
Appl. Math. Inf. Sci.9, No. 4, 1863-1867 (2015) 1863

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090424

Two-Step Methods for Variational Inequalities on
Hadamard Manifolds
Muhammad Aslam Noor∗ and Khalida Inayat Noor

Mathematics Department, COMSATS Institute of InformationTechnology, Park Road, Islamabad, Pakistan.

Received: 25 Oct. 2014, Revised: 25 Jan. 2015, Accepted: 26 Jan. 2015
Published online: 1 Jul. 2015

Abstract: In this paper, we suggest and analyze a two-step method for solving the variational inequalities on Hadamard manifold using
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1 Introduction

In recent years, much attention have been given to study
the variational inequalities and related problems on
Riemannian and Hadamard manifolds. This framework is
a useful for the developments of various fields on
nonlinear setting. Several ideas and techniques form the
Euclidean space have been extended and generalized to
this nonlinear framework. Hadamard manifolds are
examples of hyperbolic spaces and geodesics, see [1,2,3,
4,19,21,22] and the references therein. Nemeth [7], Tang
et al [28] and Colao et al [2] have considered the
variational inequalities and equilibrium problems on
Hadamard manifolds. In particular, Colao et al. [2] and
Tang et al [28] studied the existence of a solution solution
of the equilibrium problems under some suitable
conditions. To the best of our knowledge, no one has
considered the auxiliary principle technique for solving
the variational inequalities on Hadamard manifolds. In
this paper, we use the auxiliary principle technique to
suggest and analyze a two-step iterative method for
solving the variational inequalities on Hadamard
manifolds. We show that the convergence of this new
method requires only the partially relaxed strongly
monotonicity which is a weaker condition than
monotonicity. Our results represent the refinement of
previously known results for the variational inequalities.
We hope that the technique and idea of this paper may
stimulate further research in this area.

2 Preliminaries

We recall some fundamental and basic concepts need for
a reading of this paper. These results and concepts can be
found in the books on Riemannian geometry [2,3,25].

Let M be a simply connectedm-dimensional
manifold. Givenx ∈ M, the tangent space ofM at x is
denoted by TxM and the tangent bundle ofM by
TM = ∪x∈MTxM, which is a naturally manifold. A vector
field A on M is a mapping ofM into T M which associates
to each pointx ∈ M, a vectorA(x) ∈ TxM. We always
assume thatM can be endowed with a Riemannian metric
to become a Riemannian manifold.. We denote by〈, ·,〉 ,
the scalar product onTxM with the associated norm‖.‖x,

where the subscriptx will be omitted. Given a piecewise
smooth curveγ : [a,b] −→ M joining x to y (that
is,γ(a) = x and γ(b) = y,) by using the metric, we can
define the length ofγ as L(γ) =

∫ b
a ‖γ ′(t)‖dt. Then, for

any x,y ∈ M, the Riemannian distanced(x,y), which
includes the original topology onM, is defined by
minimizing this length over the set of all such curves
joining x to y.

Let ∆ be the Levi-Civita connection with(M,〈., .〉).
Let γ be a smooth curve inM. A vector fieldA is said to be
parallel alongγ, if ∆γ ′A = 0. If γ ′ itself is parallel along
γ, then we say thatγ is a geodesic and in this case‖γ ′‖
is constant. When‖γ ′‖ = 1, γ is said to be normalized. A
geodesic joiningx to y in M is said to be minimal, if its
length equalsd(x,y).
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A Riemannian manifold is complete, if for anyx ∈ M
all geodesics emanating fromx are defined for allt ∈R. By
the Hopf-Rinow Theorem, we know that ifM is complete,
then any pair of points inM can be joined by a minimal
geodesic. Moreover,(M,d) is a complete metric space and
bounded closed subsets are compact.

Let M be complete. Then the exponential map
expx : TxM −→ M at x is defined by expx v = γv(1,x)
for eachv ∈ TxM, where γ(.) = γv(.,x) is the geodesic
starting at x with velocity
v(i.e.,γ(0) = x and γ ′(0) = v) Thus
expx tv = γv(t,x) for each real numbert.

A complete simply connected Riemannian manifold
of nonpositive sectional curvature is called aHadamard
manifold. Throughout the remainder of this paper, we
always assume thatM is a Hadamardm- manifold.

We also recall the following well known results, which
are essential for our work.
Lemma 2.1 [25]. Let x ∈ M. Then expx : TxM −→ M is a
diffeomorphism, and for any two pointsx,y ∈ M, there
exists a unique normalized geodesic joiningx to y,γx,y,

which is minimal.
So from now on, when referring to the geodesic

joining two points, we mean the unique minimal
normalized one. Lemma 2.1 says thatM is diffeomorphic
to the Euclidean spaceRm

. ThusM has the same topology
and differential structure asRm. It is also known that
Hadamard manifolds and euclidean spaces have similar
geometrical properties. Recall that a geodesic triangle
△(x1,x2,x3) of a Riemannian manifold is a set consisting
of three pointsx1,x2,x3 and three minimal geodesics
joining these points.
Lemma 2.2 [2,3,25]. (Comparison theorem for
triangles). Let △(x1,x2,x3) be a geodesic triangle.
Denote, for eachi = 1,2,3(mod3), by γi : [0, li] −→ M,

the geodesic joining xi to xi+1, and
αi;= L(γ ′i (0),−γ ′l (i−1)(li−1)), the angle between the
vectorsγ ′i (0) and−γ ′i−1(li−1), andli;= L(γi). Then

α1+α2+α3 ≤ π (1)

l2
l + l2

i+1−2Lili+1cosαi+1 ≤ l2
i−1. (2)

In terms of the distance and the exponential map, the
inequality (2) can be rewritten as:

d2(xi,xi+1)+ d2(xi+1,xi+2)−2〈exp−1
xi+1

xi,exp−1
xi+1

xi+2〉

≤ d2(xi−1,xi), (3)

since

〈exp−1
xi+1

xi,exp−1
xi+1

xi+2〉= d(xi,xi+1)d(xi+1,xi+2)cosαi+1.

Lemma 2.3 [25]. Let △(x,y,z) be a geodesic triangle in a
Hadamard manifoldM. Then, there existx′,y′,z′ ∈R2 such
that

d(x,y) = ‖x′− y′‖, d(y,z) = ‖y′− z′‖, d(z,x) = ‖z′− x′‖.

The triangle△(x′,y′,z′) is called the comparison triangle
of the geodesic triangle△(x,y,z), which is unique up to
isometry ofM.

From the law of cosines in inequality (3), we have the
following inequality, which is a general characteristic of
the spaces with nonpositive curvature [25]:

〈exp−1
x y,exp−1

x z〉+ 〈exp−1
y x,exp−1

y z〉 ≥ d2(x,y). (4)

From the properties of the exponential map, we have the
following known result.
Lemma 2.4 [25]. Let x0 ∈ M and {xn} ⊂ M such that
xn −→ x0. Then the following assertions hold.
(i). For anyy ∈ M,

exp−1
xn

y −→ exp−1
xo

y and exp−1
y xn −→ exp−1

y xo.

(ii). If {vn} is a sequence such thatvn ∈ TxnM andvn −→
v0, then v0 ∈ Tx0M.

(iii). Given the sequences{un} and {vn} satisfying
un,vn ∈ TxnM. If un −→ u0 and vn −→ v0 with
u0,v0 ∈ Tx0M, then

〈un,vn〉 −→ 〈u0,v0〉.

A subsetK ⊆ M is said to be convex if for any two
pointsx,y ∈ K, the geodesic joiningx andy is contained
in K, that is, if, γ : [a,b] −→ M is a geodesic such that
x = γ(a) andy = γ(b), then γ((1− t)a+ tb)∈ K, ∀t ∈
[0,1].

From now onward K ⊆ M will denote a nonempty,
closed and convex set, unless explicitly stated otherwise.

A real-valued functionf defined onK is said to be a
convex function, if for any geodesicγ of M, the
composition function f ◦ γ : R −→ R is convex, that is,

( f ◦ γ)(ta+(1− t)b)≤ t( f ◦ γ)(a)+ (1− t)( f ◦ γ)(b),
∀a,b ∈ R, t ∈ [0,1].

The subdifferential of a functionf : M −→ R is the
set-valued mapping ∂ f : M −→ 2TM defined as:

∂ f (x) = {u ∈ TxM : 〈u,exp−1
x y〉 ≤ f (y)− f (x),∀y ∈ M},

∀x ∈ M,

and its elements are called subgradients. The
subdifferential∂ f (x) at a pointx ∈ M is a closed and
convex (possibly empty) set. LetD(∂ f ) denote the
domain of∂ f defined by

D(∂ f ) = {x ∈ M : ∂ f (x) 6= /0}.

The existence of subgradients for convex functions is
guaranteed by the following proposition, see [29].
Lemma 2.4 [25,29]. Let M be a Hadamard manifold and
f : M −→ R be convex. Then, for anyx ∈ M, the
subdifferential∂ f (x) of f at x is nonempty. That is,
D(∂ f ) = M.

For a given single-valued vector fieldT : M −→ T M,

we consider the problem of findingu ∈ K such that

〈Tu,exp−1
u v〉 ≥ 0, ∀v ∈ K, (5)

which is called the variational inequality. This problem
was considered by Nemeth [7], Colao et al [2], Tang et al
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[27,28] and Noor and Noor [18,19]. Colao et al [2]
proved the existence of a solution of Problem (5) by
proving and using the KKM principle on Hadamard
manifolds. In the linear setting, variational inequalities
have been studied extensively, see [5,7,8,9,10,11,12,13,
14,15,16,17,18,19,24,26,30]and the references therein.
Definition 2.1. An operatorT is said to be partially
relaxed strongly monotonicity, if and only if, there exists
a constantα > 0 such that

〈Tu,exp−1
v z〉+ 〈Tv,exp−1

z v〉 ≤ αd2(z,u), ∀u,v,z ∈ M.

We note, if z = u, then partially relaxed strongly
monotonicity reduces to monotonicity, but the converse is
not true.

3 Main Results

We now use the auxiliary principle technique of
Glowinski et al [5] to suggest and analyze an explicit
iterative method for solving the variational inequality (5)
on the Hadamard manifolds. See also Noor and Noor [18,
19] for recent applications of the auxiliary principle
technique.

For a givenu ∈ K satisfying (5), consider the problem
of findingw ∈ K such that

〈ρTu+(exp−1
u w),exp−1

w v〉 ≥ 0, ∀v ∈ K, (6)

which is called the auxiliary variational inequality on
Hadamard manifolds. Hereρ > 0 is a constant. We note
that, if w = u, then w is a solution of the variational
inequality (5). This observation enables to suggest and
analyze the following two-step iterative method for
solving the variational inequality (2.5).
Algorithm 3.1. For a given u0 ∈ K, compute the
approximate solution by the iterative scheme

〈ρTun +exp−1
un

yn,exp−1
yn

v〉 ≥ 0, (7)

〈ρTyn +exp−1
yn

un+1,exp−1
un+1

v〉 ≥ 0, ∀v ∈ K. (8)

Algorithm 3.1 is called the two-step iterative method for
solving the variational inequality on the Hadamard
manifolds. Using the technique of Tang et al [28], one can
show that Algorithm 3.1 is well-defined.

If yn = un, then Algorithm 3.1 reduces to the explicit
iterative method for solving the variational inequalitieson
Hadamard manifolds.
Algorithm 3.2. For a given u0 ∈ K, compute the
approximate solution by the iterative scheme

〈ρTun +exp−1
un

un+1,exp−1
un+1

v〉 ≥ 0,∀v ∈ K.

If M = Rn, then Algorithm 3.1 collapses to:
Algorithm 3.3. For a givenu0 ∈ K, find the approximate
solutionun+1 by the iterative scheme.

〈ρTun + yn − un,v− yn〉 ≥ 0,∀v ∈ K

〈ρTyn + un+1− yn,v− un+1〉 ≥ 0,∀v ∈ K,

which is known as the two-step method method for solving
the variational inequalities. For the convergence analysis
of Algorithm 3.2, see [9,10].

Using the projection technique, Algorithm 3.3 is
equivalent to the following two-step projection iterative
method for solving the variational inequalities in the
linear setting.
Algorithm 3.4. For a givenu0 ∈ Rn, find the approximate
solutionun+1 by the iterative schemes

yn = PK [un −ρTun]

un+1 = PK [yn −ρTyn], n = 0,1,2, . . .

Algorithm 3.4 is also called the double projection
method. For the convergence analysis and numerical
aspects of Algorithm 3.4, see Noor [10].

In a similar way, one can obtains various iterative
methods for solving the variational inequalities and
related problems.

We now consider the convergence analysis of
Algorithm 3.1 and this is the main motivation of our next
result.
Theorem 3.1. Let T be a partially relaxed strongly
monotone vector field with a constantα > 0. Let un be a
approximate solution of the variational inequality
(2.5)obtained from Algorithm 3.1. Then

d2(un+1,u) ≤ d2(yn,u)− (1−2αρ)d2(un+1,yn) (9)

d2(yn,u) ≤ d2(un,u)− (1−2ρα)d2(yn,un), (10)

whereu ∈ K is a solution of the variational inequality (5).
Proof. Let u∈ K be a solution of the variational inequality
(5). Then,

〈ρT (u),exp−1
u v〉 ≥ 0,∀v ∈ K. (11)

Takingv = yn in (6), we have

〈ρT (u),exp−1
u yn〉 ≥ 0. (12)

Takingv = u in (7), we have

〈ρTun +exp−1
un

yn,exp−1
yn

u〉 ≥ 0. (13)

From (12) and (13), we have

−〈exp−1
yn

un,exp−1
yn

u〉

≥ −αρ{〈T(u),exp−1
u yn〉+ 〈Tun,exp−1

yn
u〉}

≥ −ραd2(yn,un),

which implies that

〈exp−1
yn

un,exp−1
yn

u〉 ≤ ραd2(yn,un). (14)

For the geodesic triangle△(un,yn,u), the inequality (3)
can be written as:

d2(yn,u)+ d2(yn,un)−〈exp−1
yn

un,exp−1
yn

u〉 ≤ d2(un,u).(15)

Thus, from (14) and (15), we obtain

d2(yn,u)≤ d2(un,u)− (1−2ρα)d2(yn,un), (16)

the required inequality (10).
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Takev = yn in (6), we have

〈ρT (u),exp−1
u yn〉 ≥ 0. (17)

and takev = u in (7) to have

〈ρTun +exp−1
yn

un+1,exp−1
un+1

u〉 ≥ 0. (18)

From (17) and (18), we have

−〈exp−1
un+1

yn,exp−1
un+1

u〉

≥ −αρ{〈T(u),exp−1
u un+1〉+ 〈Tyn,exp−1

un+1
u〉}.

≥−ραd2(un+1,yn). (19)

For the geodesic triangle△(yn,un+1,u), the inequality (3)
can be written using (19) as:

d2(un+1,u)+ d2(un+1,yn) ≤ 〈exp−1
yn

un,exp−1
yn

u〉+ d2(un,u)

≤ 2ραd2(un+1,yn)+ d2(un,u),

which implies (9). �

Theorem 3.2. Let u ∈ K be a solution of (5) and letun+1
be the approximate solution obtained from Algorithm 3.1.
If ρ <

1
2α , then limn−→ un+1 = u.

Proof. Let u ∈ K be a solution of (2.5). Then, from (9) and
(10), it follows that the sequence{un} is bounded and

∞

∑
n=0

(1−2αρ)d2(un+1,yn) ≤ d2(y0,u),

∞

∑
n=0

(1−2αρ)d2(yn,un) ≤ d2(u0,u),

which implies

lim
n−→∞

d(un+1,yn) = 0, lim
n−→∞

d(yn,un) = 0.

Thus

lim
n−→∞

d(un+1,un) = lim
n−→∞

d(un+1,yn)+ lim
n−→∞

d(yn,un)

= 0. (20)

Let û be a cluster point of{un}. Then there exits a
subsequence{uni} such that {uui} converges to ˆu.
Replacingun+1 by uni in (9), yn by uni in (10), taking the
limit, and using (20), we have

〈T û,exp−1
û v〉 ≥ 0, ∀v ∈ K,

This shows that ˆu ∈ K solves (5) and

d2(un+1, û)≤ d2(un, û),

which implies that the sequence{un} has unique cluster
point and limn−→∞ un = û is a solution of (5), the required
result. �

Conclusion. We have used the auxiliary principle
technique to suggest and analyze a two-step iterative
method solving the variational inequalities on Hadamard
manifolds. Some special cases are also discussed.
Convergence analysis of the new two-step method is
proved under weaker conditions. Results obtained in this
paper may stimulate further research in this area. The
implementation of the new method and its comparison
with other methods is an open problem. The ideas and
techniques of this paper may be extended for other related
optimization problems.
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