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Abstract: This paper presents a non-linear mathematical model of malaria by considering the human reservoir and larvivorous fishes.
The different equilibria of the model are computed and stability of these equilibria is investigated in-detail. Also, the basic reproduction
numberR0 of the model is computed and we observe that the model exhibits backward bifurcation for some set of parameters implying
the existence of multiple endemic equilibria forR0 < 1. This existence of multiple endemic equilibria emphasizes the fact thatR0 < 1
is not sufficient to eradicate the disease from the population and the need is to lowerR0 much below one to make the disease-free
equilibrium to be globally stable. The numerical simulation is performed to support analytical findings and the presented results show
meaningful agreement. Additionally, the model is extendedto incorporate optimal control by introducing the ‘insecticide control’ to
control the mosquito population and Pontryagin’s maximum principle[1] is used to analyze the optimal control model. Here too the
numerical simulation is performed to demonstrate the effect of optimal control.
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1 Introduction

Malaria is a mosquito borne infectious disease and it is
endemic in many countries around the world. It has
become the economical and health related burden for the
countries affected with endemic malaria. Malaria is
caused by Plasmodium parasites which is transmitted to
people through the bites of infected Anopheles
mosquitoes, called “malaria vectors”. These mosquitoes
bite mainly between dusk and dawn. The CDC report
reveals that malaria is the fifth leading killer among
infectious diseases worldwide, and it is the second
leading cause of death in Africa, following HIV/AIDS.
Several malaria vector control methods are being
implemented in order to reduce the density of malaria
vector population to protect the human population against
infectious mosquitoes.

Mathematical models are extensively used to predict
the future of these kind of problems (see [2,3], etc.,).
Many methods and models have been proposed to predict
and control the dynamics of diseases like malaria,
dengue, tb, HIV etc. The general SIR and SIRS epidemic
model with some qualitative features are described in[4,
5]. The epidemiological impact of immunity to malaria
has been investigated in [6,7]. The effect of vaccines for

malaria has been described in [7,8]. Disease-modification
and transmission-blocking concept have been discussed
in detail through the model explored in [8]. In [9], visual
representation of spatial aspects of malaria transmission
in successive snap-shots in time, is presented with
identification of mosquito vector breeding sites of defined
shape and area. How the intensity of malaria transmission
changes over the evolution of drug resistance is explained
in [10]. A delay-differential equation model with partially
immune population is discussed in [11]. In [12], the
seasonal fluctuation of the mosquito density in Brazilian
Amazon region is investigated. In [13], the authors
considered two latent periods with non-constant host and
vector populations in order to assess the potential impact
of personal protection, treatment and possible vaccination
strategies on the transmission dynamics of malaria. A
mathematical model for malaria showing the impact of
treatment and drug resistance is described in [14]. This
model also considers delays in the latent periods in both
mosquito and human populations. A host-vector
interaction model with constant immigration in human
population and a fraction of infective immigrants has
been depicted in [15]. The possibility of Hopf bifurcation
in a non-linear delay model for malaria is demonstrated in
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[16]. Threshold dynamics of a malaria transmission
model in periodic environment is dealt in [17]. The
phenomena of insecticide treated bed-nets usage to
decrease the malaria vector population is described in
[18]. This fact is also incorporated in [19]. Modelling
malaria transmission by considering the variable human
population is exhibited in [20], where it is assumed that
the individuals recovered from malaria can act as
infectives for susceptibles mosquitoes. This fact is true in
endemic region. Infectious humans can recover through
the treatment, but some of them can carry infection
without affecting themselves and transmit infections to
the mosquitoes biting them. As these people do not show
any symptoms of malaria in their body, so they act as
reservoir of malaria. The idea of reservoir class is also
incorporated in [14,19,21,22]. Introduction of
larvivorous fish is a promising biological control method
to eradicate malaria. This method of control is
inexpensive and is being used in many part of the World
where this disease is endemic. The introduction of
larvivorous fish to control malaria by decreasing the
larvae population (i.e. the birth stage of mosquitoes
population) is established in [23,24].

The optimal control strategies of an SIR epidemic
model with time delay has been discussed in [25,26]. The
optimal control approach is used to minimize the number
of infectives. The paper [26] concentrated on the study of
optimal control on vaccination program. There are several
other research papers which have incorporated the
optimal control problems for different types of diseases
(see [24,27,28,29,30,31,32,33,34,35,36,37,38,39],
etc.,). Out of these, few papers deal with the optimal
control of malaria [24,27,28,29,30,31].

Keeping all the above aspects in consideration, we
formulated a non-linear mathematical model by
introducing Larvivorous fish population and the reservoir
human population. We found the equilibria and analyzed
the stability of these equilibria. Later we applied the
optimal control by introducing insecticide control
parameter to the model and analyzed it using the method
of Pontragin’s Maximum Principle[1].

This paper is organized as follows: Section2
describes the basic model, section3 elaborates the
existence of equilibria and backward bifurcation using the
center manifold theorem. Section4 deals with the
stability analysis and numerical simulation which affirms
our analytical findings. Section5 describes the
application of optimal control to the proposed model and
numerical simulation of optimal control model. At the
last we have given our results as conclusion in section6.

2 The Model

The whole human population (Nh(t)) under consideration
is divided into three disjoint classes namely susceptible
class (Sh(t)), infected class(Ih(t)) and the class of
recovered individuals(Rh(t)) and the whole adult

mosquito population(Nv(t)) of Anopheles species are
divided into two disjoint classes namely susceptible
(Sv(t)) and infected(Iv(t)). Additionally, we have two
more classes corresponding to Larvae population(Lv(t))
and Larvivorous fish populationP(t). Larvae Lv and
Larvivorous fish P populations are linked with
prey-predator type interaction. Here it is assumed that the
predatory fish population is fully dependent on mosquito
larvae. Assuming the criss-cross interaction between
susceptibles and infected humans and mosquitoes, the
mathematical model is formulated as follows:

L′
v = gNv − d1Lv −αL2

v −mLv − γLvP, (1a)

S′v = mLv − cβ Sv
(Ih +Rh)

Nh
− d2Sv, (1b)

I′v = cβ Sv
(Ih +Rh)

Nh
− d2Iv, (1c)

P′ = kγLvP− d3P, (1d)

S′h = Λ − bβ Sh
Iv

Nh
− d4Sh +[(1−ρ)τ]Ih+ l1Rh, (1e)

I′h = bβ Sh
Iv

Nh
− (d4+ d5+ τ)Ih, (1f)

R′
h = ρτIh − (d4+ l1)Rh, (1g)

The parameters used in the model (1) are described in
Table 1. For detailed descriptions of the parameters and
transmission terms, one can refer [23,24].

The transfer diagram of the model is shown in Figure
1, where dotted line denotes interactions and the solid line
denotes transfer from one class to another. The model (1)
can be rewritten in the following form:

L′
v = gNv − d1Lv −αL2

v −mLv − γLvP, (2a)

N′
v = mLv − d2Nv, (2b)

I′v = cβ (Nv − Iv)
(Ih +Rh)

Nh
− d2Iv, (2c)

P′ = kγLvP− d3P, (2d)

N′
h = Λ − d4Nh − d5Ih, (2e)

I′h = bβ (Nh − Ih −Rh)
Iv

Nh
− k1Ih, (2f)

R′
h = ρτIh − (d4+ l1)Rh, (2g)

wherek1 = (d4+ d5+ τ).

2.1 The Basic Reproduction Number R0

The basic reproduction number is defined as the number
of secondary infections generated by a typical infected
individual in an otherwise disease free population in
his/her whole infectious period. The reproduction number
(R0) for our model is computed using the method
described in [40] and using the same notation as in [40]
the matricesF andV are given by
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Table 1: Description of parameters

Parameter Description

g Vector’s egg laying rate
k Tropical convention efficiency
α Density dependent mortality rate of larvae
m Maturation rate of larvae
γ Predation rate
β Mosquitoes biting rate
b Probability of disease transmission from infectious mosquitoes to humans
c Probability of disease transmission from infectious humans to mosquitoes
Λ Recruitment rate in the Susceptible humans class
ρ Proportion recovered with temporary immunity
l1 Loss of immunity rate for Recovered humans
τ Rate of treatment
d1 Natural mortality rate in mosquito larvae
d2 Natural mortality rate in adult mosquitoes
d3 Natural mortality rate in predators (Larvivorous fishes)
d4 Natural mortality rate in humans
d5 Disease induced mortality rate in humans

Fig. 1: Transfer diagram of the model.

F =







cβ Sv

(

Ih+Rh
Nh

)

bβ Sh
Iv
Nh

0






, V =





d2Iv
k1Ih

−ρτIh +(d4+ l1)Rh



 .

Now, the matrixF and V evaluated at disease free
equilibrium point are given by

F =





0 cβ A1d4
Λ cβ A1d4

Λ
bβ 0 0
0 0 0



 , V =





d2 0 0
0 k1 0
0 −ρτ d4+ l1



 .

And the matrixFV−1 is given by

FV−1 =











0
cβ d4A1

k1Λ
+

cβ d4A1ρτ
k1Λ(d4+ l1)

cβ d4A1

Λ(d4+ l1)
bβ
d2

0 0

0 0 0











.

So, the reproduction numberR0 which is the spectral
radius of the matrixFV−1 is given by

R0 = β

√

bcd4A1

k1Λd2

(

d4+ l1+ρτ
d4+ l1

)

.

i.e. R0 = β

√

bcd4A1(1+ k2)

k1Λd2
=

√

bβ q1A1

k1Λd2

with q1 = cβ d4(1+ k2) andk2 =
ρτ

(d4+ l1)
.
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Here the numberR2
0 gives the average number of

infected mosquitoes (humans) generated by one typical
infected mosquito (human) in a fully susceptible
population.

3 Equilibria

The equilibria for our model are determined by setting
right hand sides of the model (2) to zero. The system (2)

has following equilibria namelyE1

(

0,0,0,0, Λ
d4
,0,0

)

,

E2

(

L∗
v ,m

L∗v
d2
,0,0, Λ

d4
,0,0

)

, E3

(

L∗
v ,m

L∗v
d2
,0,P∗, Λ

d4
,0,0

)

,

E4
(

L∗
v ,N

∗
v , I

∗
v ,P

∗,N∗
h , I

∗
h ,R

∗
h

)

, where

L∗
v =

d3

kγ
,

N∗
v =

mL∗
v

d2
=

md3

d2kγ
= A1,

I∗v =
cβ A1(1+ k2)d4I∗h

cβ (1+ k2)d4I∗h + d2(Λ − d5I∗h )
=

q1A1I∗h
q1I∗h + d2(Λ − d5I∗h )

,

P∗ =
gm− d2(d1+αL∗

v +m)

d2γ
,

N∗
h =

Λ − d5I∗h
d4

,

R∗
h =

(

ρτ
d4+ l1

)

I∗h = k2I∗h ,

and I∗h is the positive root of the following quadratic
equation

B1I2
h +B2Ih +B3 = 0. (3)

The expressions forB1, B2 andB3 of (3) are as follows:

B1 = k1d5(d2d5− q1),

B2 = k1d2d5Λ(R2
0−2)+Λk1

[

q1+(1+ k2)d2d4R2
0

]

,

= k1d2d5Λ(R2
0−1)+Λk1(q1− d2d5)

+(1+ k2)bβ q1A1d4,
= H1+H2+H3,

B3 = d2k1Λ2
(

1−
bcβ 2d4A1(1+ k2)

d2k1Λ

)

= d2k1Λ2(1−R2
0

)

,

where

H1 = k1d2d5Λ(R2
0−1),H2 = Λk1 (q1− d2d5) ,

H3 = (1+ k2)bβ q1A1d4.

The two roots of this quadratic equation are given by

Ih =
−B2±

√

B2
2−4B1B3

2B1
,

Now depending upon the signs ofB1,B2 andB3, we may
have unique, two or no positive roots. These findings are

summarized below:

Let us assume that B2
2 − 4B1B3 > 0 and

disc =
√

B2
2−4B1B3.

It is easy to see that the discriminant can be obtained as
follows:

disc2 = (H2−H1+H3)
2+4H1H3,

which implies that the discriminantB2
2−4B1B3 is always

positive forR0 > 1.
Also, it is observed that we can have positive equilibrium

only if Ih <
Λ
d5

i.e. We must have
−B2

2B1
±

disc
2B1

<
Λ
d5

=⇒
disc2

(2B1)2 <

(

Λ
d5

+
B2

2B1

)2

i.e.
−B3

B1
<

(

Λ
d5

)2

+
ΛB2

d5B1

Proceeding this way we get,
(1+ k2)bβ q1A1d4

k1d5(d2d5− q1)
< 0

=⇒ q1− d2d5 < 0
=⇒ B1 > 0
Hence for the existence of positive equilibrium point we

must haveB1 > 0 andIh <
Λ
d5

.

Also we concluded that whenB1 < 0, there is no
equilibrium point.
So we consider only the cases underB1 > 0
CASE (1): R0 > 1 (Also B3 < 0), we have the following
sub-cases.

Sub-case (1a): If B2 > 0, there is only one change of sign
in the quadratic equation

B1I2
h +B2Ih +B3 = 0.

So by Descartes’s rule of signs, there exists at-most one

positive root. It is easy to see that
−B2+ disc

2B1
is the

desired positive root (as 0< |B2|< disc ).

Sub-case (1b): If B2 < 0, again there is only one change
of sign and the expression to obtain the positive root is
same as in the above sub-case.

CASE (2): R0 < 1 (Also B3 > 0), we have the following
sub-cases.

Sub-case (2a): If B2 > 0, then there is no change of sign
and there is no equilibrium in this case.
Sub-case (2b): If B2 < 0, then there are two changes of
signs and of course there exists at most two positive roots
of the quadratic equation. For the quadratic equation (3)
to have real roots we must need to haveB2

2−4B1B3 > 0.
In this case, we havedisc < |B2|, B2 < 0 andB1 > 0. And
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the roots are given byIh =
−B2

2B1
±

disc
2B1

, which must be

less than
Λ
d5

to have two positive non-trivial equilibria.

This result is summarized below:

The following conditions are needed for the existence
of two positive roots
Condition 1:B2

2−4B1B3 > 0
Condition 2:B2 < 0

Condition 3:
−B2

2B1
±

disc
2B1

<
Λ
d5

From condition 3 we proceed as follows:
−B2

2B1
±

disc
2B1

<
Λ
d5

=⇒ ±
disc
(2B1)

<

(

Λ
d5

+
B2

2B1

)

(4)

The RHS of the inequality (4) can be simplified as

1
k1d5(d2d5−q1)

[−k1d2d5Λ(1−R2
0)+ (1+ k2)bβ q1A1d4]

= 1
B1
[H1+H3]

Thus ineqality (4) can be rewritten as

±
disc

2
< H1+H3

From this we see thatH1+H3 > 0 is necessary for the
existence of two positive roots.
H1+H3 > 0 =⇒ k1d2d5Λ(1−R2

0)< (1+ k2)bβ q1A1d4

=⇒ d5− d5R2
0 < (1+ k2)bβ q1A1R2

0d4

=⇒
d5

(1+ k2)d4+ d5
< R2

0 < 1

=⇒

√

d5

(1+ k2)d4+ d5
< R0 < 1

Hence the final condition for the existence of two
positive roots and backward bifurcation is
√

d5

(1+ k2)d4+ d5
< R0 < 1

We denote the value

√

d5

(1+ k2)d4+ d5
asRc

0 which we

say the critical value ofR0.

3.1 Bifurcation Analysis

Let Lv = x1,Nv = x2, Iv = x3, P = x4, Nh = x5, Ih = x6,
and Rh = x7. Further, by using the vector notationX =
(x1,x2,x3,x4,x5,x6,x7)

T , the system (2) can be written in

the form dX
dt = ( f1, f2, f3, f4, f5, f6, f7)T as follows:

x′1 = gx2− d1x1−αx2
1−mx1− γx1x4, (5a)

x′2 = mx1− d2x2, (5b)

x′3 = cβ (x2− x3)
(x6+ x7)

x5
− d2x3, (5c)

x′4 = kγx1x4− d3x4, (5d)

x′5 = Λ − d4x5− d5x6, (5e)

x′6 = bβ (x5− x6− x7)
x3

x5
− k1x6, (5f)

x′7 = ρτx6− (d4+ l1)x7, (5g)

The Jacobian of the system (5) at DFE is given by

Jβ ∗=















a11 g 0 −γx∗1 0 0 0
m −d2 0 0 0 0 0

0 0 −d2 0 0 cβ ∗ x∗2
x∗5

0

kγx∗4 0 0 kγx∗1−d3 0 0 0
0 0 0 0 −d4 −d5 0
0 0 bβ 0 0 −k1 0
0 0 0 0 0 ρτ −(d4+l1)















wherea11 =−(d1+2αx∗1+m+ γx∗4).
Consider the case whenR0 = 1. Suppose thatβ = β ∗

is chosen as a bifurcation parameter. Solving forβ from
R0 = 1 gives

β = β ∗ =
Λk1d2

bq1A1
.

Using the following theorem which is reproduced from
References [41] we will be able to determine whether or
not the system (5) exhibits backward bifurcation atR0 = 1.

Theorem 1.Consider the following general system of
ordinary differential equations with a parameter φ

dx
dt

= f (x,φ)

,

f : Rn ×R→ R

and

f ∈C
2(Rn ×R),

where 0 is an equilibrium point of the system (i.e. f (0,φ)≡
0 for all φ) and

1. A = Dx f (0,0) = ( ∂ fi
∂x j

(0,0)) is the linearization

matrix of the system around the equilibrium 0 with φ
evaluated at 0;

2. Zero is a simple eigenvalue of A and other eigenvalues
of A have negative real parts;

3. Matrix A has a right eigenvector w and a left
eigenvector v corresponding to the zero eigenvalue.
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Let fk be the kth component of f and

a1 = Σn
k,i, j=1vkwiw j

∂ 2 fk

∂xi∂x j
(0,0),

b1 = Σn
k,i=1vkwi

∂ 2 fk

∂xi∂φ
(0,0),

then the local dynamics of the system around the
equilibrium point 0 is totally determined by the signs of
a1 and b1. Particularly, if a1 > 0 and b1 > 0, then a
backward bifurcation occurs at φ = 0.

3.1.1 Eigenvalues ofJβ ∗

It can be easily seen that the Jacobian withβ = β ∗ of the
linearized system has a simple zero eigenvalue and all the
other eigenvalues have negative real parts. Hence, the
center manifold theory can be used to analyze the
dynamics of the system (5) near β = β ∗. For the case
whenR0 = 1, using the technique in Castillo-Chavez and
Song [41], it can be shown that the matrixJβ ∗ has a right
eigenvector (corresponding to the zero eigenvalue), given
by w = [w1 w2 w3 w4 w5 w6 w7]

T , where

w1 = w2 = 0, w3 =
k1(d4+ l1)

bβ ρτ
w7, w4 = 0,

w5 =
d5(d4+ l1)

d4ρτ
w7, w6 =

(d4+ l1)
ρτ

w7, w7 = w7 > 0.

Similarly, the matrix Jβ ∗ has a left eigenvector
(corresponding to the zero eigenvalue), denoted by
v = [v1 v2 v3 v4 v5 v6 v7], where

v1 = v2 = v4 = v5 = v7 = 0, v3 = v3 > 0, v6 =
d2

bβ
v3.

Computation of a1:

For the system (5), the associated non-zero partial

derivatives are given by

∂ 2 f3
∂x3∂x5

=
∂ 2 f3

∂x5∂x3
=

cβ (x6+ x7)

x2
5

, (6a)

∂ 2 f3
∂x3∂x6

=
∂ 2 f3

∂x6∂x3
=−

cβ
x5

, (6b)

∂ 2 f3
∂x3∂x7

=
∂ 2 f3

∂x7∂x3
=−

cβ
x5

, (6c)

∂ 2 f3
∂x5∂x6

=
∂ 2 f3

∂x6∂x5
=−

cβ (x2− x3)

x2
5

, (6d)

∂ 2 f3
∂x5∂x7

=
∂ 2 f3

∂x7∂x5
=−

cβ (x2− x3)

x2
5

, (6e)

∂ 2 f3
∂x2

5

=
cβ (x2− x3)(x6+ x7)

x3
5

, (6f)

∂ 2 f6
∂x3∂x5

=
∂ 2 f6

∂x5∂x3
=

bβ (x6+ x7)

x2
5

, (6g)

∂ 2 f6
∂x3∂x6

=
∂ 2 f6

∂x6∂x3
=−

bβ
x2

5

, (6h)

∂ 2 f6
∂x3∂x7

=
∂ 2 f6

∂x7∂x3
=−

bβ
x2

5

, (6i)

∂ 2 f6
∂x5∂x6

=
∂ 2 f6

∂x6∂x5
=

bβ x3

x2
5

, (6j)

∂ 2 f6
∂x3∂x6

=
∂ 2 f6

∂x6∂x3
=

bβ x3

x2
5

, (6k)

∂ 2 f6
∂x2

5

=
bβ (x5− x6− x7)x3

x3
5

. (6l)

It follows from the above expressions that

a1 =
2cβ v3

x5

{

w3

[

w5

(

x6+ x7

x5

)

− (w6+w7)

]}

+
2cβ v3

x5

{

(x2− x3)w5

[

2w5

(

x6+ x7

(x5)2

)

− (w6+w7)

]}

+
2bβ v6

(x5)2 {w3 [w5 (x6+ x7)− (w6+w7)]}

+
2bβ v6

(x5)2

{

x3w5

[

2w5

(

x5− (x6+ x7)

x5

)

+(w6+w7)

]}

= 2
k1d2

bq1A1
{(w3−w6−w7)cv3d4− cv3d4A1w5(w6+w7)}

−2
k1d2

bq1A1

{

bv6d2
4

Λ
w3(w6+w7)

}

Computation of b1:

For the computation ofb1, it is found that the associated
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non-zero partial derivatives are

∂ 2 f3
∂x3∂β ∗

=
−c(x6+ x7)

x5
, (7a)

∂ 2 f3
∂x5∂β ∗

=
−c(x2− x3)(x6+ x7)

x2
5

, (7b)

∂ 2 f3
∂x6∂β ∗

=
c(x2− x3)

x5
, (7c)

∂ 2 f3
∂x7∂β ∗

=
c(x2− x3)

x5
, (7d)

∂ 2 f3
∂x3∂β ∗

=
b(x5− x6− x7)

x5
, (7e)

∂ 2 f3
∂x5∂β ∗

=
b(x6+ x7)x3

x2
5

, (7f)

∂ 2 f3
∂x6∂β ∗

=
−bx3

x5
, (7g)

∂ 2 f3
∂x7∂β ∗

=
−bx3

x5
. (7h)

It follows from the above expressions that

b1 = v3

{

c

(

x2− x3

x5

)

(w6+w7)

}

−v3

{

c

(

x∗6+ x7

x5

)

×

[

w3+w5

(

x∗2− x∗3
x5

)]}

+bv6

{

w3−
x3

x5
(w6+w7)

}

−bv6

{(

x6+ x7

x5

)[

w5

(

x3

x5

)

−w3

]}

= v3c
A1d4

Λ
(w6+w7)+ v6bw3 > 0

Thus, the following result is established.

Theorem 2.The model exhibits backward bifurcation at
R0 = 1 whenever a1 is positive.

4 Stability Analysis and Numerical
Simulation

4.1 Stability Analysis

The local stability results of the equilibria are established
using variational matrix method and are stated in the
following theorem.

Theorem 3.The equilibrium point E1(0,0,0,0, Λ
d4
,0,0) is

locally asymptotically stable if d2(d1 + m) > gm. The

equilibrium point E2

(

L∗
v ,N

∗
v = m L∗v

d2
,0,0, Λ

d4
,0,0

)

is

locally asymptotically stable if (d1+2αL∗
v +m)d2 > gm.

The disease free equilibrium point

E3

(

L∗
v ,N

∗
v ,0,P

∗, Λ
d4
,0,0

)

is locally asymptotically stable

when R0 < 1 and h1h2− h3 > 0, where h1, h2 and h3 are
given in the proof of this theorem. The endemic
equilibrium point E4

(

L∗
v ,N

∗
v , I

∗
v ,P

∗,N∗
h , I

∗
h ,R

∗
h

)

is locally
asymptotically stable provided
g1 > 0, g1g2 − g3 > 0, ui > 0, i = 1,3,4
& u1u2u3 > u2

3+ u2
1u4, where gi and ui are given in the

proof of the theorem.

Proof. The variational matrix corresponding to the system
(2) is given by

M =











a11 g 0 −γLv 0 0 0
m −d2 0 0 0 0 0
0 a32 −a32−d2 0 a35 a36 0

kγP 0 0 kγLv−d3 0 0 0
0 0 0 0 −d4 −d5 0
0 0 a63 0 a65 a67−k1 a67
0 0 0 0 0 ρτ −(d4+l1)











where

a11 = −(d1+2αLv +m+ γP),

a32 = cβ
(

Ih +Rh

Nh

)

,

a35 = −cβ
(

(Nv − Iv)(Ih +Rh)

N2
h

)

,

a36 = cβ
(

Nv − Iv

Nh

)

,

a63 = bβ
(

Nh − Ih −Rh

Nh

)

,

a65 = bβ
(

(Ih +Rh)Iv

N2
h

)

,

a67 = −bβ
(

Iv

Nh

)

The variational matrix corresponding to the system ((2)) at

the equilibrium pointE1

(

0,0,0,0, Λ
d4
,0,0

)

is given by

M1 =



















−(d1+m) g 0 0 0 0 0
m −d2 0 0 0 0 0
0 0 −d2 0 0 0 0
0 0 0 −d3 0 0 0
0 0 0 0 −d4 −d5 0
0 0 bβ 0 0 −k1 0
0 0 0 0 0 ρτ −(d4+ l1)



















.

Here five roots of the characteristic polynomial
corresponding to the matrix M1 are
−(d4+ l1),−d4,−d3,−d2 and−k1 = −(d4+ d5+ τ) and
other two roots are given by the roots of the following
quadratic equation,

λ 2+(d1+ d2+m)λ + {d2(d1+m)− gm}= 0.

From the above quadratic equation, it is clear this
equilibrium pointE1 is stable ifd2(d1+m)> gm.

The variational matrix at the equilibrium point

E2

(

L∗
v ,m

L∗v
d2
,0,0, Λ

d4
,0,0

)

is given by
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M2 =











−(d1+2αL∗v+m) g 0 −γL∗v 0 0 0
m −d2 0 0 0 0 0
0 0 −d2 0 0 0 0
0 0 0 −d3 0 0 0
0 0 0 0 −d4 −d5 0
0 0 bβ 0 0 −k1 0
0 0 0 0 0 ρτ −(d4+l1)











Here also five roots of the characteristic polynomial of
this variational matrix are−(d4+ l1),−d4,−d3,−d2 and
−k1 =−(d4+d5+τ) and other two roots are given by the
roots of the following quadratic equation,

λ 2 +(d1+ d2+2αL∗
v +m)λ

+{(d1+2αL∗
v +m)d2− gm}= 0.

From above quadratic equation, it is clear that the
equilibrium point E2 is locally asymptotically stable if
(d1+2αL∗

v +m)d2 > gm.

The variational matrix at the equilibrium point

E3

(

L∗
v ,N

∗
v ,0,P

∗, Λ
d4
,0,0

)

is given by

M3 =

















− f11 g 0 −γLv 0 0 0
m −d2 0 0 0 0 0

0 0 −d2 0 0 cβ
(

Nv

Nh

)

0

kγP 0 0 kγLv−d3 0 0 0
0 0 0 0 −d4 −d5 0
0 0 bβ 0 0 −k1 0
0 0 0 0 0 ρτ −(d4+l1)

















where f11 = (d1 + 2αL∗
v + m + γP∗). Clearly two

eigenvalues of this matrix are−(d4+ l1), and−d4. Two
of the remaining five eigenvalues are the eigenvalues of
the following matrix

(

−d2 cβ
Nv

Nh
bβ −k1

)

.

The two eigenvalues of this matrix are given by
following quadratic equation

λ 2+(d2+ k1)λ + d2k1−
bcβ 2N∗

v

N∗
h

= 0.

Substituting the values ofN∗
h andN∗

v , the above equation
becomes

λ 2+(d2+ k1)λ + d2k1

(

1−
bcβ 2A1d4

Λk1d2

)

= 0.

So roots of this quadratic have negative real parts provided
the basic reproduction numberR0 < 1.

The remaining three eigenvalues of the matrixM3 are
the eigenvalues of the following matrix





− f11 g −γL∗
v

m −d2 0
kγP∗ 0 kγL∗

v − d3



 .

The three eigenvalues of this matrix are given by the
following cubic equation inλ ,

λ 3+ h1λ 2+ h2λ + h3 = 0,

where

h1 = −[ f11+ d2+ d3− kγL∗
v],

h2 = −d2(kγL∗
v − d3)+ [− f11(kγL∗

v − d3)+ kγ2L∗
vP∗]

+ f11d2−mg,

h3 = −kγ2d2L∗
vP∗+(kγL∗

v − d3)( f11d2−mg).

By Routh Hurwitz criteria, roots of this cubic equation
will have negative real parts ifh1h2 − h3 is positive.
Hence the equilibrium pointE3 is locally asymptotically
stable providedR0 < 1 & h1h2 > h3 .

The variational matrix at the equilibrium point
E4
(

L∗
v ,N

∗
v , I

∗
v ,P

∗,N∗
h , I

∗
h ,R

∗
h

)

is given by

M4 =











b11 g 0 −γLv 0 0 0
m −d2 0 0 0 0 0
0 b32 −b32−d2 0 b35 b36 0

kγP 0 0 kγLv−d3 0 0 0
0 0 0 0 −d4 −d5 0
.0 0 b63 0 b65 b67−k1 b67
0 0 0 0 0 ρτ −(d4+l1)











where

b11 = −(d1+2αLv +m+ γP),

b32 = cβ
(

Ih +Rh

Nh

)

,

b35 = −cβ
(

(Nv − Iv)(Ih +Rh)

N2
h

)

,

b36 = cβ
(

Nv − Iv

Nh

)

,

b63 = bβ
(

Nh − Ih −Rh

Nh

)

,

b65 = bβ
(

(Ih +Rh)Iv

N2
h

)

,

b67 = −bβ
(

Iv

Nh

)

.

The eigenvalues of this variational matrix are given by the
roots of the following two equations inλ : λ 3 + g1λ 2 +
g2λ +g3 = 0 andλ 4+u1λ 3+u2λ 2+u3λ +u4 = 0 which
are the characteristic equations of the following matrices
respectively:





− f11 g −γL∗
v

m −d2 0
kγP∗ 0 kγL∗

v − d3



 ,







b33 b35 b36 0
0 −d4 −d5 0

b63 b65 b66 b67
0 0 ρτ b77






.

where

g1 = −[ f11+ d2+ d3− kγL∗
v],

g2 = −d2(kγL∗
v − d3)+ [− f11(kγL∗

v − d3)+ kγ2L∗
vP∗]

+ f11d2−mg,

g3 = −kγ2d2L∗
vP∗+(kγL∗

v − d3)( f11d2−mg),
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Table 2: Parameter Values and References

Parameter Baseline value Reference

g 30 [23]
k 0.0005 [23]
α 0.001 Assumed
m 1/16 [23]
γ 0.0005 Assumed
β 0.25 Assumed
b 0.5 [23]
c 0.5 [23]
Λ 0.5 [24]
ρ 0.01 [23]
l1 0.014 Assumed
τ 0.1 Assumed
d1 0.1 [23]
d2 0.1 [23]
d3 1/365 [23]
d4 1/(70×365) [23,24]
d5 10/(70×365) Assumed

u1 = b33− d4+ b66+ b77,

u2 =

∣

∣

∣

∣

b33 b35
0 −d4

∣

∣

∣

∣

+

∣

∣

∣

∣

−d4 −d5
b65 b66

∣

∣

∣

∣

+

∣

∣

∣

∣

b66 b67
ρ b77

∣

∣

∣

∣

+

∣

∣

∣

∣

b33 b36
b63 b66

∣

∣

∣

∣

+

∣

∣

∣

∣

−d4 0
0 b77

∣

∣

∣

∣

+

∣

∣

∣

∣

b33 0
0 b77

∣

∣

∣

∣

,

u3 =

∣

∣

∣

∣

∣

∣

b33 b35 b36
0 −d4 −d5

b63 b65 b66

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

b33 b36 0
b63 b66 b67
0 ρτ b77

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

b33 b35 0
0 −d4 0
0 τ b77

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

−d4 −d5 0
b65 b66 b67
0 ρτ b77

∣

∣

∣

∣

∣

∣

,

u4 =

∣

∣

∣

∣

∣

∣

∣

b33 b35 b36 0
0 −d4 −d5 0

b63 b65 b66 b67
0 0 ρτ b77

∣

∣

∣

∣

∣

∣

∣

.

By Routh Hurwitz criteria, roots of this cubic equation
will have negative real parts ifui > 0, i = 1,3,4
& u1u2u3 > u2

3+ u2
1u4. Hence the equilibrium pointE4 is

locally asymptotically stable provided
g1 > 0, g1g2 − g3 > 0, ui > 0, i = 1,3,4
& u1u2u3 > u2

3+ u2
1u4.

4.2 Numerical simulation

At first we demonstrate the backward bifurcation for the
model (2) by consideringβ as the bifurcation parameter.
All other parameter values are as in Table 2. The
bifurcation diagram is obtained by varyingβ and
corresponding values ofR0 is placed along the x-axis for
better visualization of this phenomenon. Here Figures 2 &

3 are showing the backward bifurcation. Figure 3 is
showing the effect of rate of treatmentτ on the dynamics
of this disease. From the Figure 3, it can be observed that
there is a shift in the backward bifurcation curves with the
increase in the value ofτ, i.e., the increase in the rate of
treatment is causing the backward bifurcation curve to
shift to right, which leads to increase in theRc

0 (the
critical value of theR0). From this figure it is easy to
visualize that the further increase inτ can forceRc

0 to
shift towards 1. As in the case of backward bifurcation,
one need to lower theR0 value belowRc

0 to get the
disease-free equilibrium to be stable, so increase in it
showing the positive impact of the treatment. The
biological interpretation of this is that the increase in the
rate of treatment can lead to disappearance of the
backward bifurcation curve and in this case loweringR0
below one will be sufficient to eliminate the disease from
the population. So if the rate of treatment is high enough,
we will have only forward bifurcation and loweringR0
below one would be sufficient to make the disease-free
equilibrium to be globally stable. This fact is
demonstrated in Figure 4, where the rate of treatmentτ is
taken as 1 and we have only the forward bifurcation. The
system (2) is simulated for various set of parameters
satisfying the conditions of local asymptotic stability of
different equilibria E1 and E2 by fourth order
Runge–Kutta method. To exhibit the stability of the DFE
E1 we considered the parametersg = 10,β = 0.14 and all
the other parameters are taken from Table 2. In a similar
way to show the stability of EEE2, we considered the
parametersg = 10 and all the other parameters are taken
from Table 2. The stability of these equilibria are
demonstrated in Figures 5, 6, 7 & 8.

5 The Optimal Control Model

Here in this section we have extended the basic model (1)
to optimal control model by introducing the time
dependent variableu(t) which is representing the
insecticide control. We shall use Pontryagin’s Maximum
Principle (see [25,42,43,44], etc.) to analyze this model.
Our aim is to find the minimal effort required to decrease
the mosquitoes population considering the cost of
insecticide application, while minimizing the cost of
implementation of such measures. The optimal control
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Fig. 2: Variation of the equilibrium level ofIh with β showing the backward bifurcation of the model (2) where all the other parameters
are given in Table 2.
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Fig. 3: Effect of τ on the backward bifurcation curve where all the other parameters are given in Table 2.
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Fig. 4: Variation of the equilibrium level ofIh with β showing the forward bifurcation of the model (2) for the parameter valuesΛ = 0.9,
k = 0.00101,τ = 1 and all the other parameters are given in Table 2.
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Fig. 5: Variation of Ih andRh with time showing the stability of the disease-free Equilibrium whenR0 < 1 for the parameter values
g = 10,β = 0.14 and all the other parameters are given in Table 2.
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Fig. 6: Variation ofLv, Nv andIv with time showing the stability of the disease-free Equilibrium whenR0 < 1 for the parameter values
g = 10,β = 0.14 and all the other parameters are given in Table 2.
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Fig. 7: Variation ofIh andRh with time showing the stability of endemic equilibrium whenR0 > 1 for the parameter valuesg = 10 and
all the other parameters are given in Table 2.
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Fig. 8: Variation ofLv,Nv andIv with time showing the stability of endemic equilibrium whenR0 > 1 for the parameter values g = 10
and all the other parameters are given in Table 2.

model to be optimized is given below:

L′
v = gNv − d1Lv −αL2

v −mLv − γLvP, (8a)

S′v = mLv − cβ Sv
(Ih +Rh)

Nh
− (d2+ u(t))Sv, (8b)

I′v = cβ Sv
(Ih +Rh)

Nh
− (d2+ u(t))Iv, (8c)

P′ = kγLvP− d3P, (8d)

S′h = Λ − bβ Sh
Iv

Nh
− d4Sh +[(1−ρ)τ]Ih+ l1Rh, (8e)

I′h = bβ Sh
Iv

Nh
− (d4+ d5+ τ)Ih, (8f)

R′
h = ρτIh − (d4+ l1)Rh, (8g)

Here insecticide controlu(t) is applied only to adult form
of mosquitoes assuming that this control is effective only
in the adult stage and not in the aquatic phase. The
objective (cost) functional corresponding to this optimal
control model (8) is given by

J(u) =
∫ T

0

(

C1Sv +C2Iv +
1
2

C3u2)dt, (9)

subject to the state system given by (8).
Our objective is to find a controlu∗ such that

J(u∗) = min
u∈Ω

J(u) where

Ω = {u: is measurable and 0≤ u(t)≤ 1 } for t ∈ [0,T ] is
the set for the control.

Here, the valueu(t) = 1 represents the maximal
control due to insecticide effect. The quantitiesC1 andC2

represent, respectively, the weight constants of the
susceptible and infected mosquito populations. On the
other hand,C3 is weight constant for mosquito control.
The term C3u2 describes the cost associated with
mosquito control.

The Lagrangian of this problem is given by

L(Sv, Iv,u) =C1Sv +C2Iv +
1
2

C3u2. (10)

Next we form the Hamiltonian H for our problem as
follows:

H = L(Sv, Iv,u)+λ1
dLv

dt
+λ2

dSv

dt
+λ3

dIv

dt
+λ4

dP
dt

+λ5
dSh

dt
+λ6

dIh

dt
+λ7

dRh

dt
,

where λi, i = 1, . . . ,7 are the adjoint variables or the
co-state variables and can be determined by solving the
following system of differential equations:
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λ
′

1 = −
∂H
∂Lv

= λ1[−d1−2αLv −m− γP]

+λ2m+λ4kγP, (11a)

λ ′
2 = −

∂H
∂Sv

= λ2[−cβ
(Ih +Rh)

Nh
− (d2+ u(t))]

+λ3cβ
(Ih +Rh)

Nh
, (11b)

λ
′

3 = −
∂H
∂ Iv

=−λ3(d2+ u(t))−λ5bβ
Sh

Nh
+λ6bβ

Sh

Nh
,(11c)

λ
′

4 = −
∂H
∂P

=−λ1γLv +λ4[kγLv − d3], (11d)

λ
′

5 = −
∂H
∂Sh

=−λ5[bβ
Iv

Nh
− d4]+λ6[bβ

Iv

Nh
], (11e)

λ
′

6 = −
∂H
∂ Ih

=−λ2[cβ
Sv

Nh
]+λ3[cβ

Sv

Nh
]

+λ5[(1−ρ)τ]−λ6(d4+ d5+ τ)+λ7(ρτ), (11f)

λ
′

7 = −
∂H
∂Rh

=−λ2[cβ
Sv

Nh
]+λ3[cβ

Sv

Nh
]

+λ5l1−λ7(d4+ l1). (11g)

Let L̃v, S̃v, Ĩv, P̃, S̃h, Ĩh andR̃h be the optimum values of
Lv,Sv, Iv,P,Sh, Ih and Rh respectively. Also let
{λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6, λ̃7} be the solutions of the system
(11).

We now state and prove the following theorem by
following [45].

Theorem 4.There exists optimal controls u∗ ∈ Ω such
that

J(u∗) = min
u ∈ Ω

J(u)

subject to the system (8).

Proof.We use [45] to prove this theorem. Here the control
and the state variables are nonnegative values. The
necessary convexity of the objective functional inu is
satisfied for this minimizing problem. The control
variable set u ∈ Ω is also convex and closed by
definition. The optimal system is bounded which
determines the compactness needed for the existence of
the optimal control. In addition, the integrand in the
functional (9), C1Sv + C2Iv +

1
2C3u2 is convex on the

control setΩ and the state variables are bounded. This
completes the proof of this theorem.

Since there exists an optimal control for minimizing
the functional subject to equations (8) and (11), we use
Pontryagin’s Maximum Principle to derive the necessary
conditions to find the optimal solution as follows:
If (x,u) is an optimal solution of an optimal control
problem, then there exists a non trivial vector function
λ = (λ1,λ2, ........,λn) satisfying the following equalities.

dx
dt = ∂H(t,x,u,λ )

∂λ ,

0 = ∂H(t,x,u,λ )
∂u ,

λ ′ = − ∂H(t,x,u,λ )
∂x .

(12)

With the help of Pontryagin’s Maximum Principle [1] we
now state and prove the following theorem.

Theorem 5.The optimal control u∗ which minimizes J over
the region Ω is given by

u∗ = max{min(ũ,1),0} (13)

where

ũ =
λ̃2S̃v + λ̃3Ĩv

C3
.

Proof.Using the optimality condition

∂H
∂u

= 0

u =
λ̃2S̃v + λ̃3Ĩv

C3
(= ũ).

This control is bounded with upper and lower bounds as 0
and 1 respectively,i.e. u = 0 if ũ < 0 andu = 1 if ũ > 1
otherwiseu = ũ. Hence for this control(u∗), we get the
optimum value of the functionalJ given by equation (9).
Hence the theorem.

5.1 Numerical Simulation for the optimal
control problem

In this section the effect of optimal control by introducing
insecticide controlu(t) on the basic model (2) has been
shown through simulation. The parameters used for the
simulation purpose are as stated in Table 2, except the
parameterg which is 3.3. Moreover, the time interval for
which the optimal control is applied is taken as 100 days.
We compared the results of optimal control model (8)
with the results of model (2). The optimality system in
Section5 is solved by iterative method with the help of
Runge–Kutta fourth order procedure (see Jung et al.[46],
Lenhart and Workman[47], etc.). At first we solve the
state equations by the forward Runge–Kutta fourth order
procedure for the time interval [0, 100] starting with an
initial guess for the adjoint variables. Then we use the
backward Runge–Kutta fourth order procedure to solve
the adjoint variables in the same time interval with the
help of the solutions of the state variables and the
transversal conditions. From Figure 9, it is evident that
the control takes the highest value 1 in the beginning and
it has to be maintained up to 20 days then the usage of
insecticide can be relaxed but to be maintained at certain
level then it has to be reached to the minimum value 0 at
the final timeT = 100 days. From these we conclude that
the insecticide control is to be maintained at certain level
up to certain days according to the duration of the optimal
strategy period to get the desired optimal value for the
functional (9). Figures 10-14 represent the plots of
Ih, Iv, Lv, Nh, Nv and Rh with and without optimal
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Fig. 9: Control profile of the parameteru(t) (insecticide control) of the model (8) for the parameter valuesg = 3.3, β = 0.3 and all the
other parameter values are as given in Table 2.
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Fig. 10: Simulations of the malaria model showing the effect of the optimal control strategy onIh.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1908 S. Athithan, M. Ghosh: Stability Analysis and Optimal Control of a Malaria Model...

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

Time (in days)

I v

 

 

Without control
With control

Fig. 11: Simulations of the malaria model showing the effect of the optimal control strategy onIv.
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Fig. 12: Simulations of the malaria model showing the effect of the optimal control strategy onLv.
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Fig. 13: Simulations of the malaria model showing the effect of the optimal control strategy onNh.
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Fig. 14: Simulations of the malaria model showing the effect of the optimal control strategy onNv.
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Fig. 15: Simulations of the malaria model showing the effect of the optimal control strategy onRh.
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Fig. 16: Plots of the adjoint variablesλ j, j = 1,2. . .4.
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Fig. 17: Plots of the adjoint variablesλ j, j = 5,6,7.

control respectively. From these figures it is evident that
the implementation of optimal control strategies produces
better results in the sense that it decreases the
infected/infectious population.

From Figures 16 & 17 it is evident that the adjoint
variables are directly related to the change of the value of
the Hamiltonian as the time derivatives of the adjoint
variables are negative of the corresponding partial
derivatives of the Hamiltonian,H with respect to the state
variables.

6 Conclusion

Here a nonlinear mathematical model for malaria is
formulated and analyzed by incorporating the effect of
introduction of larvivorous fish as biological control
agent. The expression for the basic reproduction number
R0 is computed and equilibria of the model are found.
The stability of these equilibria are discussed in detail. It
is observed that system may exhibit backward bifurcation
under some restriction on parameters. This fact is also
demonstrated numerically. Here the bifurcation parameter
β is involved in the disease transmission but it is found
that the rate of treatment also plays an important role in
the occurrence of backward bifurcation. In fact the rate of
treatment has positive impact on the elimination of
malaria as increase in it forcesRc

0 to move towards 1,
leading to disappearance of backward bifurcation. And
when there is no backward bifurcation, system exhibits

only forward bifurcation and in this case reducingR0
below 1 becomes sufficient to eliminate the disease from
the population.

Further the basic model is extended to an optimal
control problem to study the dynamics of the disease by
introducing the insecticide control parameter.
Pontryagin’s maximum principle is used to solve this
optimal control problem. Later, numerical simulation is
performed to see the effect of optimal control on the
dynamics of this disease. Simulation results predict that
the optimal control model gives better results compared to
the model without optimal control.
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