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Abstract: In this paper a new algorithm for adaptive kernel principal component analysis (AKPCA) is proposed for dynamic process
monitoring. The proposed AKPCA algorithm combine two existing algorithms, the recursive weighted PCA (RWPCA) and the moving
window kernel PCA algorithms. For fault detection and isolation, a set of structured residuals is generated by using a partial AKPCA
models. Each partial AKPCA model is performed on subsets of variables. The structured residuals are utilized in composing an isolation
scheme, according to a properly designed incidence matrix.The results for applying this algorithm on the nonlinear time varying
processes of the Tennessee Eastman shows its feasibility and advantageous performances.
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1 Introduction

Engineers are often confronted with the problem of
extracting information about poorly-known processes
from data [1]. Recently, with the development of
measurement and data storage equipment, it is strongly
required to use multivariate statistical method for
extracting useful information from a large amount of
process data [2]. Principal Component Analysis (PCA) is
a multivariate statistical method that can be used for
process monitoring. The basic strategy of PCA is to
extracts linear structure from high dimensional data by
finding new principal axes. PCA divides data
systematically into two parts, the first part is the data with
wide variation and the second part is the data with the
least variance, which is noisy. A major limitation of PCA
based monitoring is that the model, once built from the
data, is time invariant, while most real industrial
processes are time varying. The time varying
characteristics of industrial processes include: (i) changes
in the mean, (ii) changes in the variance, and (iii) changes
in the correlation structure among variables, including
changes in the number of significant principal
components (PCs).

To address the challenge, several adaptive PCA
schemes have been proposed [30,13]. The principle
behind the moving window (MW) is well known. As the

window slides along the data, a new process model is
generated by including the newest sample and excluding
the oldest one. Recursive techniques, on the other hand,
update the model for an ever increasing data set that
includes new samples without discarding old ones. It
offers efficient computation by updating the process
model using the previous model rather than completely
building it from the original data. Recursive PCA (RPCA)
allows older samples to be discarded in favor of newer
ones that are more representative of the current process
operation. Wold et al [31] and Gallagher et al [29]
introduced the use of exponentially weighted moving
average (EWMA), exponentially weighted moving
covariance (EWMC), and exponentially weighted moving
PCA (EWM-PCA). This is achieved by updating the
process model at each time when a new vector of
measurements becomes available. The past vectors of
process measurements are then exponentially weighted in
time so that the influence of the most recent
measurements is the greatest.

In some complicated cases in industrial processes
with particular nonlinear characteristics, PCA performs
poorly due to its assumption that the process data are
linear. Principal Component Analysis is in its nature a
linear transformation, which degrades its performance for
handling non linear systems. To cope with this problem,
several non linear extensions of PCA have been
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developed, which allows extracting both linear and non
linear correlation among process variables. An elegant
and one of the most widely used non linear generalization
of the linear PCA is the kernel principal component
analysis (KPCA), which was proposed in 1998 by
Scholkopf et al. in [3] and first employed as a monitoring
tool by Lee et al. in [14]. It has the following advantages
over previous versions of nonlinear PCA: (i) unlike
nonlinear PCA methods based on neural networks, it does
not include the determination of the number of nodes,
layers and approximation for the nonlinear function. (ii)
kernel PCA does not involve a nonlinear optimization
procedure. Despite recently reported KPCA-based
monitoring applications, the following problems arise :
the monitoring model is fixed which may produce false
alarms if the process is naturally time-varying, and the
fault isolation step is a much more difficult problem in
nonlinear PCA than in linear PCA [8,9]. The first
problem has been addressed by a recursive KPCA
formulation to overcome the same problems of the linear
case, presented in the previous paragraph.

The kernel PCA method based process monitoring
have recently shown to be very effective for online
monitoring nonlinear processes. Similar to the linear case,
two methods are presented in the literature for nonlinear
adaptive process monitoring. As the moving window
kernel PCA (MWKPCA) and the recursive kernel PCA
(RKPCA) approaches, where, little research have been
presented on this issue. A variable moving window kernel
PCA scheme is presented by Khediri et al. in [11]. This
method is then applied in a monitoring procedure with a
variable window size model that can provide a flexible
control strategy. Recursive kernel PCA algorithm is
presented by Liu et al. in [15], the proposed technique
incorporates an up-and down-dating procedure to adapt
the data mean and covariance matrix in the feature space.

In this work, a new adaptive kernel principal
component analysis (AKPCA) algorithm is introduced to
monitor and diagnose nonlinear dynamic systems. The
AKPCA algorithm allow to update recursively the kernel
PCA model and its corresponding control limits for
monitoring statistics. The basic idea of the proposed
algorithm refers to a paradigm where, at each time
instant, a new observation is available, and the covariance
matrix in the feature space (Gram matrix) need to be
recursively updated according to the newly available data.
The adaptive KPCA algorithm update the covariance
matrix in the feature space with the degree of change in
the operating process, which depend on the magnitude of
the forgetting factor.

The paper is organized as follows : In section 2 linear
principal component analysis and kernel principal
component analysis are presented. Section 3 gives the
adaptive version of the proposed KPCA approach.
Section 4 gives the residual generation based on the
AKPCA for fault detection and isolation. Results of
simulation studies performed on the Tennessee Eastman

process are presented in section 5. Finally, conclusions
are given in section 6.

2 Preliminaries

2.1 Principal Component Analysis (PCA)

PCA is a powerful dimension-reducing technique. It
produces new variables that are uncorrelated with each
other and are linear combinations of original variables
[6]. Let X represent aN×m matrix of data. PCA is an
optimal factorization ofX into matrix T (principal
componentsN×l) andP (loadingsm×l ) plus a matrix of
residualsE (N×m).

X = TPT +E (1)

where l is the number of factors(l < m). The
Euclidean norm of the residual matrixE must be
minimized for a given number of factors. This criterion is
satisfied when the columns ofP are eigenvectors
corresponding to thel largest eigenvalues of the
covariance matrix ofX. PCA can be viewed as a linear
mapping fromℜm to a lower dimensional spaceℜl . The
mapping has the form :

t = PT X (2)

When using linear PCA the variables involved should
be linearly correlated. If they are correlated nonlinearlyit
is more powerful to use the nonlinear principal component
analysis (NLPCA) for data modeling [19].

2.2 Kernel PCA (KPCA)

As a nonlinear extension of PCA, kernel PCA was
proposed in [5] to generalize PCA to the nonlinear case
by nonlinearly mapping input samples to a higher or
infinite dimensional feature spaceF and performing PCA
there. The feature spaceF is nonlinearly transformed
from input space and implicitly defined by a kernel
function. However, unlike other forms of nonlinear PCA,
the implementation of kernel PCA relies on linear
algebra. We may therefore think of kernel PCA as a
natural extension of ordinary PCA.

Let vectorΦ(Xj ) denote the image of an input vector
(Xj) induced in a feature space defined by the nonlinear
map :Φ : Rm0 → Rm1, wherem0 is the dimensionality of
the input space andm1 is the dimensionality of the feature
space. Given the set of examples{Xi}

N
i=1, where the a

corresponding set of feature vectors{Φ(Xi}
N
i=1.

Accordingly, we may define anm1 −by−m1 correlation
matrix in the feature space, denoted byR̃, as follows :

R̃=
1
N

N

∑
i=1

Φ(Xi)ΦT(Xi) (3)
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As with ordinary PCA, the first thing we have to do is
to ensure that the set of feature vectors{Φ(Xi}

N
i=1 has zero

mean :
1
N

N

∑
i=1

Φ(Xi) = 0 (4)

To satisfy this condition in the features space is a
more difficult proposition than it is in the input space. A
principal componentv is then computed by solving the
eigenvalue problem :

R̃q̃= λ̃ q̃ (5)

whereλ̃ is an eigenvalue of the correlation matrixR̃andq̃
is the associated eigenvector. Now we note that all
eigenvectors that satisfy Eq.(5) forλ̃ 6= 0 lie in the span
of the set of feature vectors{Φ(Xj}

N
j .

q̃=
N

∑
j=1

α j Φ(Xj) (6)

Thus substituting Eq.(3) and Eq.(6) into (5), we obtain :

N

∑
i=1

N

∑
j=1

α jΦ(Xi)K(Xi ,Xj) = Nλ̃
N

∑
j=1

α j Φ(Xj) (7)

WhereK(Xi ,Xj) is an inner-product kernel defined in
terms of the feature vectors by :

K(Xi ,Xj) = ΦT(Xi)Φ(Xj) (8)

We need to go one step further with Eq.(7) so that the
relationship is expressed entirely in terms of the
inner-product kernel. To do so, we pre-multiply both sides
of Eq.(7) by the transposed vectorΦT(Xk).

N

∑
i=1

N

∑
j=1

α jK(Xk,Xi)K(Xi ,Xj) = Nλ̃
N

∑
j=1

α jK(Xk,Xj) (9)

Accordingly, we my recast Eq.(9) in the compact
matrix form :

K2α ≃ Nλ̃Kα (10)

All solution of this eigenvalue problem that are of interest
are equally well represented in the simpler eigenvalue
problem :

Kα = Nλ̃ α (11)

Where the coefficient vectorα plays the role of the
eigenvector associated with the eigenvalueλ of the kernel
matrix K. For extraction of principal components, we
need to compute the projection onto the eigenvectors ˜qk in
feature space, as shown by :

q̃k
TΦ(X) =

N

∑
i=1

αk, j Φ(Xj )Φ(X) =
N

∑
i=1

αk, j K(Xj ,X) (12)

Kernel principal component analysis method have
recently shown to be very effective for monitoring
nonlinear processes. However, their performance largely
depend on the kernel function and currently there is no
general rule for kernel selection. Existing methods simply
choose the kernel function empirically or experimentally
from a given set of candidates. The kernel function plays
a central role in KPCA, and a poor kernel choice may
lead to significantly impaired performance [20,21].
Regarding the kernel functions, they can be chosen for
instance as follows:

• Polynomial kernel,

K(xi ,x j) = (xi .x j +1)d (13)

whered is a positive integer;
• Radial basis function (RBF),

K(xi ,x j) = exp(−
∥

∥xi −x j
∥

∥

2
/2δ 2) (14)

where 2δ 2 =w is the width of the Gaussian kernel.
The above kernel functions give similar results if

appropriate parameters are chosen. The radial basis
function may present advantages owing to its flexibility in
choosing the associated parameter. For instance, the width
of the Gaussian kernel can be very small(< 1) or quite
large [7].

A major limitation of KPCA-based monitoring is that
the KPCA model, once built from the data, is
time-invariant, while most real industrial processes are
time-varying. The time-varying characteristics of
industrial processes include: (i) changes in the correlation
structure among variables, (ii) including changes in the
number of significant principal components (PCs). When
a time-invariant KPCA model is used to monitor
processes with the aforementioned normal changes, false
alarms often result, which significantly compromise the
reliability of the monitoring system.

3 Adaptive Kernel PCA (AKPCA)

When the process operating condition change either,
gradually or abruptly, the covariance matrix will not be
constant and will need to be updated. In the existing
recursive methods, only linear methods were proposed
[23,24,25,26]. Because the kernel function is unknown, it
is difficult to describe the nonlinear dynamic data
structure. Moving Window PCA (MWPCA) as in [23,
24], and Exponentially Weighted PCA (EWPCA) as in
[25] are two representative adaptive PCA methods.
Similar to the linear case, in the moving window kernel
PCA algorithm, a data window of fixed length is moved
in real time to update the kernel PCA model once a new
normal sample is available (see Figure 01).

In [11], the study proposes a variable window
real-time monitoring system based on a fast block
adaptive KPCA scheme. On the other hand, Li et al in

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1836 C. CHAKOUR et. al.: New Adaptive Kernel Principal Component...

Fig. 1: MWKPCA

[27] introduced a new recursive PCA technique. In this
work, we present the same development of WPCA
approach and adapt it in the feature space, nonlinear
adaptive KPCA. However, the updating rule of the
covariance matrix for the linear case(XT X)t is carried
out as follows :

(XT X)t = λ (XT X)t−1+(1−λ )(xT x)t (15)

Here the scaling of the new online vector of process
measurementsxt by the factor(1−λ ) is more in keeping
with the traditional multivariate exponentially weighted
moving average control chart. An important issue in
EWPCA is the choice of the weighting factor. The
weighting factor determines the influence that the older
data has on the model. The most model updating
approaches have used an empirical constant forgetting
factor.

When the process changes rapidly, the updating rate
should be high, whereas when the change is slow and thus
the essential process information is valid for a long
period, it should be low. However, it is likely that the rate
of process change or variation in real processes vary with
time. Choi et al in [13] for the linear case propose a new
algorithm to adapt the forgetting factor. In this algorithm
two forgetting parametersα andβ are used to update the
sample mean vector and covariance (or correlation)
matrix, respectively. The forgetting factorα for updating
the mean vector is calculated as:

αt = αmax−(αmax−αmin)

[

1−exp(−k(
‖∆mt−1‖

‖∆mnor‖
)n)

]

(16)

Similarly, the forgetting factorβ for updating the
covariance (or correlation) matrix is given by:

βt = βmax−(βmax−βmin)

[

1−exp(−k(
‖∆Rt−1‖

‖∆Rnor‖
)n)

]

(17)
Whereαmin, αmax, βmin, βmax are the maximum and

minimum forgetting value, respectively,k and n are
function parameters, and‖∆x‖ is the Euclidean vector
norm of the difference between two consecutive mean
vectors or covariance (correlation) matrix. Here‖∆xnor‖
is the averaged‖∆x‖ obtained using historical data.

The proposed AKPCA algorithm combine the
MWKPCA and the recursive WPCA algorithms to update
online the kernel PCA model and its corresponding
control limits. Similarly to the linear case, the covariance
matrix in the feature space (gram matrix) is updated as in
the equation (15), and the forgetting factors are calculated
according to the equation (17). The gram matrix is
updated with the degree of change in the model structure
being dependent on the magnitude of the forgetting
factors [22]. The proposed adaptive kernel PCA algorithm
uses the same procedure developed in the linear case of
adaptive PCA and adapt it in the feature space of the
KPCA. The main idea and the core of the proposed
algorithm is described in the algorithm 1.

4 Fault Isolation and Control Chart

4.1 Control Chart (SPE)

For slowly time-varying processes, the confidence limits
for the detection indices will change with time, making
adaptation of these limits necessary for online
monitoring. A complete implementation of AKPCA also
requires recursive determination of the number of
significant principal components. In this study, the
cumulative percent variance (CPV) method is used, which
has been usually applied for the determination of the
number of principal component (PCs) retained in the
model. The CPV is a measure of the percent variance
explained by the first PCs [4]:

CPV(npc) =

npc

∑
i=1

λi

M
∑

i=1
λi

×100% (20)

where λi is the eigenvalue for each eigenvector. The
number of PCs is chosen such that CPV reaches a
predetermined value, e.g. 95%.

The SPE (squared prediction error) is a statistic that
measures the lack of fit of the KPCA model to the data in
the feature space. It is a measure of the amount of variation
not captured by the principal component model. TheSPE
indicate the extent to which each sample conforms to the
KPCA model.
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Algorithm 1 Adaptive kernel PCA algorithm
1. Off-line Learning :

(a)Given an initial standardized block of training data, set
PC numbers and kernel parameter.

(b)Construct the kernel matrixK and scale it (̄K0).
(c)Estimate the initial KPCA model (the eigen values and

vectors of theK̄0).
(d)Calculate the initial control limit of the monitoring

statistic.

2. On-line Learning and monitoring :
(a)Obtain the next testing sample x, calculate the PC

numbers and kernel parameter.
(b)Computeknew and scale it (̄K).
(c)ProjectK̄ into KPCA to obtainK̂.
(d)Calculate the monitoring statistic.

(e)Test ifSPEt < The control limit; the testing sample is not
an outlier and the system operate properly, go to step 3.
Otherwise, consider the current condition to be abnormal
and go to step 2.

3.If updating condition is satisfied, do:
(a)Calculate the adaptive gram matrix.

K = λt × K̄t−1+(1−λt )× K̄t (18)

Whereλt is a flexible forgetting factor.

λt = (λmax− (λmax−λmin)[1−exp(−ß(‖∆R‖) )])
(19)

λmin = 0.9, λmax= 0.99,‖ ∆R‖ is the Euclidean vector
norm of the difference between two consecutive gram
matrix and the parameterß control the sensitivity of the
change inλt .

(b)Find the number of principal components(l).
(c)Update the KPCA model: calculate the new eigenvalues

and vectors of the new covariance matrix in the feature
space (gram matrix).

(d)Update the forgetting factorλt .
(e)Recalculate the monitoring statistics and the

corresponding controls limits.
(f)Return to step 2.

The calculation procedure of the detection indexSPE
in KPCA method is clearly presented in [17]. First, for an
observation vectorx, KPCA performs a nonlinear mapping
Φ(·) from an input space(Step1). Then, a linear PCA is
performed in this high dimensional space, which gives rise
to score vectort in a lowerp dimensional space(Step2).

In order to compute SPE in feature space, we need to
reconstruct a feature vectorΦ(x) from t. This is done by
projecting t into the feature space via eigenvectorsv
(Step3). Thus, the reconstructed feature vector can be
written as :

Φ̂p(x) =
p

∑
i=1

tivi (21)

Therefore, SPE in feature spaceF is defined as

SPE=
∥

∥Φ(x)− Φ̂P(x)
∥

∥

2
=

n

∑
j=1

t2
j −

p

∑
j=1

t2
j (22)

where n is the number of nonzero eigenvalues. The
confidence limit for theSPE can be computed from its
approximate distribution:

SPEα ≈ ηχ2
h (23)

whereα is the confidence level,η= b/2a andh= 2a 2/b,
a andb are the estimated mean and variance of theSPE.

4.2 Fault Diagnosis Based on The Structured
Residual Approach

When a faulty condition is detected, one needs to
determine the root cause of this problem. AKPCA is used
in monitoring, its performed on the full data set. The sum
of squared residuals can be used as a metric in detecting
faults. However, there is no indication of the location of
the fault [18]. The partial AKPCA is an AKPCA
performed on reduced vector, where some variable in the
data are left out. When data is evaluated against a
properly designed partial AKPCA subspace, the residual
will only be sensitive to faults associated with the
variables that are present in the reduced vector. Faults
associated with variables eliminated from the partial
AKPCA will leave the residuals within the nominal
thresholds. With the selectivity of partial AKPCA to
subsets of faults, it is possible to design an incidence
matrix for a set of such partial AKPCAs, resulting in a
structure with same fault isolation properties as parity
relations (show figure 2).

The procedure for structuring the residuals is as follow
[12]:

–Perform a standard AKPCA to determine the number
of relationsm,

–Construct a matrix of incidence strongly isolable
(matrix of theoretical signatures),

–Construct a group of partial adaptive kernel PCA
models, according to the incidence matrix,

–Determine the thresholds beyond which abnormality is
indicated.

After the structured partial KPCA subspace set is
obtained, it can be used in on-line monitoring and fault
isolation. New observation are evaluated against the
structured set as follows (show figure 3):

The localization test can be done online, for each time:

–Run the observed data against each partial AKPCA
subspace and compute the residuals,
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Fig. 3: The fault isolation procedure by structured partial
AKPCA.

–Compare the indices to appropriate thresholds and
from the fault codeSei according to:Sei = 0 if
SPEi 6 control limit(i) and,
Sei = 1 if SPEi > control limit(i),

–Compare the fault code to the columns of the incidence
matrix to arrive at an isolation decision.

5 Experimental part

In this section, in order to investigate the potential
application of AKPCA method, it was applied to online
monitoring in the simulation benchmark of Tenesses
Estman and the monitoring performance of AKPCA was
compared with the MWKPCA algorithm proposed by Liu
et al in [15].

5.1 Tennessee Eastman Process (TEP) data

The TEP was developed by Downs and Vogel of the
Eastman Company to provide a realistic simulation for
evaluating process control and monitoring methods. It has
become perhaps the most important and commonly used
benchmark simulation for the development of plant-wide
control. There are five major units in TEP simulation (as
shown in (fig.04)) a reactor, separator, stripper, condenser,
and a compressor. The process has 12 manipulated
variables, 22 continuous process measurements, and 19
composition measurements sampled less frequently [9].
Corresponding to different production rates, there are six
modes of process operation.

Fig. 4: Tennessee Eastman Process

5.2 Simulation results

The Tennessee Eastman process was run for 1/2 hours,
and we collected 600 samples from 16 measurements
(show Table 1). An important issue concerning the
proposed adaptive monitoring technique is to evaluate it
with respect to most current KPCA process control
strategies. Analysis of monitoring performances for the
different adaptive approaches AKPCA can be reported by
using the false alarm rate and the detection rate criterion.
The first criteria gives information about the robustness of
the adopted method against normal system changes whilst
the second criteria gives information about the sensitivity
and efficiency of detecting faults.

In this study we propose, to compare performances of
the proposed Adaptive KPCA (flexible forgetting factor)
with Moving Window KPCA (MWKPCA) of Liu et al.
[15], and the proposed adaptive KPCA with different fixed
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N◦var variables
1 A feed
2 Reactor temperature
3 E feed
4 A and C feed
5 Recycle flow
6 Reactor feed rate
7 D feed
8 Purge rate
9 Product separator temperature
10 Product separator pressure
11 Product separator under flow
12 Stripper pressure
13 Stripper temperature
14 Stripper steam flow
15 Reactor cooling water outlet temperature
16 Separator cooling water outlet temperature

Table 1: The measurements used for monitoring
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Fig. 5: SPE PCA with fixed
model.
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Fig. 6: SPE KPCA with fixed
model.

values of forgetting factor. Firstly, for the valueσ of the
radial kernel function is tuned based on the method of Park
and Park [31], which proposes to selectσ = C ∗Averd,
whereAverdis the mean distance between all observations
in feature space andC is a predetermined value. In this
study, theC value is set to be equal to the square root of
the number of process variables.

The first 100 samples were utilized to build the initial
PCA and KPCA models, and the adaptive monitoring is
started using forgetting factor combined with a Moving
Window, the size of this Moving window is 70 samples.
The proposed AKPCA algorithm is used to monitor
online the TEP system. We use the parameters described
earlier in the algorithm. For the forgetting factor, we
choose these values of parameters :λmax = 0.99,
λmin = 0.9, k=0.05.

In the identification step of the APCA model, the
number of significant PCs is selected by using CPV
method, such that the variance explained is approximately
95% of the total variance (see Fig. 13). Thus, for greater
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Fig. 7: Evolution the SPE Moving Window Kernel PCA
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Fig. 8: Evolution the SPE AKPCA with fixed forgetting factor
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Fig. 9: Evolution the SPE AKPCA with fixed forgetting factor
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Fig. 10: Evolution the SPE AKPCA with fixed forgetting factor
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Fig. 11: Evolution the SPE Adaptive kernel PCA
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Fig. 12: The flexible forgetting
factor.
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Fig. 13: Number of principal
components.

flexibility to adapting with the evolution of the system, an
adaptive forgetting factor is used to update the covariance
matrix in the feature space in real time according to the
change of the system (shows in Fig.12).

In order to show that Batch PCA and KPCA models
are not appropriate for monitoring of non-stationary
processes, Fig. 5 and Fig. 6 show monitoring
performances of both methods when the process is
operating under normal condition. The false alarm rate
provided by PCA and KPCA approaches is undesirable.
In this case the detection index SPE PCA and SPE KPCA
shows that the system is faulty, knowing that the system
works properly in this simulation part. The analysis of the
detection performance of these methods is not performed,
since these control charts are not adequate for monitoring
of non-stationary processes. However, as shown in (Fig.
7,8,9,10 and 11) and in contrast to the fixed models,
applying adaptive PCA based control charts to the same
data set, allows better capabilities of adaptation to the
nonlinear non-stationary behavior of the process.

Figure. 7 shows that the MWKPCA is less robust to
false alarms. Where as AKPCA using forgetting factor is
more robust to false alarms. Figures 8, 9, 10 and 11 show
that bigger forgetting factors result in a more robustness
to false alarms. For example a forgetting factor of 0.9

means according to equation (19) in the adaptive
algorithm KPCA that:

K = λt × K̄t−1+(1−λt)× K̄t (24)

K = 0.9× K̄t−1+0.1× K̄t (25)

The adaptive model of AKPCA takes 10% of its
information from the new window and 90% of its
information from the previous window. The robustness is
related to the way the window is moving. If the moving
window collect simple wise, the problem is less serious,
but when the window is updated with block wise where
the KMWPCA model undergoes an abrupt changes in a
more or less rapid system, it will generate a very high rate
of false alarms, and sometimes even instability and
divergence of detection index (Q statistics) comparing
with control threshold. Our algorithm adapts to this
problem by the introduction of old information of the
system using the forgetting factor in the moving window.
This will result in a better adaptation to abrupt changes of
the systems and hence a good robustness to false alarms.
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Fig. 14: Rate of false alarms (threshold 95%)

Fig. 12 and Fig. 13 show the evolution of the flexible
forgetting factor and the number of principal component
PCs with the degree of change in the system, respectively.
For better representation, Figures 14 and 15 show a
graphical representation of the rate false alarms evolution
with different value of thresholds and different moving
window size. The figures show that the adaptive KPCA
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Fig. 15: Rate of false alarms (threshold 99%)

(with flexible forgetting factor) and the adaptive KPCA
with different value of forgetting factor are more robust to
false alarms than the moving window kernel PCA
method. This robustness is the outcome of the previously
observation, which is considered in the new built model.

A fault affecting the variablex2 is simulated between
samples 500 and 600 with the magnitude of 35% of the
range of variation of the reactor temperature sensor,
which is represented with the variablex2. Control limits
are calculated at the confidence level 95%.
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Fig. 16: Evolution the SPE Moving Window Kernel PCA

After time point k = 500, it is found that the
monitoring indices continuously exceed their thresholds,
which indicates a fault has been successfully detected
(show figures 16-20). Consequently, the model updating
is terminated.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

Fig. 17: Evolution the SPE AKPCA with fixed forgetting factor
0.9
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Fig. 18: Evolution the SPE AKPCA with fixed forgetting factor
0.95
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Fig. 19: Evolution the SPE AKPCA with fixed forgetting factor
0.97
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Fig. 20: Evolution the SPE Adaptive kernel PCA
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Fig. 21: Rate of successfully detection with a magnitude of the
fault = 30%

Figure 21 show a graphical representation of the rate
of successfully detection with different value of moving
window size. There is clear in the figure that if the size of
the moving window is small, the sensitivity of fault
detection is greater. Thus that, the adaptive kernel PCA
algorithms have more sensitivity of fault detection than
the moving window PCA algorithm if the moving
window size is greater than 60 samples.

5.3 On-line fault isolation case

When a faulty condition is detected, we need to determine
the root cause of this problem. The adaptive partial kernel
PCA method is used to diagnose the provenance of this
faulty. This technique allows the structuring of the
residuals by building a set of models, so that each model
is sensitive to certain variables and insensitive to others.
The models are built according to the following incident
matrix (Table 2 which is the table of theoretical
signatures).

In this approach, we built 16 models of KPCA. Each
model is insensitive to (06) variables (sensors or
actuators) as it is illustrated in the table of theoretical
signatures which shows the structuring of the chosen
models. Figures 23 and 24 shows the evolution of the
experimental signatures when a default is introduced to
the variables (sensor/actuator) of the system. The
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Fig. 22: Evolutions of SPE corresponding to the first Eight
different partial AKPCA models.
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Partial models x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
SPE1 0 0 0 0 0 0 × × × × × × × × × ×
SPE2 × 0 0 0 0 0 0 × × × × × × × × ×
SPE3 × × 0 0 0 0 0 0 × × × × × × × ×
SPE4 × × × 0 0 0 0 0 0 × × × × × × ×
SPE5 × × × × 0 0 0 0 0 0 × × × × × ×
SPE6 × × × × × 0 0 0 0 0 0 × × × × ×
SPE7 × × × × × × 0 0 0 0 0 0 × × × ×
SPE8 × × × × × × × 0 0 0 0 0 0 × × ×
SPE9 × × × × × × × × 0 0 0 0 0 0 × ×
SPE10 × × × × × × × × × 0 0 0 0 0 0 ×
SPE11 × × × × × × × × × × 0 0 0 0 0 0
SPE12 0 × × × × × × × × × × 0 0 0 0 0
SPE13 0 0 × × × × × × × × × × 0 0 0 0
SPE14 0 0 0 × × × × × × × × × × 0 0 0
SPE15 0 0 0 0 × × × × × × × × × × 0 0
SPE16 0 0 0 0 0 × × × × × × × × × × 0

Table 2: Table of theoretical signatures

experimental signature is obtained after codifying the
residual. Where exceeding the threshold of detection is
represented by 1, and less than the threshold is
represented by 0. This gives the following experimental
signature ( 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 ). This signature
is identical to the second column in the theoretical table,
which means that the suspect variable (sensor/actuator) is
x2.

6 Conclusion

In this work, a new adaptive kernel PCA algorithm is
proposed for dynamic process modeling. The proposed
AKPCA model is then performed on subsets of variables
to generate a structured residuals for sensor and actuator
fault detection and isolation. The proposed algorithm is
applied for sensor and actuator fault detection and
isolation of Tennessee Eastman process.
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