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Abstract: In this article we study the dichotomy of theq periodic systeṁX(t) = A(t)X(t) in terms of the boundedness of the solutions
of the following Cauchy problems

{

Ẋ(t) = A(t)X(t)+eiµt Pb, t ≥ 0
X(0) = 0,

and
{

Ẋ(t) =−X(t)A(t)+eiµt (I −P)b, t ≥ 0
X(0) = 0,

whereA(t) is a square size matrix of orderm, µ is any real number,b is a non zero vector inCm andP is an orthogonal projection.
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1. Introduction

The aim of this paper is to study the relationship between
the dichotomy of the system ˙x(t) = A(t)x(t) and bound-
edness of the solutions of theq-periodic(q > 0) Cauchy
problems. For a well-posed non-autonomousCauchy prob-
lem

{

ẋ(t) = A(t)x(t)+ eiµtI, t ≥ 0
x(0) = 0,

(A(t),µ , I,0)

whereA(t) anm×m matrix, the solution leads to an evolu-
tion family U = {U(t,s), t ≥ s ≥ 0}, i.e.U(t,s)U(s,r) =
U(t,r) andU(t, t) = I for all t ≥ s ≥ r ≥ 0. When the
Cauchy problem(A(t),µ ,Pb,0) is q-periodic, i.e.A(t +
q) = A(t) for all t ≥ 0, then the familyU is q-periodic
as well, i.e.U(t + q,s+ q) =U(t,s) for all t ≥ s ≥ 0. It is
given in [1] that the evolution familyU is uniformly expo-
nentially stable if and only if the spectral radius ofU(q,0)

is less than one, i.e.

r(U(q,0)) := sup{|λ |, λ ∈σ(U(q,0))}= inf
n≥1

‖U(q,0)n‖
1
n < 1.

We show thatU(q,0) is dichotomic if for eachµ ∈ R the
matrices

Φµ(q) =
∫ q

0 U(q,s)eiµsds and Ψµ(q) =
∫ q

0 U−1(q,s)eiµsds

are invertible and there exits a projectionP which com-
mutes withU(q,0), Φµ(q) andΨµ(q) such that for each
real µ ∈ R and each vectorb ∈ C

m
, the solutions of the

Cauchy problems(A(t),µ ,Pb,0) and(−A(t),µ ,(I−P)b,0)
are bounded onR+. We give an example that invertibility
of the matricesΦµ(q) andΨµ(q) is necessary condition
and boundedness of the Cauchy problems(A(t),µ ,Pb,0)
and(−A(t),µ ,(I−P)b,0) is not sufficient for the dichotomy
of U(q,0).

In [1] and [3] stability of the mapU(q,0) have been
studied in the discrete and continuous case respectively.
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These papers give a connection between stability of the
mapU(q,0) and boundedness of the solutions of Cauchy
problems. Results regarding the dichotomy of a matrix have
been discussed in [2] and [6]. For connection between sta-
bility and periodic systems see the papers [1], [3], [5] and
[7]. General theory of dichotomy of infinite dimensional
systems has given in the monograph [4].

The paper is organized as follows: In section 2 we re-
call basic well known properties of the evolution family. In
section 3 we established the results regarding the connec-
tion between dichotomy of the mapU(q,0) and bounded-
ness of solutions for some periodic Cauchy problems.

2. Preliminary Results

Let X be a Banach space and letL (X) be the space of all
bounded linear operators acting onX . The norm inX and
in L (X) is denoted by the same symbol‖.‖.

A family U = {U(t,s) : t ≥ s ≥ 0} ⊆ L (X) is called
evolution family if the following properties are satisfied
(i) U(t, t) = I, for all t ∈ R+,

(i) U(t,s)U(s,r) =U(t,r) for all t ≥ s ≥ r ≥ 0,
whereI denote the identity operator onL (X). If the later
condition is satisfied for allt, s, r ∈ R+ then we say that
U is reversible evolution family onX . In this caseU(t,s)
is invertible for all t, s ∈ R+. An evolution familyU is
called strongly continuous if for eachx ∈ X the map

(t,s)→U(t,s)x : (t,s) ∈ R
2 → X

is continuous for allt ≥ s ≥ 0. Such a family is calledq-
periodic (with someq > 0) if

U(t + q,s+ q) =U(t,s), for all t ≥ s ≥ 0.

Clearly, aq-periodic evolution family also satisfies
(i) U(pq+ v, pq+ u) = U(v,u), for all p ∈ N, for all v ≥
u ≥ 0,
(ii)U(pq,rq) =U((p−r)q,0)=U(q,0)p−r, for all p,r ∈
N, p ≥ r.

The familyU is called uniformly exponentially stable
if there exist two positive constantsN andω such that

‖U(t,s)‖ ≤ Ne−ω(t−s)
, for all t ≥ s ≥ 0.

The set of allm×m matrices having complex entries
would be denoted byM (m,C). Assume that the mapt 7→
A(t) :R 7→M (m,C) is continuous. Then the Cauchy Prob-
lem

{

Ẋ(t) = A(t)X(t), t ∈R

X(0) = I,
(1)

has a unique solution denoted byΦ(t). It is well known
thatΦ(t) is an invertible matrix and that its inverse is the
unique solution of the Cauchy Problem

{

Ẋ(t) =−X(t)A(t), t ∈ R

X(0) = I.
(2)

SetU(t,s) := Φ(t)Φ−1(s) for all t,s ∈ R.

For a given real numberµ and a given family(A(t))
we consider the Cauchy Problem

{

Ẋ(t) = A(t)X(t)+ eiµtI, t ≥ 0
X(0) = 0, (A(t),µ , I,0)

and the differential matrix system

Ẋ(t) = A(t)X(t), t ∈R. (A(t))

Obviously, the solution of(A(t),µ , I,0) is given by

Φµ(t) =
∫ t

0
U(t,s)eiµsds.

Now we define

V (t,s) :=U−1(t,s) = Φ(s)Φ−1(t), t,s ∈ R

then the familyV = {V (t,s), t,s ∈R} is an evolution fam-
ily if

Φ(t)Φ−1(s) = Φ−1(s)Φ(t) for all t,s ∈ R. (1)

Throughout the paper we assume that equation (1) is satis-
fied for all t,s ∈ R.
Consider the Cauchy problem

{

Ẏ (t) =−Y (t)A(t)+ eiµtI, t ≥ 0
Y (0) = 0.

(−A(t),µ , I,0)

The solution of(−A(t),µ , I,0) is given by

Ψµ(t) =
∫ t

0
V (t,s)eiµsds.

Let pL be the characteristic polynomial associated to
the matrixL ∈ M (m,C) and letσ(L) = {λ1,λ2, . . . ,λk},
k ≤ m be its spectrum.
There exist integer numbersm1,m2, . . . ,mk ≥ 1 such that

pL(λ ) = (λ −λ1)
m1(λ −λ2)

m2 . . . (λ −λk)
mk ,

wherem1 +m2 + · · ·+mk = m. Let j ∈ {1,2, . . . ,k} and
Yj := ker(L−λ jI)m j then in [2] we have the following im-
portant theorem which is useful latter on.

Theorem 1.For each z ∈ Cm there exists y j ∈ Yj, j = 1,k
such that

Lnz = Lny1+Lny2+ · · ·+Lnyk.

Moreover, if y j(n) := Lny j then y j(n) ∈ Yj for all n ∈ Z+

and there exist aCm-valued polynomials p j(n)with deg(p j)≤
m j −1 such that

y j(n) = λ n
j p j(n), n ∈ Z+, j ∈ {1,2, . . . ,k}.
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3. Results

Let us denoteΓ1= {z ∈ C : |z|= 1}, Γ +
1 := {z ∈ C : | z|> 1}

andΓ −
1 := {z ∈C : | z|< 1}. ClearlyC= Γ1∪Γ +

1 ∪Γ −
1 .

A matrix L is called:

(i)stable if σ(L) is the subset ofΓ −
1 or, equivalently, if

there exist two positive constantsN andT such that
‖Ln‖ ≤ Ne−T n for all n = 0,1,2. . . ,

(ii)expansive if σ(L) is the subset ofΓ +
1 and

(iii) dichotomic if σ(L) does not intersect the setΓ1.

Remark.If L is a dichotomic matrix then there existsη ∈
{1,2, . . . ,ξ} such that

|λ1| ≤ |λ2| ≤ · · · ≤ |λη |< 1< |λη+1| ≤ · · · ≤ |λξ |.

Having in mind the decomposition ofCm given by(3.1)
let us consider

X1=Y1⊕Y2⊕·· ·⊕Yη and X2=Yη+1⊕Yη+2⊕·· ·⊕Yξ .

ThenCm = X1⊕X2.

Recall that a linear mapP : Cm → Cm is called projec-
tion if P2 = P. In the following theorem we give our first
result.

Theorem 2.Let q > 0. If the matrix U(q,0) is dichotomic
and there exists a projection P commuting with U(q,0),
Φµ(q) and Ψµ(q) then for each µ ∈ R and each non-zero
vector b ∈Cm the solutions of the following Cauchy prob-
lems

{

Ẋ(t) = A(t)X(t)+ eiµtPb, t ≥ 0
X(0) = 0,

(A(t),µ ,Pb,0)

and
{

Ẋ(t) =−X(t)A(t)+ eiµt(I−P)b, t ≥ 0
X(0) = 0,

(−A(t),µ ,(I−P)b,0)
are bounded.

Proof.Assume thatU(q,0) is dichotomic, then by Remark
3 we have a decomposition ofCm, i.e.Cm = X1⊕X2.
We defineP : Cm → Cm by Px = x1, wherex = x1 + x2,
such thatx1 ∈ X1 andx2 ∈ X2. It is clear thatP is a projec-
tion.
Moreover for allx ∈ Cm and allk ∈ Z+, this yields

PU(q,0)kx = P(U(q,0)k(x1+ x2))

= P(U(q,0)k(x1)+U(q,0)k(x2))

= U(q,0)k(x1)

= U(q,0)kPx.

HencePU(q,0)k =U(q,0)kP for all k∈Z+. Also we have

PΦµ(q)x = P(Φµ(q)(x1+ x2))

= P(Φµ(q)(x1)+Φµ(q)(x2))

= Φµ(q)(x1)

= Φµ(q)Px

and similarly we conclude thatPΨµ(q)=Ψµ(q)P.Now the
solution of the Cauchy problem(A(t),µ ,Pb,0) is given by

Φ(µ,P,b)(t) =
∫ t

0
U(t,s)eiµsPbds.

Let n be the integer part oftq and letr := (t − qn) ∈
[0,q). Then

∫ t

0
U(t,s)eiµsPbds =

∫ qn+r

0
U(t,s)eiµsPbds

=
∫ qn

0
U(t,s)eiµsPbds+

∫ qn+r

qn
U(t,s)eiµsPbds

=

∫ qn+r

qn
U(t,s)eiµsPbds+

n−1

∑
k=0

∫ q(k+1)

qk
U(qn+ r,s)eiµsPbds

=

∫ qn+r

qn
U(t,s)eiµsPbds

+ U(r,0)
n−1

∑
k=0

∫ q(k+1)

qk
U(qn,s)eiµsPbds

=

∫ qn+r

qn
U(t,s)eiµsPbds

+ U(r,0)
n−1

∑
k=0

∫ q

0
U(qn,qk+ τ)eiµ(qk+τ)Pbdτ

=

∫ qn+r

qn
U(t,s)eiµsPbds

+ U(r,0)
n−1

∑
k=0

eqiµk
∫ q

0
U(q(n− k),τ)eiµτPbdτ

=

∫ qn+r

qn
U(t,s)eiµsPbds

+ U(r,0)
n−1

∑
k=0

eiµqkU(q,0)n−k−1
∫ q

0
U(q,τ)eiµτ Pbdτ

= I1+ I2.

where

I1 =
∫ qn+r

qn
U(t,s)eiµsPbds,

and

I2 =U(r,0)
n−1

∑
k=0

eiµqkU(q,0)n−k−1Φµ(q)Pb.
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Now the familyU has a growth bound and 0≤ t−s ≤ r <
q, so we have

‖I1‖ =

∥

∥

∥

∥

∫ qn+r

qn
U(t,s)eiµsPb ds

∥

∥

∥

∥

≤ M
∫ qn+r

qn
eω(t−s)‖Pb‖

≤ rMeqω‖Pb‖

≤ qMeqω‖Pb‖,

whereω is a real number andM ≥ 1. HenceI1 is bounded.
Next letzµ = eiµq, andΦµ(q)b = l ∈Cm then

I2 = U(r,0)
(

U(q,0)n−1z0
µ

+ U(q,0)n−2z1
µ + · · ·+U(q,0)0zn−1

µ
)

Pl.

By our assumption we know thatL is dichotomic and|zµ |=
1 thuszµ is contained in the resolvent set ofL therefore the
matrix (zµ I −U(q,0)) is an invertible matrix. Hence

I2 =U(r,0)(zµ I−U(q,0))−1(zn
µ I −U(q,0)n)Pl.

Taking norm of both sides

‖I2‖ ≤ ‖U(r,0)(zµ I−U(q,0))−1zn
µPl‖

+ ‖U(r,0)(zµ I−U(q,0))−1PU(q,0)nl‖

= ‖U(r,0)‖‖(zµI−U(q,0))−1‖‖Pl‖

+ ‖U(r,0)‖‖(zµI−U(q,0))−1‖‖PU(q,0)nl‖.

Using Theorem1, we have

U(q,0)nl = λ n
1 p1(n)+λ n

2 p2(n)+ · · ·+λ n
ξ pξ (n),

thus

PU(q,0)nl = λ n
1 p1(n)+λ n

2 p2(n)+ · · ·+λ n
η pη (n),

where eachpi(n) areCm-valued polynomials with degree
at most(mi − 1) for any i ∈ {1,2, . . . ,ξ}. From hypoth-
esis we know that|λi| < 1 for eachi ∈ {1,2, . . . ,η}. So
‖PU(q,0)nl‖→ 0 whenn → ∞. ThusI2 is bounded, hence
the solution of(A(t),µ ,Pb,0) is bounded.

Next, since the solution of the
Cauchy problem(−A(t),µ ,(I −P)b,0) is given by

Ψ(µ,I−P,b)(t) =
∫ t

0
V (t,s)eiµs(I −P)bds.

By similar method we obtain that

Ψ(µ,I−P,b)(t) = J1+ J2

whereJ1 =
∫ qn+r

qn V (t,s)eiµs(I−P)bds and

J2 = V (r,0)(z0
µU(q,0)−(n−1)+ z1

µU(q,0)−(n−2)

+ · · ·+ zn−1
µ U(q,0)0)Ψµ(q)(I −P)b.

Proceeding as before we can show thatJ1 is bounded. Now
for J2 we have sincePU(q,0) = U(q,0)P, therefore(I −
P)U(q,0) = U(q,0)(I −P). By our assumption we know
that U(q,0) is invertible and sinceU(q,0)−1 is also di-
chotomic hence using the same arguments as above we
have

J2 = V (r,0)(zµ I−U(q,0)−1)−1(zn
µ I −U(q,0)−n)

× Ψµ(q)(I −P)b

= V (r,0)(zµ I−U(q,0)−1)−1(zn
µ I −U(q,0)−n)(I−P)

× Ψµ(q)b.

Taking norm of both sides we get

‖J2‖ ≤ ‖V(r,0)‖‖(zµ I −U(q,0)−1)−1‖

× ‖(I−P)Ψµ(q)b‖

+ ‖V(r,0)‖‖(zµ I −U(q,0)−1)−1‖

× ‖U(q,0)−n(I −P)Ψµ(q)b‖.

First we prove thatU(q,0)−nx → 0 asn → ∞ for anyx ∈
X2. Since(I−P)Ψµ(q)b ∈ X2 the assertion would follows.
Now sinceX2 =Yη+1⊕Yη+2⊕·· ·⊕Yξ . So anyx ∈ X2 can
be written as a sum ofξ −η vectorsyη+1, yη+2, . . . yξ . It
would be sufficient to prove thatU(q,0)−nyi → 0 asn→∞
for anyi∈{η+1,η+2, . . . ,ξ}. LetY ∈{Yη+1,Yη+2, . . . ,Yξ}
say Y = ker(U(q,0)− λ I)ρ , whereρ ≥ 1 is an integer
number and|λ |> 1. Considerd1 ∈Y\{0} such that(U(q,0)−
λ I)d1= 0 and letd2,d3, . . . ,dρ given by(U(q,0)−λ I)di =
di−1. ThenA := {d1,d2, . . . ,dρ} is a basis inY . So it is
sufficient to prove thatU(q,0)−ndi → 0 asn → ∞ for any
i ∈ {1,2, . . . ,ρ}. For i = 1, we have thatU(q,0)−nd1 =
1

λ n d1 → 0 asn → ∞.
Fori= 2,3, . . . ,ρ , denoteBn :=U(q,0)−ndi.Then(U(q,0)−
λ I)ρ Bn = 0, i.e.

Bn −C1
ρBn−1α +C2

ρBn−2α2+ · · ·+Cρ
ρ Bn−ραρ = 0,

(3.2)
wheren ≥ ρ andα = 1

λ .
Passing for instance at the components, it follows that there
exists aCm-valued polynomialPρ having degree at most
ρ − 1 and verifying (3.2) such thatBn = αnPρ(n). Thus
Bn → 0, when n → ∞ i.e. U(q,0)−ndi → 0 for any i ∈
{1,2, . . . ,ρ}. ThusJ2 is bounded.

The converse statement of the above theorem is not
straight forward and we need to put an extra condition i.e.
the matricesΦµ(q) andΨµ(q) are invertible, at the end of
the paper we have given an example which shows that the
invertibility conditions on matricesΦµ(q) andΨµ(q) can
not be removed. Due to this reason we put the converse
statement of the above theorem as a new theorem which is
stated as.

Theorem 3.If for each real number µ and each non-zero
vector b ∈ Cm, the solutions of the Cauchy problems
(A(t),µ ,Pb,0) and (−A(t),µ ,(I−P)b,0) are bounded then
the map U(q,0) is dichotomic, provided that there exists a
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projection P commuting with U(q,0), Φµ(q) and Ψµ(q)
and for each µ ∈ R the matrices Φµ(q) and Ψµ(q) are in-
vertible.

Proof.Suppose on contrary that the matrixU(q,0) is not di-
chotomic thenσ(U(q,0))∩Γ1 6= φ . Let ω ∈ σ(U(q,0))∩
Γ1 then there exists a non zeroy ∈Cm such thatU(q,0)y=
ωy, it is easy to see thatU(q,0)ky = wky. Here we have
two cases:
Case 1: IfPy 6= 0. Chooseµ1 ∈ R such thatω = eiµ1q,
thenU(q,0)ky = eiµqky. SinceΦµ1(q) is invertible so there
existsb1 ∈ Cm such thatΦµ1(q)b1 = y. Then

Φ(µ1,P,b1)(t) =
∫ qn+r

qn
U(t,s)eiµ1sPb1ds

+ U(r,0)
n−1

∑
k=0

eiµ1qkPU(q,0)n−k−1y

=

∫ qn+r

qn
U(t,s)eiµ1sPb1ds

+ U(r,0)
n−1

∑
k=0

eiµ1qkPeiµ1q(n−k−1)y

=

∫ qn+r

qn
U(t,s)eiµ1sPb1ds

+ U(r,0)
n−1

∑
k=0

eiµ1q(n−1)Py

=
∫ qn+r

qn
U(t,s)eiµ1sPb1ds

+ U(r,0)neiµ1q(n−1)Py.

Now clearlyU(r,0)neiµ1q(n−1)Py → ∞ asn → ∞. Hence
there existµ1 ∈ R andb1 ∈ Cm such thatΦ(µ1,P,b1) is un-
bounded. Therefore contradiction arises.

Case 2: IfPy= 0 then surely(I−P)y 6= 0.SincePU(q,0)=
U(q,0)P therefore(I−P)U(q,0)=U(q,0)(I−P).Choose
µ2 ∈ R such thatω = e−iµ2q. In this case we note that
U(q,0)−ky = eiµ2qky. AlsoΨµ2(q) is invertible so there ex-
istsb2 ∈Cm such thatΨµ2(q)b2 = y. Now consider the so-
lution of (−A(t),µ2,b2,0) we have

Ψ(µ2,I−P,b2)(t) = J1,µ2 + J2,µ2,

where

J1,µ2 =

∫ qn+r

qn
V (t,s)eiµ2s(I−P)b2ds,

and

J2,µ2 = V (r,0)
n−1

∑
k=0

eiµ2qkU(q,0)−(n−k−1)Ψµ2(q)(I −P)b2

= V (r,0)
n−1

∑
k=0

eiµ2qk(I−P)U(q,0)−(n−k−1)y

= V (r,0)
n−1

∑
k=0

eiµ2qk(I−P)eiµ2q(n−k−1)y

= V (r,0)
n−1

∑
k=0

eiµ2q(n−1)(I −P)y

= V (r,0)neiµ2q(n−1)(I −P)y.

Clearly we see thatJ2,µ2 =V (r,0)nzn−1
µ2

(I−P)y→∞ asn→
∞. Hence there existµ2 ∈R andb2∈Cm such thatΨ(µ2,I−P,b2)(t)
is unbounded. Which is again an absurd. This completes
the proof.

The following theorem is taken from [1] which we used to
obtained Theorem 3.5.

Theorem 4.The matrix U(q,0) is stable if and only if for
each b ∈Cm, the solution of (A(t),µ ,Pb,0) is bounded on
R+ uniformly with respect to the parameter µ ∈ R, i.e.

sup
µ∈R

sup
t≥0

‖

∫ t

0
U(t,s)eiµsbds‖ := K(b)< ∞.

Theorem 5.The matrix U(q,0) is dichotomic if and only if
there exists a projection P such that for each vector b ∈
Cm, the solutions of the Cauchy problems (A(t),µ ,Pb,0)
and (−A(t),µ ,(I −P)b,0) are uniformly bounded on R+

with respect to the parameter µ ∈ R, i.e.

sup
µ∈R

sup
t≥0

‖
∫ t

0
U(t,s)eiµsPbds‖ := KP(b)< ∞, (3.3)

and

sup
µ∈R

sup
t≥0

‖

∫ t

0
V (t,s)eiµs(I−P)bds‖ := KI−P(b)< ∞.

(3.4)

Proof.Suppose the matrixU(q,0) is dichotomic and let
U(q,0)1 andU(q,0)2 be the restrictions ofU(q,0) on X1
andX2 respectively. Consider the spectral decomposition
of Cm as given in Remark3, that is we can write

C
m = X1⊕X2.

ThenU(q,0)1 is stable onX1 andU(q,0)−1
2 is stable on

X2. Define the projectionP : Cm → Cm asPx = x1 where
x = x1 + x2 such thatx1 ∈ X1 andx2 ∈ X2. Then clearly
PCm = X1 and(I −P)Cm = X2.
SincePb ∈ X1 for eachb ∈ Cm, therefore Theorem4 im-
plies that

sup
µ∈R

sup
t≥0

‖

∫ t

0
U(t,s)eiµsPbds‖ := KP(b)< ∞.
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Also (I −P)b ∈ X2 for eachb ∈Cm then again Theorem4
implies that

sup
µ∈R

sup
t≥0

‖
∫ t

0
V (t,s)eiµs(I −P)bds‖ := KI−P(b)< ∞.

Conversely letP be the projection for which (3.3) and
(3.4) are satisfied. Assume thatPCm =W1 and(I−P)Cm =
W2. Then clearlyCm = W1 ⊕W2. So by (3.3) and using
Theorem4 we haveU(q,0) is stable onW1. Similarly by
(3.4) and again using Theorem4 we obtain thatU(q,0)−1

is stable onW2. HenceU(q,0) is dichotomic onCm.
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