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Abstract: In this paper, we suggest and analyze a two-step methodlfongohe variational inequalities on Hadamard manifolthgs
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1 Introduction 2 Preliminaries

. . We recall some fundamental and basic concepts need for
In recent years, much attention have been given to StUd% reading of this paper. These results and concepts can be

the variational inequalities and related problems N und in the books on Riemannian comemy 25
Riemannian and Hadamard manifolds. This framework is . 9 . "
Let M be a simply connectedm-dimensional

a useful for the developments of various fields on manifold. Givenx € M, the tangent space ¥l at X is
nonlinear setting. Several ideas and techniques form th enoted by TM and the tangent bundle ofd by

Euclidean space have been extended and generalized — UsemTuM, which is a naturally manifold. A vector

this nonlinear framework. Hadamard manifolds are field A on M is a mapping oM into TM which associates
examples of hyperbolic spaces and geodesics,5863[ to each pointx € M, a vectorA(x) € TyM. We always

4,19,21,22] and the references therein. NemeTh [Tang assume thatl can be endowed with a Riemannian metric

et al 28 and Colao et al 2] have considered the ; . .
ot . o o to become a Riemannian manifold.. We denote by) ,
variational inequalities and equilibrium problems on the scalar product ofiM with the associated norfh .

Hadamard manifolds, In particular, Colao et &] fnd where the subscript will be omitted. Given a piecewise
Tang et al 2§ studied the existence of a solution solution ) U P
smooth curvey : [a,b] — M joining x to y (that

of the equilibrium problems under some suitable: o dvib) =) b ing th i
conditions. To the best of our knowledge, no one has's’y_(a) = x andy(b) =y, by ”S'”g € metnc, we can
considered the auxiliary principle technique for solving define the length oy as  L(y) = J, [l (t)||dt. Then, for
the variational inequalities on Hadamard manifolds. In@1 %Y € M, the Riemannian distancd(x,y), which
this paper, we use the auxiliary principle technique toincludes the original topology oM, is defined by
suggest and analyze a two-step iterative method fofhinimizing this length over the set of all such curves
solving the variational inequalites on Hadamard JOININGX1OY.

manifolds. We show that the convergence of this new Let A be the Levi-Civita connection witliM, (.,.)).
method requires only the partially relaxed strongly Letybe asmooth curve ikl. A vector fieldAis said to be
monotonicity which is a weaker condition than parallelalongy,if A,A=0.If y itself is parallel along
monotonicity. Our results represent the refinement ofy, then we say thay is a geodesic and in this cag¢||
previously known results for the variational inequalities is constant. Whetjy/|| = 1, y is said to be normalized. A
We hope that the technique and idea of this paper maygeodesic joining to y in M is said to be minimal, if its
stimulate further research in this area. length equalsl(x,y).
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A Riemannian manifold is complete, if for aye M From the law of cosines in inequality (3), we have the
all geodesics emanating fraxare defined for all € R. By following inequality, which is a general characteristic of
the Hopf-Rinow Theorem, we know thatVf is complete,  the spaces with nonpositive curvatupsj
then any pair of points itM can be joined by a minimal
geodesi%:.pMoreO\?e(M d)isa compiete metr);c space and (&% ly.exp 2 + (exg tx.exgt2) > d¥(xy). (4)
bounded closed subsets are compact. From the properties of the exponential map, we have the

Let M be complete. Then the exponential map following known result.
exp : kM — M atx is defined by expv = k(1,X)  Lemma 2.4 R5. Let Xy € M and {x,} € M such that
for eachv € TyM, wherey(.) = w(.,x) is the geodesic x, — xo. Then the following assertions hold.

starting at X with velocity (i). For anyy € M,
viie,y(0) = x and y(0) = v Thus . . . .
exptv = K(t,x) for each real number expy —expoy and  expX, — exp,~ Xo.

A Comp!ete Slmply connected Riemannian manifold (||) If {Vn} is a sequence such tha]te TXnM and\/n SN
of nonpositive sectional curvature is calleddadamard v, then v e T M.

manifold. Throughoyt the remainder of §h|s paper, we (iii). Given the sequencesun} and {vy} satisfying
always assume th is a Hadamardn manifold. Uve € .M. If u U and v Ve with
. . n, Vn Xn VI n — Uo h — Vo
We also recall the following well known results, which T.M.th
. Up, Vo € Tx,M, then
are essential for our work.

Lemma 2.1 25]. Letxe M. Thenexp: M — Misa  {(Un:Vn) — (Uo, Vo).
diffeomorphism, and for any two pointsy € M, there

\?v)ﬂiStﬁ ia ;?;?;elnormalized geodesic joinkgo Y, Ky, pointsx,y € K, the geodesic joining andy is contained
chis al. ) _in K, that is, if, y: [a,b] — M is a geodesic such that
~So from now on, when referring to the geodesic y— y(a) andy— y(b), then y((1—t)a+th)cK, Vte
joining two points, we mean the unique minimal 0,1].
normalized one. Lemma 2.1 says tivtis diffeomorphic ’ :
. From now onward K C M will denote a nonempty,
g)ntdhed:ifléﬂalﬁﬁgln ;Fr)ﬁgﬁnr'e-rgléﬁ!w Irt.]ei t2|es salg:]i\}\?npct)ﬁﬁy closed and convex set, unless explicitly stated otherwise.
Hadamard manifolds and euclidean spaces have similar A réal-valued functionf defined orK is said to be a
geometrical properties. Recall that a geodesic triangléonvex function, if for any geodesiy of M, the
A(x1,%2,%3) of & Riemannian manifold is a set consisting COMPosition function foy:R—; Ris convex, thatis,
of three pointsx,x;,x3 and three minimal geodesics (foy)(ta+(1—t)b)<t(foy)(@) + (L —t)(foy)(b),
joining these points. . vabeR tel0,1].
Lemma 2.2 [2,3,25. (Comparison theorem for ] ) ] ]
triang|es). Let A(Xl,X27X3) be a geodesic triang|e' The Subdlﬁ:er.entlal of a fUnCt_:_?/lri . M — Ris the
Denote, for each = 1,2,3(mod3), by y : [0,l]] — M, set-valued mapping df : M — 2" defined as:
the geodesic  joining X to Xit1, and _ . 1y < _
aii— L(y(0), —y{(i—1)(li - 1)), the angle between the 0100 = {UETM(Uexpy) < f(y) = 1(x),vy € M},
vectorsy/ (0) and—y_,(li-1), andlj;=L(y). Then XeM,
a1+ 0+ 03< T (1) and its elements are called subgradients. The
2,12 o). Y subdifferentiald f (x) at a pointx € M is a closed and
I+ 15 2L'|'+1(.:Osa'+l*|"1' _ @) Convex (possibly empty) set. LeD(df) denote the
In terms of the distance and the exponential map, thejomain ofd f defined by

inequality (2) can be rewritten as:
D(0f)={xeM:af(x) # 0}.

The existence of subgradients for convex functions is

A subsetk C M is said to be convex if for any two

d?(%,Xi1) +d2(% 1, %12) — 2(exp L X, expet, Xiy2)

< d?(%-1,%), (3)  guaranteed by the following proposition, S@8][
since Lemma 2.4 [25,29]. Let M be a Hadamard manifold and
<EXn§i1Xi,eXR§ilXi+2>=d(Xi,Xi+1)d(Xi+1,Xi+2)COSGi+1- f .M — R be convex. Then, for anx € M, the

o ) subdifferential 0 f (x) of f at x is nonempty. That is,
Lemma 2.3 23]. Let A(x,y,z) be a geodesic triangleina p(gf) =M.

. . 2
tl—rigt:iamard manifol¥t. Then, there exist’,y’,Z € R” such For a given single-valued vector field: M — TM,

we consider the problem of findinge K such that
dxy) =[x =Y, diyz=]y-Z|, dzx=[Z-X]|. — K
The triangleA(X,y,Z) is called the comparison triangle (Tuexp,"v) >0, WeK, )
of the geodesic trianglé\(x,y,z), which is unique up to  which is called the variational inequality. This problem
isometry ofM. was considered by Nemetfi][ Colao et al B], Tang et al

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 4, 1863-1867 (2015)www.naturalspublishing.com/Journals.asp

1865

N SS ¥

[27,28] and Noor and Noor 18,19]. Colao et al P]

which is known as the two-step method method for solving

proved the existence of a solution of Problem (5) bythe variational inequalities. For the convergence anslysi

proving and using the KKM principle on Hadamard
manifolds. In the linear setting, variational inequaltie
have been studied extensively, s&¢7[8,9,10,11,12,13,
14,15,16,17,18,19,24,26,30)and the references therein.

Definition 2.1. An operatorT is said to be partially

of Algorithm 3.2, see9, 10].

Using the projection technique, Algorithm 3.3 is
equivalent to the following two-step projection iterative
method for solving the variational inequalities in the
linear setting.

relaxed strongly monotonicity, if and only if, there exists Algorithm 3.4. For a giverug € R", find the approximate

a constantr > 0 such that
(Tu,exg, *2) + (Tv,exp, tv) < ad?(zu), Vu,v,ze M.

We note, if z = u, then partially relaxed strongly
monotonicity reduces to monotonicity,
not true.

3 Main Results

We now use the auxiliary principle technique of
Glowinski et al p] to suggest and analyze an explicit
iterative method for solving the variational inequality) (5
on the Hadamard manifolds. See also Noor and N©8yr |

19 for recent applications of the auxiliary principle
technique.

For a givenu € K satisfying (5), consider the problem
of findingw € K such that

(pTu+ (exg tw),exp,tv) >0, WeK, (6)

which is called the auxiliary variational inequality on
Hadamard manifolds. Here > O is a constant. We note
that, if w = u, thenw is a solution of the variational

solutionuy. 1 by the iterative schemes

Yn = Pc[un—pTup]
Un+1 = Pk[yn—pTyn], n=0,1,2,...

Algorithm 3.4 is also called the double projection
method. For the convergence analysis and numerical
aspects of Algorithm 3.4, see Nodr(].

In a similar way, one can obtains various iterative
methods for solving the variational inequalities and
related problems.

We now consider the convergence analysis of
Algorithm 3.1 and this is the main motivation of our next
result.

Theorem 3.1. Let T be a partially relaxed strongly
monotone vector field with a constamt> 0. Let u, be a

but the converse is

approximate solution of the variational inequality

(2.5)obtained from Algorithm 3.1. Then

dz(Un+17 u) < dz()’na u)—(1- Zap)dz(un+17Yn) 9)
d?(yn, u) < d*(un,u) — (1~ 2pa)d*(yn,un),  (10)

whereu € K is a solution of the variational inequality (5).
Proof. Letu € K be a solution of the variational inequality

inequality (5). This observation enables to suggest anq5)_ Then,

analyze the following two-step iterative method for
solving the variational inequality (2.5).

Algorithm 3.1. For a givenug € K, compute the
approximate solution by the iterative scheme

(7)
(8)

Algorithm 3.1 is called the two-step iterative method for

(pTun+exp, yn.exg,lv) >0,
(oTyn+exg, uns1,8X, 5, V) >0, WeK.

solving the variational inequality on the Hadamard

manifolds. Using the technique of Tang et 28], one can
show that Algorithm 3.1 is well-defined.

If yn = un, then Algorithm 3.1 reduces to the explicit
iterative method for solving the variational inequalitas
Hadamard manifolds.

Algorithm 3.2.  For a givenug € K, compute the
approximate solution by the iterative scheme
(pTun+eXQ, " Un: 1, X, -, V) > 0, W e K.

If M =R", then Algorithm 3.1 collapses to:
Algorithm 3.3. For a givenug € K, find the approximate
solutionuy, 1 by the iterative scheme.

(PTUn+Yn—Un,V—Yn) > 0,Vv e K
(PTYn+Uni1—Yn,V—Uny1) > 0, W EK,

(pT(u),expg,tv) >0, WweK.
Takingv =y in (6), we have

(pT(u),exp, tyn) > 0.
Takingv=uin (7), we have

(11)
(12)
(pTun+exg,'yn exg,'u) > 0. (13)
From (12) and (13), we have

—(exp, un, exg, tu)

> —ap{(T(u),exp, yn) + (Tun,exp, u)}

> —pad?(yn, n),
which implies that
(expy,tun, exp,tu) < pad?(yn, un). (14)

For the geodesic trianglé (un,yn,u), the inequality (3)
can be written as:

d?(yn, u) + d(yn, Un) — (e, tn, exp, " u) < d?(un, uf15)
Thus, from (14) and (15), we obtain
dz(yn,u) < dz(una u)—(1— ZPG)dZ(YmUn)a
the required inequality (10).

(16)
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Takev =y, in (6), we have

(pT (u),exp; tyn) > 0.
and takev = uin (7) to have
(pTup+ exgn Un.1, exnJn+1 uy > 0.
From (17) and (18), we have

—(exq,t, yn,exg,t, u)

> —ap{(T(u),exp,  tny1) +

> —pad?(Uns1,¥n)- (19)

For the geodesic trianglé (yn, Un+1,U), the inequality (3)
can be written using (19) as:

d?(Un1,u) + d*(Uns,Yn) < (exp,’un,exp,tu) -+ d?(un, u)
S Zpad (Un+1aYn)+d2(Un7u)a

which implies (9). O

Theorem 3.2. Letu € K be a solution of (5) and lat,, 1

(17)

(18)

<Tyn7 exnjn+1 > }

be the approximate solution obtained from Algorithm 3.1.

If p< 20,, then lim,_—, up 1 = u.
Proof. Letu € K be a solution of (2.5). Then, from (9) and
(10), it follows that the sequendel, } is bounded and

00

%(1—20p)d2(un+1ayn) S d2(y07u)7
n=

00

Zo(l_zap)dz()’naun) < d? (Uo, u),

n=
which implies

n"_ngwd(umrla)’n) =0, n"_ngwd(Yn, Un) = 0.

Thus

Nim d(Unia,Un) = lim d(Uni1,¥n) + lim d(yn,Un)
=0. (20)

Let d be a cluster point of{u,}. Then there exits a
subsequence{uy } such that {u,} converges tou.”

Replacinguny1 by un, in (9), yn by uy, in (10), taking the

limit, and using (20), we have

(Th,exptv) >0, WeK,

This shows thati € K solves (5) and

dz(unJrla )<d (Una )7

which implies that the sequende,} has unique cluster
point and limy_,. Uy = G is a solution of (5), the required
result.

Conclusion. We have used the auxiliary principle

technique to suggest and analyze a two-step iterative

171

method solving the variational inequalities on Hadamard

manifolds. Some special cases are also discusse
Convergence analysis of the new two-step method is
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