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Abstract: Motivated by a number of recent investigations, we define anestigate the various properties of a class of
pseudohyperbolic equation defined on purely integral @eal) conditions. We derive useful results involving thiass including
(for example) existence, uniqueness and continuous grisim the Laplace transform method. In addition, we makeafisétaining
such a problem to solve the using a numerical technique f&tehalgorithm) which provides to show the accuracy of theppsed
method.
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1 Introduction Let us consider the following function = v(x;t)
satisfying the Eq.%) in D
Throughout of this paper, we make use of the following av(x,0)
notations: V(x,0) = ®(x), z?t7 =¥(x) (xeQ),
Ni={1,2,3,---} andN* = NU{0}. /Qv(x,t)dx: i), /va(x,t)dX=m(t) tel). )
HereR denotes the set of real numbels, denotes the It follows from (2) that

set of positive real numbers arld denotes the set of

complex numbers. Certain problems of modern physics geC(D), ®,weCH(Q),puandmeC?(T)

and technology have been studied by many

mathematicians for a long timef. [3-13, 16-23]. Recent  and the suitable conditions are as follows:
investigations on the nonlocal conditions include the data

on the boundary which can not be measured directly. 1N o ax—(0), f,x®(xdx=m(0), WX dx=1'(0), [ox¥(x)dx= 1 (0).
[29], [26], a large number of physical phenomena reduce

to a work derived by initial-boundary value problem, as

follows: For(x,t) € D = Q x | with the bounded intervals

inR, asQ = (0,1),1 = (0,T) 2 Reformulation of the problem
o>v  d%v ?*v ) 1 Since nonlocal (integral) boundary conditions are
EN aﬁ _Bﬁt[}XZ =g(xt) (1) inhomogeneous, it is applicable to convert the problem
(1)-(2) into an equivalent problem with homogeneous
wherea andf3 are positive constants. nonlocal conditions. Now, we introduce an unknown
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function u = u(x,t) subtracting the functiow = v(x,t)
from the functionw = w(x,t) known in [8], as follows:

u(x,t) = v(x,t) —w(xt). 3

The problem [)-(2) can be equivalently reduced to the
problem for finding the functionu satisfying the
following

Py _aZY I ). (k) €D),
ux0) = 900, %0 _ . xe o)
/Qu(x7t)dx:07 /qu(x7t)dx:07 tel), (@)

where

40 =0, [ p0dx=0¢/(0)=0, [ p(ax=0,
f(x,t) =g(xt)— (f}—\iv — a?z—xvzv) ,

9 (%) = @)~ W(x0),

W= w0

Hence, the solution of problent)¢(2) will be obtained
by the Eqg. 8).

3 Notations and Preliminary results

3.1 Hilbert Space

We are now in a position to state the following definition
which will be useful for sequel of this paper.

Definition 1.Let H = L?(Q) be a Hilbert space with a
norm||.||y with theQ = (0,1).

(i) Let L?(0,T,H) be the set of all square measurable
abstract functions @,t) from (0,T) into H with the
following norm

T 1/2
Ul 2071y = (/o ||U(.,t)|ﬁdt> < o

(i) Let C(0,T,H) be the set of all continuous functions
u(.,t):(0,T) — H defined by means of

— max Ju(.t)]y <

[ullciorm) o

(iii) We make use of g3Q) that stands for the vector
space of continuous functions with compact suppofin

Since such functions are Lebesgue integrable with respect

to x, we can define ong@Q) the bilinear form given by

(ww) = [(@ro@wdx  (m=1)  ©)

where we have used the following

X . m-—1
o= [ =8 zdg

=1 (m>1).

(6)

The bilinear form §) is considered as a scalar product on
Co(Q) is not complete.

3.2 Bouziani Space

Definition 2.Let B}'(Q) ( for m > 1) be the completion of
Co(Q) for the scalar product¥) denoted by(.,.)ng(Q)

(see B]). Via the norm of function u including B(Q)
(form> 1), we have

12
il = ([, GPuRax) = 1ol @)

Lemma 1.For all m € N, the following inequality holds
true:

(8)

ProofThe proof of this lemma can be easily done by the
Reference4]. So we omit it.

1
2 2
Iullgpe) < 5 lIullgp-1(q)

Corollary 1.For all m € N, we obtain

1 m
(3) MoiEae-

Definition 3.Let L%(0,T;BJ'(Q)) be the space of
functions to be square integrable in the Bochner sense
with the scalar product

<

9)

2
[ullagpq)

T

(uW)izoragian = [, (W00 W(D)epadt

0
Since the space BQ) is a Hilbert space, it can be
shown that B(0,T;BJ(Q)) is a Hilbert space as well.
The set of all continuous abstract functions/@T] with
the following norm

sup [lu(.,t)|[gm
ogtngH (Ollep)

is denoted by @, T;B%'(0,1)).

Corollary 2.We deduce the continuity of thé (Q) —
BJ'(Q) form> 1.

Lemma 2(Gronwall Lemma) Let f;(t), f2(t) >0
two integrable functions on[0,T] and #&(t)
nondecreasing. If

be
be

T

f1(1) < fz(T)—i—c/ f1(t)dt, V1 € [0,T],
0

where cc RT, then

f1(t) < fa(t)exp(ct), Vt € [0, T]. (10)
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Lemma 3.(Cauchy inequality with ¢) For all € > 0 and
arbitrary variables a, b inR, we have the following
inequality

1

2
2£|b| '

)
jabl < - Jal* + (11)

4 Uniqueness and continuous dependence of
the solution

5 Existence of Solution

5.1 Laplace transform technique

Laplace transform is widely used in the area of
engineering technology and mathematical science. There
are many problems whose solutions may be found in
terms of the Laplace transform. In fact, it is an efficient
method for solving many differential equations and partial
differential equations. The main difficult of the method of

We first establish a priori estimates. In addition, the the | aplace transform is in inverting the solution of the
uniqueness and continuous based on the solution W|tr|1_ap|ace domain into the real domain. Hence we apply the

respect to the data are immediate consequences.

Theorem 1If u(x,t) is a solution of problem4) and f
C (D), then we have a priori estimates:

T
2 2 2 2
D) < o0 ([ 170l 1012 + 101y

ou(.,T)
ot

2 T
< o [ IOl 1002y + Wy ) (2
El) Jo B3(2) 2@ BL(Q)

where g = %max(l,a
0<t<T.

,%), Co = max(l,a,%) and

Prooflt is proved by taking the scalar product B3 (Q)
of the pseudohyperbolic eqaution in the E4), (% and
integrating ovel0, 7), it becomes

T/ 9%u(.,t) du(.,t) T/ 3%u(.,t) du(.,t)
: : dt— : ’ dt
/()( atz ot )B%(Q) a/o( a2 at >B%(ﬂ)
T 33u(,t) du(.t)
7B/o ( ok at )B%(mdt

:/(:(f(,,t),du;;t)>a%m)dt.

(13)

The integration by parts of the left-hand side of the Eq.

(13) gives

au(.,1)

au(.,1)
ot t

d

2
au( )z ¢ | o
Le(Q

- 2/0'r (f(.,t), ’7”;;0

It follows from the Eq. (1) and the Eq.9) that

2 as
+28 /
B3(Q) 0

2 2
) dtealolizg ¢ lulkyq:
B5(Q) 2

14

au(.t)
't

2
52, ot

T au(.t)
HUSE o

AU G T (D) gy At 45 o

)B%(Q

1

We choose = v

on that it yields to

au(.,1) 2

allu,1)Zq + HT

B3(Q)

1 /T 2 2 )
< E/o 1T O llayq) dt+alldliizio) + [[Wlay ) (15)

Finally, it follows from (15) that we obtain estimates

(12).

technique of the Laplace transfor16,17,18,19,21] to
find solutions of the problen}-(2).

Suppose that(x,t) is defined and is of the exponential
orderfort > 0, i.e. there exist8, y > 0 andtg > 0 such that
[v(x,t)] <Aexp(yt) fort > to. Then the Laplace transform
V (x,s) including the functiorv(x,t) is introduced by

V (x,8) ={v(xt);t — s} = / v(x,t) exp(—st)dt
’ (16)

wheres is known as a Laplace variable. A capital letter
V represents Laplace transform of functign.e.,V is a
function in the Laplace domain.

If we start at this approximation and apply Laplace
transform on the both sides of the problem)-(2), with
respect td, then we discover

d? &
1 .V (x0) _ d2V (x;0)
SCE T {G (x8) + =g +SV(x.0) ~ B3 (17)

aV (x0)
ot

1 1
/V(x;s)dx:A(s), / XV (x:s)dx—B(s)
0 0

V (x,0) = ®(x), =W (x),

(18)

Using the initial conditions, it becomes

d? §

WV (%) — mv (x;9)

d?o (x)
dx2

1 ) B
= —m [G(x,s)+w(x)+s®(x) B

1

/V(x;s)dx: A(s), /1xv(x;s)dx:B(s) (19)
0 JOo

Notice that

V(xt) = {v(xt);t — s}

G(xt) = {g(xt);t — s}
A(s) = {u(t);t — s}
B(s) = {m(t);t — s}.

Hence, it is reduced to the boundary value problem by
the inhomogeneous ordinary differential equation of
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second order. From this, we obtain a general solution ofhumerical approximations of the integrals. As it is known,

the Eqg. 19), as follows:

2
Vxt) = V‘”BS/ { (19 +W(r )+stD(T)—Bdg;§T>]x
. s s
smh(\/TBs(x—r)) dt+Cy(9) exp(—ﬁx> +
s
Cz(S)exp< F+Bsx>’

whereC; andC; are arbitrary functions as. Substituting
the Eq. @0) into the integral boundary conditions in the

Eq. 19, we have

Ci(9) i exp(

V‘”BS/ H Gt + ¥ (1) +50 (1) - pL 2D

dx2
1 h s
/Tsm <TBS(X—T)> dx| dr+A(s),

() .f'olxexp(—

d’® (1)

+¥(1)+sP(1)—B 02

1 s
xsinh| ———=(x—1) | dx| dT+B(s).
/ < — >> c
which in turn yields to
Ci(s)) _ [ an(s) a2(s) 7lx by (
C2 (S) agq (S) ago (S) bz(
where
a1 (s) = /(;lexp<— aiﬁsx> dx, alz(s):/:exp<%l35x> dx,
azl(s):/:xexp<—\/%ﬁsx>dx, ax(s) = /1 ( ) X,

by () = V‘”ﬁs/ H (1:8)+ ¥ (1) + 50 (1)

. s
/r smh(\/m(xfr))dx dr+A(s),

W/ H (Ts)+W(r )+S<D(r)7[3d2®(r>]x

dx2

7@/01{ G(t;9)

NG

) s
/r xsmh( \/m

Thus, by evaluating all integrals appeared in the B6) (

(20)

) e Cals) i exp -

E

s BSX> dx+Ca(9) Jo xexp(\/+_ﬁs )dx:

|

(x—r)) dx| dt+B(s), (21)

Gaussian Quadrature formula exists for computing
integrals numerically (seel]). Using this formula, we
have approximate of the above integrals, as follows:

v/.()l(i)eXp(i\/m )dX, 33wy (X‘H)exp( ﬁ(%(xi+l>)>,

I {G(r;s) +W¥(1)+sP(1) ,dec;;:éf)] sinh< aiﬁs (x— r)) dr ~

o (5 (x+1)

dr? *

2210.4 ( (%+1); ) (X(x.+1))+s¢<2(x.+1)) B

2
sinh( >q+1 )
X
2

where we have usetl=

2 H 19+ (1) +s0(1) - pELAD] 11 (X)sinh<\/;+7$(x-r)>dx]dr:

%zi”zlm[G(%(Ml);S)+W(%(xi+l))+8¢(%<xi+l))75%]X
1-3(x+1)\ » ( 1 )
—e w; ™ X
(E3) o (agen, - (ragen

)

1+3(x+1)
2
- 1-3(6+1) 3+ 1
smh(\/aiﬁs<< 2 )Xj+ 2 5 (X +1)
2

2 (x+1),x andw are defined by

)

2)
whereT =

2z
(1) [P x)]*

Their values can be found id] for different values of

x 1 i zero of Py (X), w =

5.2 Numerical inversion of Laplace transform

The domain of the Laplace transformation is given by the
Eqg. (16). So we expect to obtain a solution of original
problem by means of inverting the Laplace transform.
Simple transformations can often be inverted using
readily in the available table. More complex functions can
be analytically inverted through the complex inversion
formula

1

CHjoo
—/ exp(st)V (s)ds
C—joo

vt = 21j

wherec is a positive real number such that all the poles of

and the Eq.Z21), we find out the solution of the Laplace the functionV (s) lie at the left of the lineRe(s) = c.

domain. This can be done for known functicdBs¥, @,

Sometimes, analytical inversion of the domain of the

A, B; however, in many cases, the results of the functiond_aplace solution is difficult to obtain. Therefore, a
are not easy to show exactly. Therefore, it is needed towumerical inversion method must be used. A variety of
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different methods for numerically inverting the Laplace Example 1We take
transform are available that can be employed. There exists :
no universal method but different types of methods workg(x,t) = _ Btanhx+1) (2+sinf? (x+1))

,0<x<1 0<t<T,

well for different classes of functions. A nice comparision cosff (x+1)
of four frequently used numerical Laplace inversion ¢y 1 0<x<1,
algorithms is given byJ4]. We use the Stehfest algorithm cosh’-( x)’

[20] in this work which provides to show the accuracy of —2tanh(x+1)

the proposed method. This numerical technique was first¥ %) = ~_ (x+0) 0<x<1,

introduced by Graver 13] this algorithm offered by -~ B
Stehfest. Stehfest's algorithm approximates the time H(t) =tanh(1+) —tanh, 0<t<T,

domain of the solution as follows: m(t) = tanh(1+1) —Incosh(1+t) +Incosh(t), 0<t <T,
in this case exact solution is given by
In2 2m In2 1
—Z)\kV< > (23) VXt = ——>—— 0<x<1 0<t<T.
cosH (x+1)

The method of solution is easily implemented on the
computer, numerical results obtainedrpy: 8 in (22) and
m=5in (23), then we compared the exact solution with
numerical solution. For = 0.10 andx € [0.10,0.90], we

wheremis the positive integer and

mkmin(k,m> Im(21)! calculateu numerically using the proposed method of
A=(-1) moDITI— 1) (k=i @ —ky° sSolutionand compare it with the exact solution in Table 1.
e 1! ! ! !
=[] Example 2Ve take
4coshix+t) (sinf? (x+1) —2)

Here[r] denotes the integer part of The parameten  g(xt) = — ; 0<x<1, 0<t<T,
is an arbitrary variable that should be optimized by trial
and error. It was seen that increasing accuracy of ®(X) = cothf (x), 0<x < 1,
results increases up to a point and then owing to thew W) — —2cosh(x) Ocxe1
rounding errors it decrease®(. Thus, for choosing ~ sinkP(x) '
optimum m, it is beneficial to apply an algorithm () — 1 coth(1+1)+coth(t), 0<t <T,

repeatedly for different values af and study its effect on 1

the solution. The other way to choose optimal valuenof — m(t) = > —coth(1+t) —Insinh(1+t) —Insinh(t), 0 <t < T,
could be applied the Stehfest’s algorithm for inverting the .

Laplace transform of known some elementry functions. in this case exact solution given by

sinh(x+t)

v(x,t) = cothf (x+1), 0<x<1,0<t<T.

RemarkStehfest's method gives accurate results for many For t = 0.10 and x € [0.10,0.90], we calculateu
problems including diffusion problem, fractional funat®  numerically using the proposed method of the solution
in the Laplace domain. However, it fails to predict ékp  and compare it with the exact solution in Table 2:

type functions or those with oscillatory behavior such as

sine and wave function (se2()]). Example 3Ne take
g(xt) = %, 0<x<1, 0<t<T,

RemarkiNote that more than one numerical inversion cotit (x-+1)
algorithm can also be performed to check the accuracy ofq,(x) O<x<1
the results. cotl’?( x)’ ’

Y (x) = 2tanh(x), 0 < x < 1,

p(t) = 1—tanh(x+t)+tanh(t), 0<t <T,

. 1

6 Numerical Examples m(t) = 5 —tanh(t) +Incosh(t) —Incosht), 0 <t < T,

in this case exact solution is given by

In this section, we perform some results of numerical
computations using Laplace transform method proposed vixt) = Ot (x11)’ 0<x<1,0<t<T.
in the previous section. This technique is applied to solve

the problem defined by the probleh){(2). The method For t = 0.10 and x € [0.10,0.90], we calculateu
of solution is easily applicable via the computer, is usednumerically using the proposed method of the solution
Matlab 7.9.3 program. and compare it with the exact solution in Table 3:

(@© 2015 NSP
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Table 1: Results of Example 1
X 0.10 0.30 0.50 0.70 0.90
u exact 0,0782785| 0,0879214| 0,1057214| 0,1345645| 0,1791275
u numerical 0,0778127 | 0,0878643| 0,1057002| 0,1340946| 0,1790532
absolute error| 0,0004658| 0,0000517| 0,0000212| 0,0004699 | 0,0000743
Table 2: Results of Example 2
X 0.10 0.30 0.50 0.70 0.90
u exact 256693160 | 6,9270684 | 3,4671390| 2,2678574| 1,7240617
u numerical 25,6692268 | 6,9269887 | 3,4670924 | 2,2678555| 1,724061657
absolute error| 0,0000892 | 0,0000797| 0,0000466| 0,0000019| 0,0000043
Table 3: Results of Example 3
X 0.10 0.30 0.50 0.70 0.90
u exact 0,0353069| 0,0095278 0,0047689 | 0,0031193| 0,0023714
u numerical 0,0352700| 0,0093904 0,0044651 | 0,0030620| 0,0023015
absolute error| 0,0000369| —0,0001374| 0,0003038| 0,0000573| 0,0000699
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