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Abstract: Effective optical quadrupole traps and a planar array of optical wells based on the interference of two optical beams are
proposed. Due to this interference a sort of variety distributions are created with intensity maxima and minima that canbe used to
trap atoms that have transition frequencies appropriatelydetuned from the frequencyω of the light. This technique assists to avoid
some undesirable effects of single beam interaction such asdestabilizing dissipative force as well as it enhances the magnitude of
quadrupole force. In particular, the mutual coupling of twoco and counter-propagating Hermite-Gaussian light beams is presented.
Both configurations could be turn out to make quadrupole interaction more exploitable to manipulate the spatial position of trapped
atoms..
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1 Introduction

One of the primary aims, yet to be fully accomplished in
the rapidly developing field of quantum optics is the trap
small objects to well defined, and often predetermined,
regions in space. The idea was first put forward by Ashkin
in 1970. He showed the use of optical forces to capture
and manipulate micrometer sized particles [1]. Since
then, optical traps have become influential tools for the
trapping and manipulating of different particles, such as
micro-sized dielectric particles, neutral atoms, DNA
molecules, living biological cells and metallic particles
[2,3,4,5].

It is known that two types of optical forces are
identified in the optical traps: gradient force and
dissipative force. The gradient force is proportional to the
gradient of the square of the electric field and is
responsible to pull the particles towards the center of the
focus. The dissipative force is due to the net momentum
transfer caused by spontaneous-absorption of photons
from the particles and tend to push the particles out of the
focus, and destabilize the optical trap [6].

The optical traps have been the subject of numerous
previous studies and formed a topic of considerable
interest in the context of both theoretical and
experimental works where are employed only as the

electric dipole transition [7,8,9]. So, Higher-order
processes such as magnetic dipole and electric
quadrupole transitions also play an important part in the
light emission from transition metal ions and
semiconductor quantum dots. Nevertheless, most
applications have overlooked the device implications of
these electric-dipole-forbidden transitions throughoutthe
visible and near-infrared regime, and their contributions
to many important emitters have not been fully
characterized [10,11].

Here we carefully analyze electric quadrupole effects
in the interaction of atoms with planar array of optical
wells that generated by Hermite-Gaussian beams. These
classes of beam are a family of structurally stable laser
beams which have rectangular symmetry along the
propagation axis and are described by the product of
Hermite polynomials and Gaussian functions. The aim is
to explore the spatial dependence of the quadrupole
forces and its magnitude, and the consequences of this on
the atom trapping. These will be evaluated with recent
experimental parameters in order to determine the
possibility of using the quadrupole interaction in the
sufficient atom trapping processes. We believe this topic
is definitely interesting because now a lot of new devices
based on atoms in lattices are under development.
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2 General Theory

2.1 Quadrupole interaction

The system consists of an atom , modeled here as a
neutral two-particle hydrogenic atom possessing only two
energy levels, a ground state, denoted|g〉 of energyEg,
and an excited state|e〉 of energy Ee, such that the
resonance frequency isω0 = (Ee−Eg)/h̄. At what time
the atom interacts with the electromagnetic field of
frequencyω , the total Hamiltonian for the atom plus field
can be written as the sum of three terms

Ĥ = ĤA+ ĤF + Ĥint (1)

whereHA andHF are the zero-order Hamiltonians for the
atom and the Hermite-Gaussian field, respectively,

ĤA =
(

P2/2M
)

+ h̄ω0π†π (2)

ĤF = h̄ωa†a (3)

Hereπ andπ† are the ladder operators for the two-level
system;P is the center-of-mass momentum operator with
M the mass andω0 the dipole transition frequency. The
operatorsa and a† enteringĤF are the annihilation and
creation operators of the field andω is its frequency. The
interaction HamiltonianĤint involves the coupling of the
electric polarizationp(r) to the electric field vector, as
follows

Ĥint =−
∫

d3r p(r).E(r) (4)

The explicit form of the polarization fieldp(r)is

p(r) = e
∫ 1

0
ds(q−R)δ (r −R− s(q−R)) (5)

whereR is the center-of-mass coordinate and(q−R) is
the internal position variable relative to the center of
mass. Expansion of the polarization fieldp(r) in a
multipolar series about the center of massR followed by
integration with respect tor, yields up to quadrupolar
order,

Ĥint = Ĥd + ĤQ+ .... (6)

where Ĥd is the coupling of field to the electric dipole
moment andĤQ is the coupling to the electric quadrupole
moment. Explicitly we have

Ĥd =−d.E(R) (7)

whered = ex is the electric dipole moment operator with
x = (q−R). The quadrupole term is then explicitly given
by

ĤQ =−1
2

exix j∇iE j(R) (8)

where the Einstein summation convention is applicable.
Herexi are the components of the internal position vector
x = (x,y,z)and ∇i are components of the gradient
operator that act only on the spatial coordinate of the
transverse electric field vectorE as function of the
center-of-mass variableR.

2.2 Beam Structure

The Hermite-Gaussian beam characterized by the quantum
numbersn andm propagating along theX direction with
an axial wave vectork is such that its quantized electric
field as a function of the center-of-mass coordinateR=
(X,Y,Z), has the form [12]

Eknm(R) = ı̂ξk00 ·Fknm(R) · âknmexpiθknm(Z)+H.c. (9)

whereFknm(R)is given by

Fknm(R) =Cnm· w0
w(Z) exp

[

−ik (X2+Y2)
2R(Z)

]

×exp
[

−(X2+Y2)
w2(Z)

]

×
Hn

(√
2X

w(Z)

)

×Hm

(√
2Y

w(Z)

)

(10)
where Cnm = [2/(2n+mn!m!π)]1/2is the normalization
constant of the Hermite-Gaussian function.θ is the phase
of the mode

θknm(Z) = (n+m+1) tan−1 (Z/ZR)+ kZ (11)

HereHn(.)andHm(.) are the Hermite polynomials andw0
the radius at which the Hermite-Gaussian beam amplitude
and intensity drop to 1/e and 1/e2 of their axial values,
respectively,

w2(Z) = (Z2
R+Z2)/kZR (12)

The positionZ = 0, referred to as the Hermite-Gaussian
beam waist, corresponds to the waist sizew0 of the
Hermite-Gaussian beam, such that:w2

0 = 2ZR/k. ξk00 is
the constant amplitude of a plane wave of the same
intensity and ˆaknm is the annihilation operator for the field
beam, whileH.c. stands for Hermitian conjugate. In order
not to obscure the main purpose of this investigation by
avoiding cluttered formalism, we have assumed that the
Hermite-Gaussian beam has a long Rayleigh range and
we ignore all beam curvature effects.

2.3 Optical forces

The optical forces due to the dipole interaction equation
(7) with the different classes of electromagnetic field have
been extensively analyzed [7,8,9]. However, with any
electric field polarized along thex direction, the
quadrupole interaction Hamiltonian equation (8) now
takes the form

HQ =
1
2

{

Q̂xx
∂Ex

∂X
+ Q̂xy

∂Ex

∂Y
+ Q̂xz

∂Ex

∂Z

}

(13)

whereQi j = −exix j are the elements of the quadrupole
tensor operator, which for the two-level atom can be
written as

Q̂i j = Qi j (π +π†) (14)

whereQi j =
〈

1
∣

∣Qi j
∣

∣2
〉

are quadrupole matrix elements
between the two atomic levels.
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Substituting from Eq.(9) in Eq. (13) we can write the
quadrupole interaction Hamiltonian in the form

HQ = h̄ΩQ
knm(X,Y)expiθknm(Z)âknm+H.c. (15)

HereΩQ
knm(X,Y) is the complex Rabi frequency defined as

follows:

h̄ΩQ
knm(X,Y) = ξk00 ·Fknm(R)

{

Q̂xxα + Q̂xyβ + Q̂xzγ
}

(16)
where

α =
1

Hn

∂Hn

∂X
− ik

X
R(Z)

− 2X
w2(Z)

(17)

β =
1

Hm

∂Hm

∂Y
− ik

Y
R(Z)

− 2Y
w2(Z)

(18)

γ = 1
Hn

∂Hn
∂Z + 1

Hm

∂Hm
∂Z − 1

R(Z) + ik+ i(n+m+1)
kw2(Z)

+ (X2+Y2)
R(Z)

[

ik
R(Z) −

ik
2Z + 2

w2(Z)

] (19)

With both the phase and the complex Rabi frequency
defined, the steady state force on the moving atom due to
the laser beam is written

〈F〉Q
knm=

〈

FQ
diss

〉

knm
+
〈

FQ
quad

〉

knm
(20)

where
〈

FQ
diss

〉

knm
is the dissipative force

〈

FQ
diss

〉

knm
= 2h̄ΓQ

∣

∣

∣ΩQ
knm(X,Y)

∣

∣

∣

2
×







∇θknm(Z)

∆2
knm(R,V)+

∣

∣

∣ΩQ
knm(X,Y)

∣

∣

∣

2
+Γ 2

Q






(21)

and
〈

FQ
quad

〉

knm
is the quadrupole force

〈

FQ
quad

〉

knm
=−2h̄∇

∣

∣Ωeq
knm(X,Y)

∣

∣

2×







∆knm(R,V)

∆2
knm(R,V)+

∣

∣

∣
ΩQ

knm(X,Y)
∣

∣

∣

2
+Γ 2

Q






(22)

whereΓQ is the relaxation rate for the quadrupole decay
emission. The variableR(t) now denotes the position of
the atom andV = Ṙ is the velocity, both at timet, while
∆knm(R,V) is the position- and velocity-dependent
detuning,

∆knm(R,V) = ∆0−V ·∇θknm(Z) (23)

In these expressions∆0 is the static detuning defined by
∆0 = ω − ω0. The dissipative force can now be
understood as a quadrupole absorption followed by decay
emission of the light by the atom, while the quadrupole

force, which is proportional to the gradient of the Rabi
frequency, is responsible for confining the atom to the
center of the focus, depending on the detuning∆ . The
quadrupole force is derivable from a

Uqurd(X,Y) =− h̄∆0

2
ln






1+

2
∣

∣

∣ΩQ
knm(X,Y)

∣

∣

∣

2

∆2+Γ 2
Q






(24)

In experimental situations where we have large detuning
|∆ |>>

∣

∣ΩQ
∣

∣ ; |∆ |>> ΓQ the quadrupole potential can be
written to a good approximation as follows:

Uqurd(X,Y)≈− h̄
∆

∣

∣

∣
ΩQ

knm

∣

∣

∣

2
(25)

It is clear from the above expressions responsible for the
steady state atomic motion that the modulus squared Rabi

frequency
∣

∣

∣ΩQ
knm

∣

∣

∣

2
is the key factor determining the

dynamics of atoms in the electromagnetic field.
By assuming that the atom is constrained to move in

the XY plane and the quadrupole transition is such that
Qxy = 0 = Qxz. Under these circumstances the Rabi
frequency Eq. (16) takes the following form

h̄ΩQ
knm(X,Y) = ξk00 ·Fknm(R)

{

Q̂xx
1

Hn

∂Hn
∂X − ik X

R(Z) −
2X

w2(Z)

}

(26)

3 Numerical results and discussion

3.1 Typical parameters

For a suitable detuned atom and for small velocities,
equation (24) ought to give a quadrupole potential that
traps the natural atoms in the area of the minimum of the
quadrupole potential . In order to obtain this, it is fine to
concentrate on typical parameters. Thus, we consider the
62S1/2 → 52D5/2 transition in cesium atom (λ = 675nm).
In this case the quadrupole emission rate will be
Γ eq = 7.8× 105s−1 and a quadrupole matrix element is
Qxx = 10ea2

B whereaB is the Bohr radius. We assume that
the beam intensityI = 5.0× 109Wm−2. As well, we
assume a large value for the detuning∆0 = 103Γeq and the
input Gaussian waist sizew0 is taken to bew0 = 35λ .
Lastly, it is convenient to define a scaling potentialU0 as
follow

U0 =
1
2

h̄ΓEQ (27)

The scaling potentialU0 as 4.1×10−29J and this value is
equivalent to about 61.9kHz. In the figure below,
quadrupole potential is measured in units ofU0. Most
focus here will be on quadrupole potential, because it is
clear that such light field distribution is limited to use the
trapping atom as it is well-known. Consequently the
dissipative force will be dealt with only in this context
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such as the undesirable interaction operator. Thus we will
set all of our focus on how to reduce its role in the
destruction of the trapping process. With this in mind, we
will call it from now a destabilizing dissipative force.

3.2 Single beam

The spatial distribution shown in Figure 1(dots curve)is
the variation of the quadrupole potential due to the single
beam of orderTEM0,2 propagating along the positiveX
axis. It is clear that the quadrupole potential possesses
well-defined maxima and minima that can be used to trap
atoms that have transition frequencies appropriately
detuned from the frequencyω of light. The depth of this
potential is seen to be of the following order

Umin = 4.9×10−3K (28)

which is definitely not sufficiently deep to trap cesium
atoms because this magnitude of potential required that
the atom velocity must be less thanV ≈ 3.2× 10−14m/s
in order to considered stably trapped presses. This degree
of velocity is difficult to achieve in such context where
the at least velocity due to the destabilizing dissipative
force under the same conditions will be much greater
(without considering the original atomic velocity). In fact,
even we arrange that the light beam and atom move in the
opposite direction, this will not solve this serious obstacle
and it just could be give temporally very short stable
trapped presses.

However, the depth of potential can be easily
increased with increasing the order of the using beam. For
this reason, we should pay attention towards experiential
researches, the more they have generated higher order
beams, it means that get a lower depth of potential.
Experimentally, it was demonstrated that it is possible to
generate Hermite-Gaussian beams up to theTEM0,80 [13,
14].

In fact, the using of a single high-order beams will
increase both the destabilizing dissipative force and the
quadrupole potential, thus the previous obstacle is still
existed as well as, this way will give rise to the problem
of the quantum tunneling effect due to create large
number of potential wells within the spatial beam
distribution. Besides, there are alternative techniques,can
be used to enhance the depth of quadrupole potential,
these are co-propagating or counter-propagating beams
which will possess a variety of beams distribution forms
whose interference effects are predictable to enhance the
depth of potential. Co-propagating and counter
propagating beams generally mean they have the same
wavevector : for counter propagating beams the
wavevector has opposite sign, for co propagating, the
same sign. Accordingly, these ways could be turn out to
make quadrupole potential more exploitable in numerous
applications, such as those that have been used
dipole-active transitions [15,16,17].

3.3 Co-propagating beams

We have seen above that an atom immersed in a
Hermite-Gaussian beam will experience a destabilizing
dissipative force that is predominantly in the direction of
propagation and a quadrupole potential in the radial
direction. If a second beam is added propagating in the
same direction, we have a configuration that can be
referred to as the one-dimensional co-propagating beams
configuration. For independent one co-propagating beams
we can write the mean force on the atom as a sum of
forces due to individual beams

〈

Fdiss
kn1m1+kn2m2

〉

=
〈

Fdiss
kn1m1

〉

+
〈

Fdiss
kn2m2

〉

(29)

〈

Ueq
kn1m1+kn2m2

〉

=
〈

Ueq
kn1m1

〉

+
〈

Ueq
kn2m2

〉

(30)

The spatial distribution shown in Figure 1(dashes
curve) is the variation of the optical quadrupole potential
due to the co-propagating beams for same orderTEM0,2.
From this Figure (dashes curve), we see that the
quadrupole potential is simply double depth that of a
single-mode case(dots curve). It is clear that, this
configuration gives rise to a potential pushing the atom
towards the center of the focus. At the same time the
destabilizing dissipative force (not shown) coming from
both co-propagating beams is doubled as well and pushes
the atoms out of the focus which can be helped the atom
to escape from the potential.

To trap an atom, the longitudinal component of the
quadrupole potential has to balance the destabilizing
dissipative force which is very difficult to achieve in
standard situation interactions as we have mentioned
before. Although the obvious disadvantageous of the
co-propagating technique but we indicate that in some
applications, this technique can play a significant role.
For example, in recent experimental work, on the optical
interference between different twisted light beams has
revealed a rich variety of intensity distributions to
produce a so-called ‘optical Ferris wheel’ [18].

3.4 Counter-propagating beams

In the remainder of this work, we examine the
one-dimensional counter-propagating beams
configuration. This technique can be easily achieved by
making the second beam propagating in the opposite
direction. This configuration is usually used to overcome
the destabilizing dissipative forces by making the optical
molasses forces that work to cool the atoms axially. For
independent counter-propagating beams we can write the
mean force on the atom as a sum of forces due to
individual beams

〈

Fdiss
kn1m1−kn2m2

〉

=
〈

Fdiss
kn1m1

〉

+
〈

Fdiss
−kn2m2

〉

(31)
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〈

Ueq
kn1m1−kn2m2

〉

=
〈

Ueq
kn1m1

〉

+
〈

Ueq
−kn2m2

〉

(32)

Figure 1 (solid curve)depicts the spatial distribution of
the optical quadrupole potential due to the
counter-propagating beams for the same orderTEM0,2.
From Figure 1, we see that the counter-propagating
modes(solid curve), have the advantage over a single
beam(dots curve)and the co-propagating beams(dashes
curve), traps in that, they can trap strongly atoms. The
destabilizing dissipative force on an atom is cancelled due
to symmetry of the two beams along the optical axis
which can be given stably confined. At the same time, the
quadrupole potential is added resulting therefore in
powerful confinement of the atom in all directions
compared to a single-beam trap(dots curve).

Figure 1 : The quadrupole potential distribution in
milli-degrees Kelvin (mK) for Hermite-Gaussian beam of
order n = 0,m = 2. In the figure the different curves
correspond to different configuration : single beam (dots
curve); co-propagating beams (dashes curve) and
counter-propagating beams (solid curve).See the text for
the parameters used to generate these plots.

Finally, we should mention that the distance between
neighboring potential traps is bigger in the
counter-propagating beams(solid curve)comparing to the
co-propagating ones(dashes curve). This is without doubt
will give a much higher possibility of the atoms trapping
process. On the other hand, we note that in Figure spaced
of the potential minimum points is more in the
counter-propagating beams(solid curve)comparing to the
co-propagating ones(dashes curve)which means that the
probability of the atoms tunnel effect will be less.

4 Conclusions

In conclusion, our analysis has shown that the interaction
of Hermite-Gaussian light which possesses variety
distributions can lead to significant trapping process on a
two-level atoms characterized by a quadrupole-allowed

transition. We have noted that in addition to the intrinsic
importance of quadrupole-active transition as physical
entities in their own right, some technical applications can
be envisaged at this stage. In this context, we have
introduced several techniques to raise the depth of
quadrupole potential in order to ensure that the trapping
process to be effective. In each of these techniques, we
have reported the advantages and the disadvantage as well
as we have clearly determined the obstacles those are
appeared with each technique. In the end, it has become
understandable that the counter-propagation technique
was the best way to use. Mainly, it has given us a
quadrupole potential multiplier along with it has
eliminated the unwanted effects of the dissipative force.
This has made that quadrupole interactions usually
ignored for atom manipulation should to be accessible for
utilization.

Here we have considered paraxial description of
Hermite-Gaussian beam [19,20]. However this
description is valid only for weakly focused beams, where
gradients of fields are small and longitudinal electric field
is zero. Consequently we are just concerned with the
properties of Hermite-Gaussian beams in the transverse
plane as a result of this description. For this reason, in our
calculations of the quadrupole force, the longitudinal
derivation of quadrupole Rabi frequency will be
neglected, as it is too weak and cannot be utilized.
Generally, these explain why quadrupole interaction
potential is weak and is not enough for a high-quality
trapping process of atoms. We have used higher order
beams to overcome this problem. It is remarkable that the
door is still open to search for more effective ways to
support the quadrupole interactions. We think such a
study might be provided an initial step towards a more
comprehensive understanding of the nature of the
eclectic-quadrupole interaction which could be led to
further studies and tackled to investigate their influence
on atoms and molecules.
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