscillation phenomenon occurs for the linear Volterra
integral equation of convolution type with delay

y(t) = f (t)+
∫ t

0

n

∑
i=1

ai (t − s)y(s− r i)ds, t ≥ 0 (4)

where f ∈ C(R+
,R), ai (.) ∈ L1

loc (R
+) , r i ∈ R, for

i = 1,2,3, . . .n. Our approach is based on the method of
Sumudu transform.

In this section, we establish some results which we
need in the proofs of our main result. In order to
guarantee the existence of Sumudu transforms of
solutions of Eq(4), we assume that for the functionf ,
there exist two real numbersK ∈R+ and 1

b ∈R such that

| f (t)| ≤ Ke
t
b , t ≥ 0 (5)

|ai(t)| ≤ Ke
t
b , t ≥ 0, i = 1,2,3, . . . ,n. (6)

Then we can state the following lemma.

Lemma 1.Assume that Eq(5) and Eq(6) are holds. Then
every solution of Eq(4) has Sumudu transform.

Proof.Consider a solutiony of Eq(4) with initial
functionφ ∈C([−r,0] ,R) ; by using Eq(4) and Eq(5), we
have

|y(t)| ≤ Ke
t
b +

n

∑
i=1

∫ 0

−r i

|ai (t − s− r i)| |φ (s)|ds

+
n

∑
i=1

∫ t

0
|ai (t − s− r i)| |x(s)|ds.
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Multiplying both sides of this inequality bye−
t
b , and

taking into account Eq(5) and Eq(6) we obtain

e−
t
b |y(t)| ≤ K+K

n

∑
i=1

e−
ri
b

∫ 0

−r i

e−
s
b |φ (s)|ds

+K
n

∑
i=1

e−
ri
b

∫ t

0
e−

s
b |x(s)|ds.

By Gronwall’s inequality, it follows

|y(t)| ≤ η1e(
1
b+η2)t , t > 0

where

η1 = K

(

1+
n

∑
i=1

e−
ri
b

∫ 0

−r i

e−
s
b |φ (s)|ds

)

,

η2 = K
n

∑
i=1

e−
ri
b ,

which is a sufficient condition for the existence of the
Sumudu transform ofy.

Lemma 2.If Y(u) is the Sumudu transform of a
nonnegative function y(t) and has the abscissa of
convergence1b > −∞, then Y(u) has a singularity at the
point u= 1

b on the complex planeC.

Now we shall present the main results for the
oscillation of Volterra integral equation Eq(4) via the
method of Sumudu transform. Letyc(t) denotey(t + c),
wherec ∈ R. Then the Sumudu transformYc(u) of yc(t)
exists and has the same abscissa of convergence asY(u)
by noting the following formula

Yc(u) = e
c
u

(

Y(u)−
1
u

∫ c

0
y(t)e−

t
u dt

)

.

The last integral defines an entire function of the complex
variableu ∈ C. It is clear thatY(u) andYc(u) have their
singularities at the same points on the complex plane. On
the other hand, the translation of Eq(4) along a solutiony
by c∈ R is the following equation

y(t+c)= f (t+c)+
∫ t+c

0

n

∑
i=1

ai (t + c− s)y(s−r i)ds, t ≥ 0.

(7)
Multiply both sides of Eq(7), by 1

ue−
t
u and integrating it

from 0 to∞, we obtain

Yc(u) = Fc(u)

+
1
u

∫ ∞

0
e−

t
u

∫ t+c

0

n

∑
i=1

ai (t + c− s)y(s− r i)dsdt, (8)

wheret ≥ 0 andFc(u) denotes the Sumudu transform of
f (t + c). Then, we find

1
u

∫ ∞

0

∫ t+c

0
e−

t
u ai (t + c− s)y(s− r i)dsdt

=
1
u

∫ c

0
y(s− r i)

∫ ∞

0
e−

t
u ai (t + c− s)dtds

+
1
u

∫ ∞

0

∫ t

0
e−

t
u ai (t − s)yc(s− r i)dsdt

= K1+K2.

It is easy to see that

K1 = Φi +βi (u)Ai (u) , K2 = Ai (u)
[

µi (u)+e−
ri
u Yc(u)

]

,

(9)
where

Φi =
1
u

∫ c

0
yc(s− r i)e

−
(s−c)

u

∫ 0

c−s
e−

t
u ai (t)dtds

βi (u) =
∫ c

0
yc(s− r i)e

−
(s−c)

u ds

µi (u) =
∫ 0

−r i

φc(s)e
−
(s+ri)

u ds

andAi(u) is the Sumudu transform ofai (t). The functions
Φi (.), βi (.) andµi (.) are entire functions of the complex
variableu∈ C. By substituting Eq(9) into Eq(8) we have

Yc(u) = Fc(u)+
n

∑
i=1

Φi +
n

∑
i=1

(βi (u)+ µi (u))Ai(u)

+
n

∑
i=1

e−
ri
u Ai (u)Yc(u).

DefineH (u) = 1−
n
∑
i=1

e−
ri
u Ai (u). If H (u) = 0 has no real

roots, then we have

Yc(u) =
Fc(u)+

n
∑
i=1

Φi +
n
∑

i=1
(βi (u)+ µi (u))Ai(u)

H (u)
. (10)

In the following theorem we study the oscillation of delay
differential equations Eq(4) by Sumudu transform method
as follows.

Theorem 2.Assume that the following conditions are
satisfied

a,a1,a2,a3, . . . ,an, abscissas of convergence ofF(u)
A1 (u) ,A2 (u) ,A3 (u) . . .An (u) respectively, and
a> max{a1,a2,a3, . . . ,an,}F(u)) has asingularity on
Reu= a, but is analytic atu= a,

(11)

H (u) = 0 has no real root on[a,∞) . (12)

Then every solution of Eq(4) is oscillatory.
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Proof.Take a solutiony of Eq(4); and in the contradictory,
we assume thaty is not oscillatory. Then there exists a
sufficiently large T > 0 such that eithery(t) ≥ 0 or
y(t)≤ 0 for t > T.

Now if we consider the casey(t)≥ 0 for t > T. (The case
y(t) ≤ 0 for t > T can also be treated in a similar way).
Let us take a numberc> T such thatyc(t) ≥ 0 for t > 0,
namely, the functionyc(t) is a nonnegative function.
Assume that1b is the convergence ofY(u), so Yc(u) is
analytic on the half-planeReu> 1

b. By Lemma 2,Yc(u)
can not be analytically continued to the pointu= 1

b from
the right side since there is no complex neighborhood ofb
on which we can find an analytic function which agrees
with Yc(u) for Reu> 1

b. By assumptions Eq(11) and
Eq(12), we see that the function on the right side of
Eq(10) is analytic forReu> max

(

a, 1
b

)

. If a >
1
b, and in

the view of Eq(11), F(u) has a singularity onReu= a,
and Ai (u), i = 1,2,3, . . . ,n, are analytic inReu≥ a.
Taking the Eq(12) into account, we see thatYc(u) has a
singularity Reu= a, which contradicts thatYc(u) is
analytic inReu> 1

b. If a <
1
b, by Eq(11) and Eq(12), the

function on the right side of Eq(10) is an analytic in the
region Reu> a and atu = a. This implies thatYc(u) is
analytic even in the stripa < Reu≤ 1

b. This is a
contradiction. Ifa = 1

b, by the assumptions Eq(11) and
Eq(12), we see that the function on the right side of
Eq(10) is analytic inReu= a, butYc(u) has a singularity
at Reu= a = 1

b, which is a contradiction. The proof is
complete.

Theorem 3.Assume that the following conditions are
satisfied

a,a1,a2,a3, . . . ,an, abscissas of convergence ofF(u),
A1 (u) ,A2 (u) ,A3 (u) . . .An (u) respectively,
there is ani ∈ {1,2,3, . . .n} such that
ai > max{a,a1,ai−1,ai+1, . . . ,an}. Ai(u) has a
singularity onReu= ai , but is analytic atu= ai ,

(13)

H (u) = 0 has no real root on[ai ,∞ ). (14)

ndent Then every solution of Eq(4) is oscillatory.

The proof is similar to the proof of Theorem 2.

Now we note that in Eq(4), if ai(t) = ciw(t), i = 1,2, ...,n,
ci are real numbers, thenai(t),(i = 1,2, . . . ,n), have the
same abscissa of1d . If 1

d > a, wherea is the abscissa of
convergence ofY(u), then it is not possible to apply
Theorems 2 and 3. To cover the latter case, we have the
following theorem.

Theorem 4.Assume that the following conditions are
satisfied

a and 1
d are the abscissas of convergence ofF(u) andD(u),

and 1
d > a whereD(u) is the Sumudu transform ofw(t).

D(u) has a singularity onReu= 1
d , but is analytic atu= 1

d .

(15)

H (u) = 0 has no real root on

[

1
d
,∞
)

. (16)

Then every solution of the Volterra integral equation

y(t) = f (t)+
∫ t

0
w(t − s)

n

∑
i=1

cix(s− r i)ds, t ≥ 0 (17)

is oscillatory.

Proof.Sinceai(t) = ciw(t), we can easily see that Eq(10)
has the following form

Yc(u) =
Fc(u)+

n
∑
i=1

Φi +D(u)
n
∑

i=1
ci (βi (u)+ µi (u))

H (u)
(18)

whereH (u) = 1−D(u)
n
∑

i=1
cie−

ri
u . The rest of the proof is

similar to the one of Theorem 2.

However, by the following example we show that for some
Volterra integral equations, if Eq(15) or Eq(16), or both,
are not true then all solutions of the equation do not need
be oscillatory.

Example 1.Consider the Volterra integral equation

y(t) = 1+
∫ t

0
2y(s−1)ds, t ≥ 0 (19)

by using Sumudu transform to Eq(19) we have

Y(u) =
1+2e−

1
u

∫ 0

−1
e−

t
u y(t)dt

1−2ue−
1
u

.

The abscissas of convergence ofF(u) and D(u) are 0,
namely,a = 1

b = 0. Note thatD(u) = 2u is singular at

u= ∞ andD
(

1
p

)

= 2
p is singular at the pointp= 0. This

means that Eq(15) is not satisfied. Furthermore

H

(

1
p

)

= 1−
2
p

e−p =
p−2

p
e−p at u=

1
p

the functionL(p) = (p−2)e−p has only one real root
−
p∈ [0,∞). So Eq(16) does not hold. On the other hand, if
we only consider the solutions of the delay differential
equation

y′(t)−2y(t−1) = 0

c© 2015 NSP
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with the initial functionsλ ∈ C([−1,0],R) andλ (0) = 1
by using Sumudu transform we have

Y(u) =
1+2e−

1
u

∫ 0

−1
e−

t
u y(t)dt

1−2ue−
1
u

,

these solutions are also the solutions of the above Volterra
integral equation. But it is clear thaty(t) = et

−
p is a

nonoscillatory solution for this delay differential
equation. So the Volterra integral equation has a
nonoscillatory solution.

2 Polynomial approximations of the
characteristic equation

Similar to the ordinary differential equations, several
properties of delay differential equations can be
characterized and examined by using the characteristic
equations. For example, consider the first order delay
differential equation given as follows.

dy
dt

−ay= by(t −1). (20)

Then applying the for example Laplace transform of both
sides of Eq(20), we can obtain

Y(u)− y(0)
u

−aY(u) = bS(ϕ) (21)

whereϕ(t) is an shifted initial function ont ∈ [0,1) and
y0 is the initial condition at the pointt = 0. We note that
y0 can be different than the value limt→1 ϕ(t)). Here the
Sumudu transform is defined as

S[ f (t)] =
1
u

∫ ∞

0
e−

t
u f (t)dt

on the finite time. Further, note that this is equivalent to
applying the Sumudu transform on the function which is
extended by zero on(1,∞). For the first interval[0,1] the
Sumudu transform ofy(t) can be expressed as

Y(u) =
buS(ϕ)+ y(0)

1−au
(22)

and can be calculated by evaluating the inverse Sumudu
transform ofS(y(t)) at t = 1 (denoted byS−1

1 )

y1 = S−1 [S(y)] (1) = S−1
1 [S(y)] . (23)

By using the following notation

Y0(u) = S(ϕ), X1(u) = S(y), (24)

equations Eq(22) and Eq(23) can be written as

Y1 (u) =
buY0+ y0

1−au
,

y1 = S−1
1 [Y1 (u)] . (25)

In general

Yn (u) =
buYn−1+ yn−1

1−au
,

yn = S−1
1 [Yn (u)] . (26)

SubstitutingYn−1 into Eq(26) we have

Yn (u) =
bubuYn−2+yn−2

1−au + yn−1

1−au
. (27)

The repeated applications of this procedure terminates at
y0 and one arrives at

Yn (u) =
yn−1

1−au
+

bu yn−2

(1−au)2
+

b2u2 yn−3

(1−au)3
+ . . .

+
bn−1un−1 y0

(1−au)n
+

bn−1un−1 Y0(u)
(1−au)n

=
n−1

∑
i=0

bn−i−1un−i−1 yi

(1−au)n−i +
bn−1un−1 Y0 (u)

(1−au)n
. (28)

By using Eq(26), we haveyn in terms of{y0,y1, ...,yn−1} :

yn = S−1
1

(

n−1

∑
i=0

bn−i−1un−i−1 yi

(1−au)n−i

)

+S−1
1

(

un−1 Y0 (u)
(1−au)n

)

bn−1
. (29)

On using the linearity of the inverse transform

yn ≃
n−1

∑
i=0

S−1

(

un−i−1

(1−au)n−i

)

bn−i−1 yi

=
n−1

∑
i=0

tn−i−1eat

(n− i −1)!
bn−i−1 yi , (30)

at t = 1, the Eq(30) becomes

yn =
n−1

∑
i=0

ea

(n− i −1)!
bn−i−1 yi . (31)

Here we neglected the termS−1
1

(

un−1 Y0 (u)
(1−au)n

)

. The

justification for this lies in the fact that stability should
not depend on the form of the initial function, i.e.ϕ is
chosen so as to make this term negligible. Since for any
positive integern the stateyn depends on all previous
terms. Thus the characteristic equation of this map will be
obtained by substitutingyi = λ i (λ = 0) and j = n− i−1,
so Eq(30), can be written in the form of

λ n−λ n−1ea
n−1

∑
i=0

(

b
λ
) j

j!
= 0. (32)

The sum can be recognized as the exponential function

n−1

∑
i=0

(

b
λ
) j

j!
= e

b
λ

Γ
(

n, b
λ
)

Γ (n)
, (33)
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by substituting Eq(33) into Eq(33), we have

fn (λ ) = λ n−λ n−1eae
b
λ

Γ
(

n, b
λ
)

Γ (n)
= 0, (34)

as annthorder polynomial approximation to determine the
stability of equation Eq(20). Since we replaced the original
stability problem with that of a difference equation, the
condition for stability now can be stated as|λ |< 1.
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