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1 Introduction

Throughout of this paper, we make use of the following
notations:

N := {1,2,3, · · ·} andN∗ =N∪{0} .

HereR denotes the set of real numbers,R+ denotes the
set of positive real numbers andC denotes the set of
complex numbers. Certain problems of modern physics
and technology have been studied by many
mathematicians for a long timecf. [3-13, 16-23]. Recent
investigations on the nonlocal conditions include the data
on the boundary which can not be measured directly. In
[25], [26], a large number of physical phenomena reduce
to a work derived by initial-boundary value problem, as
follows: For(x, t) ∈ D = Ω × I with the bounded intervals
in R+ asΩ = (0,1), I = (0,T)

∂ 2v
∂v2 −α

∂ 2v
∂x2 −β

∂ 3v
∂ t∂x2 = g(x, t) (1)

whereα andβ are positive constants.

Let us consider the following functionv = v(x, t)
satisfying the Eq. (1) in D

v(x,0) = Φ (x) ,
∂v(x,0)

∂ t
=Ψ (x) (x∈ Ω) ,

∫

Ω
v(x, t)dx= µ (t) ,

∫

Ω
xv(x, t)dx= m(t) (t ∈ I) . (2)

It follows from (2) that

g∈C
(

D
)

, Φ,Ψ ∈C1(Ω
)

,µ andm∈C2(I
)

and the suitable conditions are as follows:

∫

Ω Φ (x)dx= µ (0) ,
∫

Ω xΦ (x)dx= m(0) ,
∫

Ω Ψ (x)dx= µ ′ (0) ,
∫

Ω xΨ (x)dx= m′ (0) .

2 Reformulation of the problem

Since nonlocal (integral) boundary conditions are
inhomogeneous, it is applicable to convert the problem
(1)-(2) into an equivalent problem with homogeneous
nonlocal conditions. Now, we introduce an unknown
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function u = u(x, t) subtracting the functionv = v(x, t)
from the functionw= w(x, t) known in [8], as follows:

u(x, t) = v(x, t)−w(x, t). (3)

The problem (1)-(2) can be equivalently reduced to the
problem for finding the functionu satisfying the
following

∂ 2u

∂ t2 −α
∂ 2u

∂x2 −β
∂ 3u

∂ t∂x2 = f (x, t) , ((x, t) ∈ D),

u(x,0) = ϕ (x) ,
∂u(x,0)

∂ t
= ψ (x) , (x∈ Ω),

∫

Ω
u(x, t)dx = 0,

∫

Ω
xu(x, t)dx= 0, (t ∈ I), (4)

where

ϕ ′ (0) = 0,
∫

Ω
ϕ (x)dx= 0, ψ ′ (0) = 0,

∫

Ω
ψ (x)dx= 0,

f (x, t) = g(x, t)−
(

∂w
∂ t

−α
∂ 2w
∂x2

)

,

ϕ (x) = Φ (x)−w(x,0) ,

ψ (x) = Ψ (x)− w(x,0)
∂ t

.

Hence, the solution of problem (1)-(2) will be obtained
by the Eq. (3).

3 Notations and Preliminary results

3.1 Hilbert Space

We are now in a position to state the following definition
which will be useful for sequel of this paper.

Definition 1.Let H = L2 (Ω) be a Hilbert space with a
norm‖.‖H with theΩ = (0,1).

(i) Let L2 (0,T,H) be the set of all square measurable
abstract functions u(., t) from (0,T) into H with the
following norm

‖u‖L2(0,T,H) =

(

∫ T

0
‖u(., t)‖2

H dt

)1/2

< ∞

(ii) Let C(0,T,H) be the set of all continuous functions
u(., t) : (0,T)−→ H defined by means of

‖u‖C(0,T,H) = max
0≤t≤T

‖u(., t)‖H < ∞

(iii ) We make use of C0 (Ω) that stands for the vector
space of continuous functions with compact support inΩ .
Since such functions are Lebesgue integrable with respect
to x, we can define on C0 (Ω) the bilinear form given by

((u,w)) =
∫

Ω
(Jm

x u)(Jm
x w)dx (m≥ 1) (5)

where we have used the following

Jm
x u=

∫ x

0

(x− ζ )m−1

(m−1)!
u(ζ , t)dζ (m≥ 1) . (6)

The bilinear form (5) is considered as a scalar product on
C0 (Ω) is not complete.

3.2 Bouziani Space

Definition 2.Let Bm
2 (Ω) ( for m≥ 1) be the completion of

C0 (Ω) for the scalar product (5) denoted by(., .)Bm
2 (Ω)

(see [4]). Via the norm of function u including Bm2 (Ω)
(for m≥ 1), we have

‖u‖Bm
2 (Ω) =

(

∫

Ω
(Jm

x u)2dx

)1/2

= ‖Jm
x u‖ . (7)

Lemma 1.For all m ∈ N, the following inequality holds
true:

‖u‖2
Bm

2 (Ω) ≤
1
2
‖u‖2

Bm−1
2 (Ω)

(8)

Proof.The proof of this lemma can be easily done by the
Reference [4]. So we omit it.

Corollary 1.For all m∈N, we obtain

‖u‖2
Bm

2 (Ω) ≤
(

1
2

)m

‖u‖2
L2(Ω) . (9)

Definition 3.Let L2(0,T;Bm
2 (Ω)) be the space of

functions to be square integrable in the Bochner sense
with the scalar product

(u,w)L2(0,T;Bm
2 (Ω)) =

∫ T

0
(u(., t) ,w(., t))Bm

2 (Ω)dt

Since the space Bm2 (Ω) is a Hilbert space, it can be
shown that L2(0,T;Bm

2 (Ω)) is a Hilbert space as well.
The set of all continuous abstract functions in[0,T] with
the following norm

sup
0≤t≤T

‖u(., t)‖Bm
2 (Ω)

is denoted by C(0,T;Bm
2 (0,1)).

Corollary 2.We deduce the continuity of the L2 (Ω) −→
Bm

2 (Ω) for m≥ 1.

Lemma 2.(Gronwall Lemma) Let f1 (t), f2 (t) ≥ 0 be
two integrable functions on[0,T] and f2 (t) be
nondecreasing. If

f1 (τ)≤ f2 (τ)+ c
∫ τ

0
f1 (t)dt, ∀τ ∈ [0,T] ,

where c∈R
+, then

f1 (t)≤ f2 (t)exp(ct) , ∀t ∈ [0,T] . (10)
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Lemma 3.(Cauchy inequality with ε) For all ε > 0 and
arbitrary variables a, b inR, we have the following
inequality

|ab| ≤ ε
2
|a|2+ 1

2ε
|b|2 . (11)

4 Uniqueness and continuous dependence of
the solution

We first establish a priori estimates. In addition, the
uniqueness and continuous based on the solution with
respect to the data are immediate consequences.

Theorem 1.If u(x, t) is a solution of problem (4) and f ∈
C
(

D
)

, then we have a priori estimates:

‖u(.,τ)‖2
L2(Ω )

≤ c1

(

∫ τ

0
‖ f (., t)‖2

B1
2(Ω )

dt+‖ϕ‖2
L2(Ω )

+‖ψ‖2
B1

2(Ω )

)

∥

∥

∥

∥

∂u(.,τ)
∂ t

∥

∥

∥

∥

2

B1
2(Ω )

≤ c2

(

∫ τ

0
‖ f (., t)‖2

B1
2(Ω )

dt+‖ϕ‖2
L2(Ω )

+‖ψ‖2
B1

2(Ω )

)

(12)

where c1 = 1
α max

(

1,α, 1
4β

)

, c2 = max
(

1,α, 1
4β

)

and

0≤ τ ≤ T.

Proof.It is proved by taking the scalar product inB1
2 (Ω)

of the pseudohyperbolic eqaution in the Eq. (4), ∂u
∂ t and

integrating over(0,τ), it becomes
∫ τ

0

(

∂ 2u(., t)
∂ t2 ,

∂u(., t)
∂ t

)

B1
2(Ω )

dt−α
∫ τ

0

(

∂ 2u(., t)
∂x2 ,

∂u(., t)
∂ t

)

B1
2(Ω )

dt

−β
∫ τ

0

(

∂ 3u(., t)
∂ t∂x2 ,

∂u(., t)
∂ t

)

B1
2(Ω )

dt

=

∫ τ

0

(

f (., t) ,
∂u(., t)

∂ t

)

B1
2(Ω )

dt. (13)

The integration by parts of the left-hand side of the Eq.
(13) gives

α ‖u(.,τ)‖2
L2(Ω )

+

∥

∥

∥

∥

∂u(.,τ)
∂ t

∥

∥

∥

∥

2

B1
2(Ω )

+2β
∫ τ

0

∥

∥

∥

∥

∂u(.,τ)
∂ t

∥

∥

∥

∥

2

L2(Ω )

dt

= 2
∫ τ

0

(

f (., t) ,
∂u(., t)

∂ t

)

B1
2(Ω )

dt+α ‖ϕ‖2
L2(Ω )

+‖ψ‖2
B1

2(Ω )
. (14)

It follows from the Eq. (11) and the Eq. (9) that

∫ τ
0

(

f (., t) , ∂u(.,t)
∂ t

)

B1
2(Ω)

dt ≤ ε
2

∫ τ
0 ‖ f (., t)‖2

B1
2(Ω) dt+ 1

4ε
∫ τ

0

∥

∥

∥

∂u(.,t)
∂ t

∥

∥

∥

2

L2(Ω)
dt.

We chooseε = 1
4β on that it yields to

α ‖u(.,τ)‖2
L2(Ω)+

∥

∥

∥

∥

∂u(.,τ)
∂ t

∥

∥

∥

∥

2

B1
2(Ω)

≤ 1
4β

∫ τ

0
‖ f (., t)‖2

B1
2(Ω) dt+α ‖ϕ‖2

L2(Ω)+ ‖ψ‖2
B1

2(Ω) .(15)

Finally, it follows from (15) that we obtain estimates
(12).

5 Existence of Solution

5.1 Laplace transform technique

Laplace transform is widely used in the area of
engineering technology and mathematical science. There
are many problems whose solutions may be found in
terms of the Laplace transform. In fact, it is an efficient
method for solving many differential equations and partial
differential equations. The main difficult of the method of
the Laplace transform is in inverting the solution of the
Laplace domain into the real domain. Hence we apply the
technique of the Laplace transform [2,16,17,18,19,21] to
find solutions of the problem (1)-(2).

Suppose thatv(x, t) is defined and is of the exponential
order fort ≥ 0, i.e. there existsA, γ > 0 andt0 > 0 such that
|v(x, t)| ≤Aexp(γt) for t ≥ t0. Then the Laplace transform
V (x,s) including the functionv(x, t) is introduced by

V (x,s) = {v(x, t) ; t −→ s}=
∫ ∞

0
v(x, t)exp(−st)dt

(16)
wheres is known as a Laplace variable. A capital letter
V represents Laplace transform of functionv, i.e.,V is a
function in the Laplace domain.

If we start at this approximation and apply Laplace
transform on the both sides of the problem (1)-(2), with
respect tot, then we discover

d2

dx2V (x;s)− s2

(α +βs)
V (x;s) =

− 1
(α +βs)

[

G(x;s)+
∂V (x;0)

∂ t
+sV(x;0)−β

d2V (x;0)
dx2

]

,(17)

V (x;0) = Φ (x) ,
∂V (x;0)

∂ t
=Ψ (x) ,

∫ 1

0
V (x;s)dx= A(s) ,

∫ 1

0
xV (x;s)dx= B(s) . (18)

Using the initial conditions, it becomes

d2

dx2
V (x;s)− s2

(α +βs)
V (x;s)

= − 1
(α +βs)

[

G(x;s)+Ψ (x)+sΦ (x)−β
d2Φ (x)

dx2

]

,

∫ 1

0
V (x;s)dx = A(s) ,

∫ 1

0
xV (x;s)dx= B(s) (19)

Notice that

V (x; t) = {v(x, t) ; t −→ s}
G(x; t) = {g(x, t) ; t −→ s}

A(s) = {µ (t) ; t −→ s}
B(s) = {m(t) ; t −→ s} .

Hence, it is reduced to the boundary value problem by
the inhomogeneous ordinary differential equation of
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second order. From this, we obtain a general solution of
the Eq. (19), as follows:

V (x; t) = −
√

α +βs

s

∫ x

0

[

G(τ ;s)+Ψ (τ)+sΦ (τ)−β
d2Φ (τ)

dx2

]

×

sinh

(

s
√

α +βs
(x− τ)

)

dτ +C1 (s)exp

(

− s
√

α +βs
x

)

+

C2 (s)exp

(

s
√

α +βs
x

)

, (20)

whereC1 andC2 are arbitrary functions ofs. Substituting
the Eq. (20) into the integral boundary conditions in the
Eq. (19), we have

C1 (s)
∫ 1

0 exp

(

− s√
α+β s

x

)

dx+C2(s)
∫ 1

0 exp

(

s√
α+β s

x

)

dx=

√

α +βs
s

∫ 1

0

[[

G(τ;s)+Ψ (τ)+ sΦ (τ)−β
d2Φ (τ)

dx2

]

×
∫ 1

τ
sinh

(

s
√

α +βs
(x− τ)

)

dx

]

dτ +A(s) ,

C1 (s)
∫ 1

0 xexp

(

− s√
α+β s

x

)

dx+C2(s)
∫ 1

0 xexp

(

s√
α+β s

x

)

dx=

√

α +βs
s

∫ 1

0

[[

G(τ;s)+Ψ (τ)+ sΦ (τ)−β
d2Φ (τ)

dx2

]

×
∫ 1

τ
xsinh

(

s
√

α +βs
(x− τ)

)

dx

]

dτ +B(s) .

which in turn yields to

(

C1 (s)
C2 (s)

)

=

(

a11(s) a12(s)
a21(s) a22(s)

)−1

×
(

b1 (s)
b2 (s)

)

where

a11(s) =

∫ 1

0
exp

(

− s
√

α +βs
x

)

dx, a12(s) =
∫ 1

0
exp

(

s
√

α +βs
x

)

dx,

a21(s) =
∫ 1

0
xexp

(

− s
√

α +βs
x

)

dx, a22(s) =
∫ 1

0
xexp

(

s
√

α +βs
x

)

dx,

b1 (s) =

√

α +βs

s

∫ 1

0

[[

G(τ ;s)+Ψ (τ)+sΦ (τ)−β
d2Φ (τ)

dx2

]

×

∫ 1

τ
sinh

(

s
√

α +βs
(x− τ)

)

dx

]

dτ +A(s) ,

b2 (s) =

√

α +β1
s

∫ 1

0

[[

G(τ ;s)+Ψ (τ)+sΦ (τ)−β
d2Φ (τ)

dx2

]

×

∫ 1

τ
xsinh

(

s
√

α +βs
(x− τ)

)

dx

]

dτ +B(s) , (21)

Thus, by evaluating all integrals appeared in the Eq. (20)
and the Eq. (21), we find out the solution of the Laplace
domain. This can be done for known functionsG, Ψ , Φ,
A, B; however, in many cases, the results of the functions
are not easy to show exactly. Therefore, it is needed to

numerical approximations of the integrals. As it is known,
Gaussian Quadrature formula exists for computing
integrals numerically (see [1]). Using this formula, we
have approximate of the above integrals, as follows:

∫ 1
0

(1
x

)

exp

(

± s√
α+β s

x

)

dx≃ 1
2 ∑n

i=1 ωi
( 1

1
2 (xi+1)

)

exp

(

± s√
α+β s

(

1
2 (xi +1)

)

)

,

∫ x
0

[

G(τ;s)+Ψ (τ)+ sΦ (τ)−β d2Φ(τ)
dx2

]

sinh

(

s√
α+β s

(x− τ)
)

dτ ≃

x
2

n

∑
i=1

ωi

[

G
( x

2
(xi +1) ;s

)

+Ψ
( x

2
(xi +1)

)

+sΦ
( x

2
(xi +1)

)

−β
d2Φ

(

x
2 (xi +1)

)

dτ2

]

×

sinh

(

s
√

α +βs

(

x− x
2
(xi +1)

)

)

,

where we have usedτ = x
2 (xi +1).

∫ 1
0

[

[

G(τ;s)+Ψ (τ)+ sΦ (τ)−β d2Φ(τ)
dx2

]

∫ 1
τ
(1

x

)

sinh

(

s√
α+β s

(x− τ)
)

dx

]

dτ ≃

1
2 ∑n

i=1 ωi

[

G
(

1
2 (xi +1) ;s

)

+Ψ
(

1
2 (xi +1)

)

+ sΦ
(

1
2 (xi +1)

)

−β d2Φ( 1
2 (xi+1))
dτ2

]

×

(

1− 1
2 (xi +1)

2

)

n

∑
j=1

ω j

( 1
(

1− 1
2 (xi+1)

2

)

x j +

(

1+ 1
2 (xi+1)

2

)

)

×

sinh

(

s√
α+β s

((

1− 1
2 (xi+1)

2

)

x j +
1+ 1

2 (xi+1)
2 − 1

2 (xi +1)

))

,

(22)
whereτ = 1

2 (xi +1), xi andωi are defined by

xi : ith zero ofPn (x) , ωi =
2

(

1− x2
i

)[

P′
n(xi)

]2 .

Their values can be found in [1] for different values of
n.

5.2 Numerical inversion of Laplace transform

The domain of the Laplace transformation is given by the
Eq. (16). So we expect to obtain a solution of original
problem by means of inverting the Laplace transform.
Simple transformations can often be inverted using
readily in the available table. More complex functions can
be analytically inverted through the complex inversion
formula

v(t) =
1

2π j

∫ c+ j∞

c− j∞
exp(st)V (s)ds,

wherec is a positive real number such that all the poles of
the functionV (s) lie at the left of the lineRe(s) = c.

Sometimes, analytical inversion of the domain of the
Laplace solution is difficult to obtain. Therefore, a
numerical inversion method must be used. A variety of
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different methods for numerically inverting the Laplace
transform are available that can be employed. There exists
no universal method but different types of methods work
well for different classes of functions. A nice comparision
of four frequently used numerical Laplace inversion
algorithms is given by [14]. We use the Stehfest algorithm
[20] in this work which provides to show the accuracy of
the proposed method. This numerical technique was first
introduced by Graver [13] this algorithm offered by
Stehfest. Stehfest’s algorithm approximates the time
domain of the solution as follows:

v(x, t)≈ ln2
t

2m

∑
k=1

λkV

(

x;
ln2
t

k

)

(23)

wherem is the positive integer and

λk = (−1)m+k
min(k,m)

∑
l=[ k+1

2 ]

lm(2l)!
(m− l)!l ! (l −1)! (k− l)! (2l − k)!

.

Here[r] denotes the integer part ofr. The parameterm
is an arbitrary variable that should be optimized by trial
and error. It was seen that increasingm accuracy of
results increases up to a point and then owing to the
rounding errors it decreases [20]. Thus, for choosing
optimum m, it is beneficial to apply an algorithm
repeatedly for different values ofm and study its effect on
the solution. The other way to choose optimal value ofm
could be applied the Stehfest’s algorithm for inverting the
Laplace transform of known some elementry functions.

Remark.Stehfest’s method gives accurate results for many
problems including diffusion problem, fractional functions
in the Laplace domain. However, it fails to predict exp(t)
type functions or those with oscillatory behavior such as
sine and wave function (see [20]).

Remark.Note that more than one numerical inversion
algorithm can also be performed to check the accuracy of
the results.

6 Numerical Examples

In this section, we perform some results of numerical
computations using Laplace transform method proposed
in the previous section. This technique is applied to solve
the problem defined by the problem (1)-(2). The method
of solution is easily applicable via the computer, is used
Matlab 7.9.3 program.

Example 1.We take

g(x, t) = −8tanh(x+ t)
(

2+sinh2(x+ t)
)

cosh4 (x+ t)
, 0< x< 1, 0< t ≤ T,

Φ (x) =
1

cosh2(x)
, 0< x< 1,

Ψ (x) =
−2tanh(x+ t)

cosh2(x+ t)
, 0< x< 1,

µ (t) = tanh(1+ t)− tanht, 0< t ≤ T,

m(t) = tanh(1+ t)− lncosh(1+ t)+ lncosh(t) , 0< t ≤ T,

in this case exact solution is given by

v(x, t) =
1

cosh2 (x+ t)
, 0< x< 1, 0< t ≤ T.

The method of solution is easily implemented on the
computer, numerical results obtained byn= 8 in (22) and
m= 5 in (23), then we compared the exact solution with
numerical solution. Fort = 0.10 andx ∈ [0.10,0.90], we
calculateu numerically using the proposed method of
solution and compare it with the exact solution in Table 1.

Example 2.We take

g(x, t) = −4cosh(x+ t)
(

sinh2(x+ t)−2
)

sinh(x+ t)
, 0< x< 1, 0< t ≤ T,

Φ (x) = coth2 (x) , 0< x< 1,

Ψ (x) =
−2cosh(x)

sinh2(x)
, 0< x< 1,

µ (t) = 1−coth(1+ t)+coth(t) , 0< t ≤ T,

m(t) =
1
2
−coth(1+ t)− lnsinh(1+ t)− lnsinh(t) , 0< t ≤ T,

in this case exact solution given by

v(x, t) = coth2 (x+ t) , 0< x< 1, 0< t ≤ T.

For t = 0.10 and x ∈ [0.10,0.90], we calculateu
numerically using the proposed method of the solution
and compare it with the exact solution in Table 2:

Example 3.We take

g(x, t) =
4tanh(x+ t)

coth2 (x+ t)
, 0< x< 1, 0< t ≤ T,

Φ (x) =
1

coth2 (x)
, 0< x< 1,

Ψ (x) = 2tanh(x) , 0< x< 1,

µ (t) = 1− tanh(x+ t)+ tanh(t) , 0< t ≤ T,

m(t) =
1
2
− tanh(t)+ lncosh(t)− lncosh(t) , 0< t ≤ T,

in this case exact solution is given by

v(x, t) =
1

coth2 (x+ t)
, 0< x< 1, 0< t ≤ T.

For t = 0.10 and x ∈ [0.10,0.90], we calculateu
numerically using the proposed method of the solution
and compare it with the exact solution in Table 3:
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Table 1: Results of Example 1
x 0.10 0.30 0.50 0.70 0.90
u exact 0,0782785 0,0879214 0,1057214 0,1345645 0,1791275
u numerical 0,0778127 0,0878643 0,1057002 0,1340946 0,1790532
absolute error 0,0004658 0,0000517 0,0000212 0,0004699 0,0000743

Table 2: Results of Example 2
x 0.10 0.30 0.50 0.70 0.90
u exact 25,6693160 6,9270684 3,4671390 2,2678574 1,7240617
u numerical 25,6692268 6,9269887 3,4670924 2,2678555 1,724061657
absolute error 0,0000892 0,0000797 0,0000466 0,0000019 0,0000043

Table 3: Results of Example 3
x 0.10 0.30 0.50 0.70 0.90
u exact 0,0353069 0,0095278 0,0047689 0,0031193 0,0023714
u numerical 0,0352700 0,0093904 0,0044651 0,0030620 0,0023015
absolute error 0,0000369 −0,0001374 0,0003038 0,0000573 0,0000699
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