Inequalities for Power Series

Loredana Ciurdariu ${ }^{1, *}$ and Nicuşor Minculete ${ }^{2}$
${ }^{1}$ Department of Mathematics, "Politehnica" University of Timişoara, P-ta. Victoriei, No. 2, 300006-Timişoara, Romania
${ }^{2}$ Transilvania University of Brasov, Street Iuliu Maniu 50, Braşov, 500091, Romania

Received: 21 Oct. 2014, Revised: 21 Jan. 2015, Accepted: 22 Jan. 2015
Published online: 1 Jul. 2015

Abstract

The aim of this paper is to give several inequalities for power series starting from a generalization of Young's inequality for sequences of complex numbers. Then some inequalities deduced from some variants of the arithmetic-geometric mean inequality will be given. Thus by Theorem 1, Theorem 2 and Theorem 3 several refinements of Young's inequality for functions defined by power series with real coefficients are given and by Theorem 4 a generalization of a sharp Hölder's inequality for functions defined by power series with real coefficients is presented. Then a generalization of Young's inequality for m pair of complex numbers in the case of the functions defined by power series is given in Remark 1, and a variant of Muirhead's inequality for functions defined by power series with real coefficients is given in Proposition 3. There are a lot of examples related to some fundamental complex functions such as the exponential, logarithm, trigonometric and hyperbolic functions and also there are applications for some special functions such as polylogarithm, hypergeometric and Bessel functions for the first kind. Finally, we present an application related to the average information.

Keywords: Power series, Young's inequality, Muirhead's inequality, arithmetic-geometric mean inequality

1 Introduction

Power series is a special type of series of a function. The applications to power series can be found in mathematics, computer science, physics and in information theory. We will study the power series related to inequalities. Using a refinement of the Cauchy-Bunyakovsky-Schwarz inequality, Cerone and Dragomir in [12], established some inequalities concerning functions defined by convergent power series with real or nonnegative coefficients. The technique to find other inequalities of functions using power series was given by Ibrahim and Dragomir in [3], Mortici in [11] and Ibrahim, Dragomir and Darus in [4]. This method is important because can be improved and extended some of the known inequalities, which have applications in many fields.

We consider an analytic function defined by the power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

with real coefficients and convergent on the disk $D(0, R), R>0$. As in [4] the weighted version of Hölder's inequality can be stated as below:

$$
\begin{gathered}
|f(x y)|=\left|\sum_{n=0}^{\infty} a_{n} x^{n} y^{n}\right| \leq\left(\sum_{n=0}^{\infty}\left|a_{n}\right||x|^{p n}\right)^{\frac{1}{p}}\left(\sum_{n=0}^{\infty}\left|a_{n}\right||x|^{q n}\right)^{\frac{1}{q}} \\
=f_{A}^{\frac{1}{p}}\left(|x|^{p}\right) f_{A}^{\frac{1}{q}}\left(|y|^{q}\right)
\end{gathered}
$$

for any $x, y \in \mathbf{C}$ with $x y,|x|^{p},|y|^{q} \in D(0, R)$ and $f_{A}(z)$ is a power series defined by $\sum_{n=0}^{\infty}\left|a_{n}\right| z^{n}$. The power series $f_{A}(z)$ have the same radius of convergence as the original power series $f(z)$.

In the case when all coefficients of the series $f(z)$ are positive we have $f(z)=f_{A}(z)$.

Next, we present several results related to inequalities, that will be useful in our study.

[^0]We consider the following inequality, which represents an improvement of Young's inequality:

Lemma 1. ([8]) For $0<a, b \leq 1$ and $\lambda \in(0,1)$ we have

$$
\begin{gathered}
r(\sqrt{a}-\sqrt{b})^{2}+A(\lambda) a b \log ^{2}\left(\frac{a}{b}\right) \leq \lambda a+(1-\lambda) b-a^{\lambda} b^{1-\lambda} \\
\leq(1-r)(\sqrt{a}-\sqrt{b})^{2}+B(\lambda) a b \log ^{2}\left(\frac{a}{b}\right)
\end{gathered}
$$

where $r=\min \{\lambda, 1-\lambda\}, A(\lambda)=\frac{\lambda(1-\lambda)}{2}-\frac{r}{4}$ and $B(\lambda)=$ $\frac{\lambda(1-\lambda)}{2}-\frac{1-r}{4}$.

If we take here $\lambda=\frac{1}{p}$ and replace a^{λ} by a and $b^{1-\lambda}$ by b then $1-\lambda=\frac{1}{q}$ and we obtain:

$$
\begin{align*}
& a b+r\left(a^{\frac{p}{2}}-b^{\frac{q}{2}}\right)^{2}+A\left(\frac{1}{p}\right) a^{p} b^{q} \log ^{2}\left(\frac{a^{p}}{b^{q}}\right) \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \\
& \leq a b+(1-r)\left(a^{\frac{p}{2}}-b^{\frac{q}{2}}\right)^{2}+B\left(\frac{1}{p}\right) a^{p} b^{q} \log ^{2}\left(\frac{a^{p}}{b^{q}}\right) \tag{1}
\end{align*}
$$

We also need the inequality from below which is given in [5], Lemma 2.

Lemma 2. For $a_{i j} \geq 0, p_{j}>0, i \in\{1,2, \ldots, n\}$ and $j \in$ $\{1,2, \ldots, m\}$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+. .+\frac{1}{p_{m}} \geq 1$ we have
$\sum_{i=1}^{n} a_{i 1} a_{i 2} \ldots a_{i m} \leq\left(\sum_{i=1}^{n} a_{i 1}^{p_{1}}\right)^{\frac{1}{p_{1}}}\left(\sum_{i=1}^{n} a_{i 2}^{p_{2}}\right)^{\frac{1}{p_{2}}} \ldots\left(\sum_{i=1}^{n} a_{i m}^{p_{m}}\right)^{\frac{1}{p_{m}}}$.

Next inequality is given in [2], Proposition 5.1 and will be used in Theorem 4.

Proposition 1. ([2]) Let $a_{1}, \ldots, a_{n} \geq 0$ and $p_{1}, \ldots, p_{n} \geq 0$ with $\sum_{j=1}^{n} p_{j}=1$ we have

$$
\sum_{i=1}^{n} p_{i} a_{i}-a_{1}^{p_{1}} \ldots a_{n}^{p_{n}} \geq n \lambda\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}-a_{1}^{\frac{1}{n}} \ldots a_{n}^{\frac{1}{n}}\right)
$$

with equality if and only if $a_{1}=\ldots=a_{n}$, where $\lambda=\min \left\{p_{1}, \ldots, p_{n}\right\}$.

Using the above results in this paper we give by Theorem 1, Theorem 2 and Theorem 3 several refinements of Young's inequality presented in [4] for functions defined by power series with real coefficients and by Theorem 4 a generalization of a sharp Hölder's inequality for functions defined by power series with real coefficients is presented. Then motivated by some results from [6,7], a generalization of Young's inequality for m pair of complex numbers in the case of the functions defined by power series is given in Remark 1, and a variant of Muirhead's inequality for functions defined by
power series with real coefficients is given in Proposition 3.

These results are important due to their applications for special functions such as polylogarithm, hypergeometric and Bessel and modified Bessel functions for the first kind. Moreover, in information sciences, many applications of Hölder's inequality have also been studied by many authors as [22]. In section 3 an application related to the average information is presented.

2 Main results

The following three results were obtained using a refinement of Young's inequality given in [8] for two positive numbers a and b in $(0,1)$ for power series with real coefficients, and the same method as in [4], Theorem 1,2 and 3 .

Theorem 1. Let $f(z)=\sum_{n=0}^{\infty} p_{n} z^{n}, g(z)=\sum_{n=0}^{\infty} q_{n} z^{n}$ be the power series with real coefficients and convergent on the open disk $D(0, R), 0<R<1$. If p, q are real numbers with $p>1, \frac{1}{p}+\frac{1}{q}=1$ and $a, b \in \mathbf{C}, a, b \neq 0$, $|a|<1,|b|<1$ so that $|a b|,|a|^{p},|a|^{q},|b|^{p},|b|^{q}$, $|a|^{\frac{q}{2}}|b|^{\frac{p}{2}},|a|^{\frac{p}{2}}|b|^{\frac{q}{2}},|a|^{p}|b|^{q},|a|^{q}|b|^{p} \in D(0, R)$, then we have

$$
\begin{gather*}
|f(a b) g(a b)|+r M_{1}+A\left(\frac{1}{p}\right) T_{1} \\
\leq f_{A}(|a b|) g_{A}(|a b|)+r M_{1}+A\left(\frac{1}{p}\right) T_{1} \\
\leq \frac{1}{p} f_{A}\left(|a|^{p}\right) g_{A}\left(|b|^{p}\right)+\frac{1}{q} f_{A}\left(|b|^{q}\right) g_{A}\left(|a|^{q}\right) \tag{2}\\
\leq f_{A}(|a||b|) g_{A}(|a||b|)+(1-r) M_{1}+B\left(\frac{1}{p}\right) T_{1}
\end{gather*}
$$

and

$$
\begin{align*}
& \left|f\left(a|b|^{p-1}\right) g\left(a|b|^{q-1}\right)\right|+r M_{2}+A\left(\frac{1}{p}\right) \log ^{2} \frac{|a|}{|b|} T_{2} \tag{3}\\
& \leq f_{A}\left(|a||b|^{p-1}\right) g_{A}\left(|a||b|^{q-1}\right)+r M_{2}+A\left(\frac{1}{p}\right) \log ^{2} \frac{|a|}{|b|} T_{2} \\
& \leq \frac{1}{p} f_{A}\left(|a|^{p}\right) g_{A}\left(|b|^{q}\right)+\frac{1}{q} f_{A}\left(|b|^{p}\right) g_{A}\left(|a|^{q}\right) \\
& \leq f_{A}\left(|a||b|^{p-1}\right) g_{A}\left(|a||b|^{q-1}\right)+(1-r) M_{2}+B\left(\frac{1}{p}\right) \log ^{2} \frac{|a|}{|b|} T_{2},
\end{align*}
$$

if in this case $|a|<|b|$, and $|a||b|^{p-1},|a||b|^{q-1},|a|^{p},|a|^{q}$, $|b|^{p},|b|^{q},|a|^{\frac{p}{2}}|b|^{\frac{p}{2}},|a|^{\frac{q}{2}}|b|^{\frac{q}{2}} \in D(0, R)$, where

$$
\begin{aligned}
M_{1}= & f_{A}\left(|a|^{p}\right) g_{A}\left(|b|^{p}\right)+f_{A}\left(|b|^{q}\right) g_{A}\left(|a|^{q}\right)- \\
& -2 f_{A}\left(|a|^{\frac{p}{2}}|b|^{\frac{q}{2}}\right) g_{A}\left(|a|^{\frac{q}{2}}|b|^{\frac{p}{2}}\right),
\end{aligned}
$$

$$
\begin{gathered}
M_{2}=f_{A}\left(|a|^{p}\right) g_{A}\left(|b|^{q}\right)+f_{A}\left(|b|^{p}\right) g_{A}\left(|a|^{q}\right)- \\
-2 f_{A}\left(|a|^{\frac{p}{2}}|b|^{\frac{p}{2}}\right) g_{A}\left(|a|^{\frac{q}{2}}|b|^{\frac{q}{2}}\right), \\
T_{1}=g_{A}\left(|a|^{q}|b|^{p}\right) S_{1}\left(|a|^{p}|b|^{q}\right) \log ^{2} \frac{|a|^{p}}{|b|^{q}}+ \\
+f_{A}\left(|a|^{p}|b|^{q}\right) S_{2}\left(|a|^{q}|b|^{p}\right) \log ^{2} \frac{|a|^{q}}{|b|^{p}}-2\left[p q\left(\log ^{2}|a|^{2}+\log ^{2}|b|\right)-\right. \\
\left.-\left(p^{2}+q^{2}\right) \log |a| \log |b|\right] S_{3}\left(|a|^{p}|b|^{q}\right) S_{4}\left(|a|^{q}|b|^{p}\right), \\
T_{2}=p^{2} g_{A}\left(|a|^{q}\right) S_{1}\left(|a|^{p}\right)+q^{2} f_{A}\left(|a|^{p}\right) S_{2}\left(|a|^{q}\right)- \\
-2 p q S_{3}\left(|a|^{p}\right) S_{4}\left(|a|^{q}\right), \\
S_{1}(x)=x f_{A}^{\prime}(x)+x^{2} f_{A}^{\prime \prime}(x), S_{2}(x)=x g_{A}^{\prime}(x)+x^{2} g_{A}^{\prime \prime}(x), \\
S_{3}(x)=x f_{A}^{\prime}(x), S_{4}(x)=x g_{A}^{\prime}(x) .
\end{gathered}
$$

Proof.

In the first case we replace a by $|a|^{j}|b|^{k}$, and b by $|a|^{k}|b|^{j}, j, k \in\{0,1, \ldots, n\}$ in (1) and then we have

$$
\begin{gathered}
|a|^{j}|b|^{k}|a|^{k}|b|^{j}+r\left[\left(|a|^{j}|b|^{k}\right)^{\frac{p}{2}}-\left(|a|^{k}|b|^{j}\right)^{\frac{q}{2}}\right]^{2}+ \\
+\left.A\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{j p}|b|^{k p}}{|a|^{k q}|b|^{j q}}\right)|a|\right|^{j p}|b|^{k p}|a|^{k q}|b|^{j q} \leq \\
\leq \frac{|a|^{j p}|b|^{k p}}{p}+\frac{|a|^{k q}|b|^{j q}}{q} \leq \\
\leq|a|^{j}|b|^{k}|a|^{k}|b|^{j}+(1-r)\left[\left(|a|^{j}|b|^{k}\right)^{\frac{p}{2}}-\left(|a|^{k}|b|^{j}\right)^{\frac{q}{2}}\right]^{2}+ \\
+B\left(\frac{1}{p}\right) \log ^{2}\left(\frac{\left.|a|\right|^{j p}|b|^{k p}}{\left.|a q| b\right|^{j q}}\right)|a|^{j p}|b|^{k p}|a|^{k q}|b|^{j q}
\end{gathered}
$$

for any $j, k \in\{0,1,2, \ldots, n\}$. We take into account that $\left|a^{j} b^{k} a^{k} b^{j}\right|=\left|a^{j} b^{j}\right|\left|b^{k} a^{k}\right|=|a|^{j}|b|^{k}|a|^{k}|b|^{j}$ and if we multiply the inequality with positive quantities $\left|p_{j}\right|\left|q_{k}\right|$ and sum over j and k from 0 to n, we obtain

$$
\begin{aligned}
& \sum_{j=0}^{n}\left|p_{j}\right||a b|^{j} \sum_{k=0}^{n}\left|q_{k}\right||a b|^{k}+r \sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|\left[|a|^{j p}|b|^{k p}+\right. \\
& \left.\quad+|a|^{k q}|b|^{j q}-2|a|^{j \frac{p}{2}}|a|^{k \frac{q}{2}}|b|^{k \frac{p}{2}}|b|^{j \frac{q}{2}}\right]+ \\
& +A\left(\frac{1}{p}\right) \sum_{j=0}^{n}\left|p_{j}\right|_{k=0}^{n}\left|q_{k}\right| \log ^{2}\left(\frac{|a|^{j p-k q}}{|b|^{j q-k p}}\right)\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k} \leq \\
& \quad \leq \sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|\left(\frac{|a|^{j p}|b|^{k p}}{p}+\frac{|a|^{k q}|b|^{j q}}{q}\right) \leq \quad \text { (4) } \\
& \leq \sum_{j=0}^{n}\left|p_{j}\right||a b|^{j} \sum_{k=0}^{n}\left|q_{k}\right||a b|^{k}+(1-r) \sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|\left[|a|^{j p}|b|^{k p}+\right. \\
& \left.\quad+|a|^{k q}|b|^{j q}-2|a|^{j \frac{p}{2}}|a|^{k \frac{q}{2}}|b|^{k \frac{p}{2}}|b|^{j \frac{q}{2}}\right]+ \\
& +B\left(\frac{1}{p}\right) \sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right| \log ^{2}\left(\frac{|a|^{j p-k q}}{|b|^{j q-k p}}\right)\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k} .
\end{aligned}
$$

Denoting by P_{1} the quantity

$$
\sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right| \log ^{2}\left(\frac{|a|^{i p-k q}}{|b|^{\mid q-k p}}\right)\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k}
$$

by computation we have,

$$
\begin{gathered}
P_{1}=\sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|[(j p-k q) \log |a|- \\
-(j q-k p) \log |b|]^{2}\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k}= \\
=\sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|\left[(j p-k q)^{2} \log ^{2}|a|+(j q-k p)^{2} \log ^{2}|b|-\right. \\
-2(j p-k q)(j q-k p) \log |a| \log |b|]\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k}= \\
=\sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|\left[j^{2}(p \log |a|-q \log |b|)^{2}+\right. \\
+k^{2}(q \log |a|-p \log |b|)^{2}-2 j k\left(p q\left(\log ^{2}|a|+\log ^{2}|b|\right)-\right. \\
\left.\left.-\left(p^{2}+q^{2}\right) \log |a| \log |b|\right)\right]\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k}= \\
=\sum_{j=0}^{n}\left|p_{j}\right| \sum_{k=0}^{n}\left|q_{k}\right|\left[j^{2} \log ^{2} \frac{|a|^{p}}{|b|^{q}}+k^{2} \log ^{2} \frac{|a|^{q}}{|b|^{p}}-\right. \\
\left.-2 j k\left(p q\left(\log ^{2}|a|+\log ^{2}|b|\right)-\left(p^{2}+q^{2}\right) \log ^{2}|a| \log |b|\right)\right] . \\
\cdot\left(|a|^{p}|b|^{q}\right)^{j}\left(|a|^{q}|b|^{p}\right)^{k} .
\end{gathered}
$$

All the series whose partial sums which appear here in inequality (4) are convergent on the disk $D(0, R)$ therefore we can take the limit when n tends to ∞ in (4) and obtain the inequality (2) taking into account that because T_{1} is the limit when n tends of ∞ of P_{1}.

In the second case, if we replace in (1) a by $\frac{|a|^{j}}{|b|^{j}}$ and b by $\frac{|a|^{k}}{|b|^{k}}$ then we have

$$
\begin{gather*}
\frac{|a|^{j}|a|^{k}}{|b|^{j}|b|^{k}}+r\left[\frac{|a|^{p j}}{|b|^{p j}}+\frac{|a|^{q k}}{|b|^{q k}}-2 \frac{|a|^{\frac{j p}{2}}|a|^{\frac{q k}{2}}}{|b|^{\frac{j p}{2}}|b|^{\frac{q k}{2}}}\right]+ \\
+A\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{j p}|b|^{k q}}{|b|^{j p}|a|^{k q}}\right) \frac{|a|^{j p}|a|^{k q}}{|b|^{j p}|b|^{k q}} \leq \\
\leq \frac{1}{p} \frac{|a|^{j p}}{|b|^{j p}}+\frac{1}{q} \frac{|a|^{q k}}{|b|^{q k}} \leq \tag{5}\\
\leq \frac{|a|^{j}|a|^{k}}{|b|^{j}|b|^{k}}+(1-r)\left[\frac{|a|^{p j}}{|b|^{p j}}+\frac{|a|^{q k}}{|b|^{q k}}-2 \frac{|a|^{\frac{j p}{2}}|a|^{\frac{q k}{2}}}{|b|^{\frac{j p}{2}}|b|^{\frac{q k}{2}}}\right]+ \\
+B\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{j p}|b|^{k q}}{|b|^{j p}|a|^{k q}}\right) \frac{|a|^{j p}|a|^{k q}}{|b|^{j p}|b|^{k q}}
\end{gather*}
$$

for any $|b|^{j},|b|^{k} \neq 0, j, k \in\{0,1,2, \ldots, n\}$.
Simplifying (5) we get

$$
|a|^{j}|a|^{k}|b|^{j(p-1)}|b|^{k(q-1)}+r\left[|a|^{p j}|b|^{q k}+|a|^{q k}|b|^{j p}-\right.
$$

$$
\begin{align*}
& \left.-2|a|^{j \frac{p}{2}+k \frac{q}{2}}|b|^{j \frac{p}{2}+k \frac{q}{2}}\right]+A\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{j p-k q}}{|b|^{j p-k q}}\right)|a|^{j p}|a|^{k q} \leq \\
& \leq \frac{1}{p}|a|^{j p}|b|^{q k}+\left.\frac{1}{q}|a|\right|^{q k}|b|^{j p} \leq \tag{6}\\
& \leq|a|^{j}|a|^{k}|b|^{j(p-1)}|b|^{k(q-1)}+(1-r)\left[|a|^{p j}|b|^{q k}+|a|^{q k}|b|^{j p}-\right. \\
& \left.-2|a|^{j \frac{p}{2}+k \frac{q}{2}}|b|^{j \frac{p}{2}+k \frac{q}{2}}\right]+B\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{j p-k q}}{|b|^{j p-k q}}\right)|a|^{j p}|a|^{k q}
\end{align*}
$$

for any $j, k \in\{0,1,2, \ldots, n\}$.
Now we multiply (6) by $\left|p_{j}\right|\left|q_{k}\right| \geq 0$, $j, k \in\{0,1,2, \ldots, n\}$ and summing over j and k from 0 to n, we have

$$
\begin{aligned}
& \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left(|a||b|^{p-1}\right)^{j}\left(\left.|a| b\right|^{q-1}\right)^{k}+ \\
& +r \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left[|a|^{p j}|b|^{q k}+|a|^{q k}|b|^{j p}-2|a|^{\frac{p}{2}+k \frac{q}{2}}|b|^{\frac{p}{2}}+k \frac{q}{2}\right]+ \\
& +A\left(\frac{1}{p}\right) \log ^{2} \frac{|a|}{|b|} \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|(j p-k q)^{2}|a|^{j p}|a|^{k q} \leq \\
& \leq \frac{1}{p} \sum_{j=0}^{n}\left|p_{j}\right||a|^{j p} \sum_{k=0}^{n}\left|q_{k}\right||b|^{q k}+\frac{1}{q} \sum_{k=0}^{n}\left|q_{k}\right||a|^{q k} \sum_{j=0}^{n}\left|p_{j}\right||b|^{j p} \\
& \leq \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left(|a||b|^{p-1}\right)^{j}\left(\left.|a| b\right|^{q-1}\right)^{k}+(1-r) . \\
& \left.\left.\cdot \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|| | a\right|^{p j}|b|^{q k}+|a|^{q k}|b|^{j p}-2|a|^{\frac{j}{2}+k \frac{q}{2}}|b|^{\frac{j}{2}+k \frac{a}{2}}\right]+ \\
& +\left.B\left(\frac{1}{p}\right) \log ^{2} \frac{|a|}{|b|} \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|(j p-k q)^{2}|a|\right|^{j p}|a|^{k q} .
\end{aligned}
$$

In this case

$$
\begin{gathered}
P_{2}=\left.\sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|(j p-k q)^{2}|a|^{j p}|a|\right|^{k q}= \\
=\sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left(j^{2} p^{2}+k^{2} q^{2}-2 p q j k\right)|a|^{j p}|a|^{k q} .
\end{gathered}
$$

Taking into account that all the series whose partial sums are involved in previous inequality are convergent on the disk $D(0, R)$, and letting n to ∞ in the inequality (7), we notice that the desired inequality (3) takes place, because T_{2} is the limit when n tends of ∞ of P_{2}. \square.

Theorem 2. Let $f(z)=\sum_{n=0}^{\infty} p_{n} z^{n}, g(z)=\sum_{n=0}^{\infty} q_{n} z^{n}$ be the power series with real coefficients and convergent on the open disk $D(0, R), 0<R<1$. If p, q are real numbers with $p>1, \frac{1}{p}+\frac{1}{q}=1$ and $a, b \in \mathbf{C}, a, b \neq 0,|a|<1,|b|<1$ such that $|a||b|,|a|^{2},|a|^{q},|b|^{p},|b|^{2},|a|^{\frac{q}{2}}|b|^{\frac{p}{2}},|a|^{\frac{2}{p}}|b|^{\frac{2}{q}} \in$ $D(0, R)$, then we have

$$
\begin{gather*}
\left|f(a b) g\left(|a|^{\frac{2}{p}}|b|^{\frac{2}{q}}\right)\right|+r M_{3}+A\left(\frac{1}{p}\right) T_{3} \leq \\
\leq f_{A}(|a b|) g_{A}\left(|a|^{\frac{2}{p}}|b|^{\frac{2}{q}}\right)+r M_{3}+A\left(\frac{1}{p}\right) T_{3} \leq \\
\leq \frac{1}{p} f_{A}\left(|b|^{p}\right) g_{A}\left(|a|^{2}\right)+\frac{1}{q} f_{A}\left(|a|^{q}\right) g_{A}\left(|b|^{2}\right) \leq \tag{8}\\
\leq f_{A}(|a||b|) g_{A}\left(|a|^{\frac{2}{p}}|b|^{\frac{2}{q}}\right)+(1-r) M_{3}+B\left(\frac{1}{p}\right) T_{3}
\end{gather*}
$$

where

$$
\begin{aligned}
& M_{3}=f_{A}\left(|a|^{2}\right) g_{A}\left(|b|^{p}\right)+f_{A}\left(|a|^{q}\right) g_{A}\left(|b|^{2}\right)- \\
&-2 f_{A}\left(|a|^{\frac{q}{2}}|b|^{\frac{p}{2}}\right) g_{A}(|a||b|), \\
& T_{3}=4 \log ^{2} \frac{|a|}{|b|^{2}} \cdot f_{A}\left(|a|^{q}|b|^{p}\right) S_{1}\left(|a|^{2}|b|^{2}\right)+ \\
&+ \log ^{2} \frac{|b|^{p}}{|a|^{q}} g_{A}\left(|a|^{2}|b|^{2}\right) S_{2}\left(|a|^{q}|b|^{p}\right)+ \\
&+4 \log \frac{|a|}{|b|} \log \frac{|b|^{p}}{|a|^{q}} S_{3}\left(|a|^{q}|b|^{p}\right) S_{4}\left(|a|^{2}|b|^{2}\right) .
\end{aligned}
$$

Proof.

Now, we replace a by $|a|^{k \frac{2}{p}}|b|^{j}$, and b by $|a|^{j}|b|^{k^{\frac{2}{q}}}$ in inequality (1), we multiply by $\left|p_{j}\right|\left|q_{k}\right| \geq 0$ and then summing over j and k from 0 to n we get

$$
\begin{gather*}
\sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right||a|^{k^{\frac{2}{p}}}|b|^{j}|a|^{j}|b|^{k^{\frac{2}{q}}}+ \\
+r \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left[|a|^{2 k}|b|^{j p}+|a|^{j q}|b|^{2 k}-2|a|^{k}|b|^{j \frac{p}{2}}|a|^{j \frac{q}{2}}|b|^{k}\right] \\
+A\left(\frac{1}{p}\right) \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right| \log ^{2}\left(\frac{|a|^{2 k}|b|^{j p}}{|a|^{j q}|b|^{2 k}}\right)|a|^{2 k}|b|^{j p}|a|^{j q}|b|^{2 k} \\
\leq \frac{1}{p} \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right||a|^{2 k}|b|^{j p}+\frac{1}{q} \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right||a|^{j q}|b|^{2 k} \\
\leq \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right||a|^{k \frac{2}{p}}|b|^{j}|a|^{j}|b|^{k \frac{2}{q}}+ \tag{9}\\
+(1-r) \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left[|a|^{2 k}|b|^{j p}+|a|^{j q}|b|^{2 k}-\right. \\
+B\left(\frac{1}{p}\right) \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right| \log ^{2}\left(\frac{\left.|a|^{j k}|b|^{j \frac{p}{2}}|a|^{j \frac{q}{2}}|b|^{j k}\right]+}{|a|^{j q}|b|^{2 k}}\right)|a|^{2 k}|b|^{j p}|a|^{j q}|b|^{2 k}
\end{gather*}
$$

where P_{3} is the quantity

$$
\sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right| \log ^{2}\left(\frac{|a|^{2 k}|b|^{j p}}{|a|^{j q}|b|^{2 k}}\right)|a|^{2 k}|b|^{j p}|a|^{j q}|b|^{2 k}
$$

By computation, we find,

$$
\begin{aligned}
P_{3}=\sum_{j=0}^{n} & \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right| \log ^{2}\left(\frac{|a|^{2 k-j q}}{|b|^{2 k-j p}}\right)|a|^{2 k}|b|^{j p}|a|^{j q}|b|^{2 k}= \\
= & \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left(2 k \log \frac{|a|}{|b|}-j q \log |a|^{2}+\right. \\
& +j p \log |b|)^{2}|a|^{2 k}|b|^{j p}|a|^{j q}|b|^{2 k}= \\
= & \sum_{j=0}^{n} \sum_{k=0}^{n}\left|p_{j}\right|\left|q_{k}\right|\left(4 k^{2} \log ^{2} \frac{|a|}{|b|}+j^{2} \log ^{2} \frac{|b|^{p}}{|a|^{q}}+\right. \\
+ & \left.4 j k \log \frac{|a|}{|b|} \log \frac{|b|^{p}}{|a|^{q}}\right)|a|^{2 k}|b|^{j p}|a|^{j q}|b|^{2 k} .
\end{aligned}
$$

Since all the series whose partial sums are involved in the inequality (9) are convergent on the disk $D(0, R)$, letting n tend to ∞ in (9), we deduce the desired inequality, because T_{3} is the limit when n tends to ∞ of P_{3}.

Theorem 3. Let $f(z)$ and $g(z)$ be as in Theorem 1. If $|a|^{2},|b|^{p},|b|^{q},|a|^{\frac{2}{p}}|b|,|a|^{\frac{2}{q}}|b|,|a||b|^{\frac{q}{2}},|a||b|^{\frac{p}{2}} \in D(0, R)$ then one has the following inequality

$$
\begin{gathered}
\left|f\left(|a|^{\frac{2}{p}} b\right) g\left(|a|^{\frac{2}{q}} b\right)\right|+r M_{4}+A\left(\frac{1}{p}\right) T_{4} \leq \\
\leq f_{A}\left(|a|^{\frac{2}{p}}|b|\right) g_{A}\left(|a|^{\frac{2}{q}}|b|\right)+r M_{4}+A\left(\frac{1}{p}\right) T_{4} \leq \\
\leq \frac{1}{p} f_{A}\left(|a|^{2}\right) g_{A}\left(|b|^{p}\right)+\frac{1}{q} f_{A}\left(|b|^{q}\right) g_{A}\left(|a|^{2}\right) \leq \\
\leq f_{A}\left(|a|^{\frac{2}{p}}|b|\right) g_{A}\left(|a|^{\frac{2}{q}}|b|\right)+(1-r) M_{4}+B\left(\frac{1}{p}\right) T_{4},
\end{gathered}
$$

where

$$
\begin{gathered}
M_{4}=f_{A}\left(|a|^{2}\right) g_{A}\left(|b|^{p}\right)+f_{A}\left(|b|^{q}\right) g_{A}\left(|a|^{2}\right)- \\
-2 f_{A}\left(|a||b|^{\frac{q}{2}}\right) g_{A}\left(|a||b|^{\frac{p}{2}}\right) \\
T_{4}=\log ^{2}\left(\frac{|a|^{2}}{|b|^{q}}\right) g_{A}\left(|a|^{2}|b|^{p}\right) S_{1}\left(|a|^{2}|b|^{q}\right)+ \\
+\log ^{2}\left(\frac{|b|^{p}}{|a|^{2}}\right) f_{A}\left(|a|^{2}|b|^{q}\right) S_{2}\left(|a|^{2}|b|^{p}\right)+ \\
+2 S_{3}\left(|a|^{2}|b|^{q}\right) S_{4}\left(|a|^{2}|b|^{p}\right) \log \left(\frac{|a|^{2}}{|b|^{q}}\right) \log \left(\frac{|b|^{p}}{|a|^{2}}\right) .
\end{gathered}
$$

Proof. Using again the inequality (1) with $|a|^{j \frac{2}{p}}|b|^{k}$ instead of a and $|a|^{k_{\bar{q}}^{2}}|b|^{j}$ instead of b we obtain for any $j, k \in$ $\{0,1,2, \ldots, n\}$ the following inequality

$$
\begin{gathered}
\left(|a|^{\frac{2}{p}}|b|\right)^{j}\left(|b||a|^{\frac{2}{q}}\right)^{k}+r\left[|a|^{2 j}|b|^{p k}+|a|^{2 k}|b|^{j q}-\right. \\
\left.-2|a|^{j}|b|^{k \frac{p}{2}}|a|^{k}|b|^{j \frac{q}{2}}\right]+
\end{gathered}
$$

$$
\begin{gather*}
+A\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{2 j}|b|^{p k}}{|a|^{2 k}|b|^{j q}}\right)\left(|a|^{2 j}|b|^{q j}\right)\left(|a|^{2 k}|b|^{k p}\right) \leq \\
\leq \frac{1}{p}|a|^{2 j}|b|^{p k}+\frac{1}{q}|a|^{2 k}|b|^{j q} \leq \tag{10}\\
\leq\left(|a|^{\frac{2}{p}}|b|\right)^{j}\left(|b||a|^{\frac{2}{q}}\right)^{k}+(1-r)\left[|a|^{2 j}|b|^{p k}+|a|^{2 k}|b|^{j q}-\right. \\
\left.\quad-2|a|^{j}|b|^{k \frac{p}{2}}|a|^{k}|b|^{j \frac{q}{2}}\right]+ \\
+B\left(\frac{1}{p}\right) \log ^{2}\left(\frac{|a|^{2 j}|b|^{p k}}{|a|^{2 k}|b|^{j q}}\right)\left(|a|^{2 j}|b|^{q j}\right)\left(|a|^{2 k}|b|^{k p}\right) .
\end{gather*}
$$

By the same method as in Theorem 1 we find the desired inequality.

Remark 1. Let $r_{1}, r_{2}, \ldots, r_{m} \neq 0$ be real numbers such that $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\ldots+\frac{1}{r_{m}}=1$ and $f(z)=\sum_{n=0}^{\infty} p_{n} z^{n}$, $g(z)=\sum_{n=0}^{\infty} q_{n} z^{n}$ be the power series with real coefficients and convergent on the open disk $D(0, R), 0<R$. If $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{m} \in \mathbf{C}$, such that $a_{1} a_{2} \ldots a_{m}, b_{1} b_{2} \ldots b_{m},\left|a_{i}\right|^{r_{i}},\left|b_{i}\right|^{r_{i}} \in D(0, R), i \in$ $\{1,2, \ldots, m\}$ then we have

$$
\begin{gathered}
\left|f\left(a_{1} a_{2} \ldots a_{m}\right) g_{A}\left(b_{1} b_{2} \ldots b_{m}\right)\right| \leq \\
\leq f_{A}\left(\left|a_{1}\right|\left|a_{2}\right| \ldots\left|a_{m}\right|\right) g_{A}\left(\left|b_{1}\right|\left|b_{2}\right| \ldots\left|b_{m}\right|\right) \leq \\
\leq \frac{1}{r_{1}} f_{A}\left(\left|a_{1}\right|^{r_{1}}\right) g_{A}\left(\left|b_{1}\right|^{r_{1}}\right)+\frac{1}{r_{2}} f_{A}\left(\left|a_{2}\right|^{r_{2}}\right) g_{A}\left(\left|b_{2}\right|^{r_{2}}\right)+\ldots+ \\
+\frac{1}{r_{m}} f_{A}\left(\left|a_{m}\right|^{r_{m}}\right) g_{A}\left(\left|b_{m}\right|^{r_{m}}\right)
\end{gathered}
$$

Proof. We use the well-known inequality

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{m} x_{m} \geq x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{m}^{\alpha_{m}}
$$

which takes place for any $x_{1}, x_{2}, \ldots, x_{m}>0$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ real numbers such that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{m}=1$ and replacing α_{i} by $\frac{1}{r_{i}}$ and $x_{i}^{\frac{1}{r_{i}}}$ by x_{i} we obtain

$$
\frac{1}{r_{1}} x_{1}^{r_{1}}+\frac{1}{r_{2}} x_{2}^{r_{2}}+\ldots+\frac{1}{r_{m}} x_{m}^{r_{m}} \geq x_{1} x_{2} \ldots x_{m}
$$

Taking above $x_{1}=\left|a_{1}\right|^{j}\left|b_{1}\right|^{k}, \quad x_{2}=\left|a_{2}\right|^{j}\left|b_{2}\right|^{k}, \ldots$ $x_{m}=\left|a_{m}\right|^{j}\left|b_{m}\right|^{k}$ for $j, k \in\{0,1,2, \ldots, n\}$ and using the same method like in Theorem 1 we find the desired inequality.

Proposition 2. Let a_{j} be complex numbers and $p_{j}>0, j \in\{1,2, \ldots, m\}$ such that $\frac{1}{p_{1}}+\frac{1}{p_{2}}+\ldots+\frac{1}{p_{m}} \geq 1$. If $f(z)=\sum_{n=0}^{\infty} p_{n}^{\prime} z^{n}$ is the power series with real coefficients and convergent on the open disk $D(0, R), \quad 0<R \quad$ and $\quad a_{1} a_{2} \ldots a_{m}, \quad\left|a_{1}\right|\left|a_{2}\right| \ldots\left|a_{m}\right|$, $\left|a_{1}\right|^{p_{1}},\left|a_{2}\right|^{p_{2}}, \ldots,\left|a_{m}\right|^{p_{m}} \in D(0, R)$, and $\left|p_{i}^{\prime}\right| \geq 1$ for all $i \in \mathbf{N}$ then the following inequality holds:

$$
\begin{equation*}
\left|f\left(a_{1} a_{2} \ldots a_{m}\right)\right| \leq f_{A}\left(\left|a_{1}\right|\left|a_{2}\right| \ldots\left|a_{m}\right|\right) \tag{11}
\end{equation*}
$$

$$
\leq f_{A}^{\frac{1}{p_{1}}}\left(\left|a_{1}\right|^{p_{1}}\right) f_{A}^{\frac{1}{p_{2}}}\left(\left|a_{2}\right|^{p_{2}}\right) \ldots f_{A}^{\frac{1}{p_{m}}}\left(\left|a_{m}\right|^{p_{m}}\right)
$$

Proof. If we consider $a_{i j}=\left|p_{i}^{\prime}\right|^{\frac{1}{p_{j}}}\left|a_{j}\right|^{i}$ with $i \in\{1, \ldots, n\}$ and $j \in\{1, \ldots, m\}$ in Lemma 2, see [5] page 743, the inequality

$$
\sum_{i=1}^{n} a_{i 1} a_{i 2} \ldots a_{i m} \leq\left(\sum_{i=1}^{n} a_{i 1}^{p_{1}}\right)^{\frac{1}{p_{1}}}\left(\sum_{i=1}^{n} a_{i 2}^{p_{2}}\right)^{\frac{1}{p_{2}}} \ldots\left(\sum_{i=1}^{n} a_{i m}^{p_{m}}\right)^{\frac{1}{p_{m}}}
$$

becomes:

$$
\begin{aligned}
& \qquad \sum_{i=1}^{n}\left|p_{i}^{\prime}\right|^{\frac{1}{p_{1}}}+\frac{1}{p_{2}}+. .+\frac{1}{p_{m}}\left|a_{1}\right|^{i}\left|a_{2}\right|^{i} \ldots\left|a_{m}\right|^{i} \leq \\
& \leq\left(\sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{1}\right|^{i p_{1}}\right)^{\frac{1}{p_{1}}}\left(\sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{2}\right|^{p_{2}}\right)^{\frac{1}{p_{2}}} \ldots\left(\sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{m}\right|^{p_{m}}\right)^{\frac{1}{p_{m}}} \\
& \text { or } \\
& \sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{1} a_{2} \ldots a_{m}\right|^{i} \leq \sum_{i=1}^{n}\left|p_{i}^{\prime}\right|^{\frac{1}{p_{1}}+\frac{1}{p_{2}}+. .+\frac{1}{p_{m}}}\left|a_{1}\right|^{i}\left|a_{2}\right|^{i} \ldots\left|a_{m}\right|^{i} \leq \\
& \leq\left(\sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{1}\right|^{\mid p_{1}}\right)^{\frac{1}{p_{1}}}\left(\sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{2}\right|^{p_{2}}\right)^{\frac{1}{p_{2}}} \ldots\left(\sum_{i=1}^{n}\left|p_{i}^{\prime}\right|\left|a_{m}\right|^{i p_{m}}\right)^{\frac{1}{p_{m}}} .
\end{aligned}
$$

Taking into account that $a_{1} a_{2} \ldots a_{m},\left|a_{1}\right|\left|a_{2}\right| \ldots\left|a_{m}\right|$, $\left|a_{1}\right|^{p_{1}},\left|a_{2}\right|^{p_{2}}, \ldots,\left|a_{m}\right|^{p_{m}} \in D(0, R)$, when n tends to ∞ we get inequality (11).

Using a refinement of the weighted arithmetic-geometric mean inequality for n real numbers, see [2], we find the following:

Theorem 4. Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}>0$, $p_{1}, p_{2}, \ldots, p_{n}>0$ with $\sum_{j=1}^{n} p_{j}=1$ and $\lambda=\min \left\{p_{1}, \ldots p_{n}\right\}$. If we assume that the multiplicity attaining λ is 1 , then we have the following inequality:

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i} f_{A}\left(a_{i}\right) g_{A}\left(b_{i}\right)-\left|f\left(a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}\right) g\left(b_{1}^{p_{1}} b_{2}^{p_{2}} \ldots b_{n}^{p_{n}}\right)\right| \geq \\
\geq \sum_{i=1}^{n} p_{i} f_{A}\left(a_{i}\right) g_{A}\left(b_{i}\right)- \\
\quad-f_{A}\left(a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}}\right) g_{A}\left(b_{1}^{p_{1}} b_{2}^{p_{2}} \ldots b_{n}^{p_{n}}\right) \geq \\
\geq n \lambda\left[\frac{1}{n} \sum_{i=1}^{n} f_{A}\left(a_{i}\right) g_{A}\left(b_{i}\right)-f_{A}\left(a_{1}^{\frac{1}{n}} . . a_{n}^{\frac{1}{n}}\right) g_{A}\left(b_{1}^{\frac{1}{n}} \ldots b_{n}^{\frac{1}{n}}\right)\right]
\end{gathered}
$$

where f, g, f_{A} and g_{A} are as in Theorem 1 and $a_{1}^{p_{1}} \ldots a_{n}^{p_{n}}$, $b_{1}^{p_{1}} \ldots b_{n}^{p_{n}}, a_{i}, b_{i}, b_{1}^{\frac{1}{n}} \ldots b_{n}^{\frac{1}{n}}, a_{1}^{\frac{1}{n}} \ldots a_{n}^{\frac{1}{n}} \in D(0, R)$.
Proof. We replace $a_{i}>0$ by $a_{i}^{j} b_{i}^{k}$ for $j, k \in\{1,2, \ldots, m\}, i \in\{1, \ldots, n\}$ in inequality from below and write again this inequality

$$
\sum_{i=1}^{n} p_{i} a_{i}-a_{1}^{p_{1}} a_{2}^{p_{2}} \ldots a_{n}^{p_{n}} \geq n \lambda\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}-a_{1}^{\frac{1}{n}} \ldots a_{n}^{\frac{1}{n}}\right)
$$

from Proposition 5.1 (Proposition 1), see [2] obtaining:

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i} a_{i}^{j} b_{i}^{k}-a_{1}^{p_{1} j} b_{1}^{p_{1} k} \ldots a_{n}^{p_{n} j} b_{n}^{p_{n} k} \geq \\
\geq n \lambda\left[\frac{1}{n}\left(a_{1}^{j} b_{1}^{k}+\ldots+a_{n}^{j} b_{n}^{k}\right)-\right. \\
\left.\quad-a_{1}^{\frac{j}{n}} b_{1}^{\frac{k}{n}} a_{2}^{\frac{j}{n}} b_{2}^{\frac{k}{n}} \ldots a_{n}^{\frac{j}{n}} b_{n}^{\frac{k}{n}}\right]
\end{gathered}
$$

which by multiplication by $\left|p_{j}^{\prime} \|\left|q_{k}\right|\right.$ and summing over j and k will give the desired inequality from conclusion when m tend to infinity.

For finite sequences of real numbers we use the majorization relation from [6]. Let $a=\left(a_{1}, a_{2}, . ., a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ two finite sequences of real numbers. We say that the sequence a majorizes the sequence b and we write

$$
a \gg b \text { or } b \ll a,
$$

if after rearranging terms of the sequence a and b satisfy the following three conditions:

$$
\begin{gathered}
a_{1} \geq a_{2} \geq \ldots \geq a_{n} \text { and } b_{1} \geq b_{2} \geq \ldots \geq b_{n} \\
a_{1}+a_{2}+\ldots+a_{k} \geq b_{1}+b_{2}+. .+b_{k}, \text { for each } k, 1 \leq k \leq n-1 ; \\
a_{1}+a_{2}+\ldots+a_{n}=a_{1}+b_{2}+. .+b_{n} .
\end{gathered}
$$

As in [6], Definition 2, let $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a function in n nonnegative real variables. Define

$$
\sum^{!} F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

as the sum of $n!$ summands, obtained from the expression $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ as all the possible permutations of the sequence $x=\left(x_{i}\right)_{i=1}^{n}$.

Particularly, if for some sequence of nonnegative exponents $a=\left(a_{i}\right)_{i=1}^{n}$, the function F is of the form $F\left(x_{1}, x_{2}, . ., x_{n}\right)=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{n}^{a_{n}}$, then instead of

$$
\sum^{!} F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

we shall write also

$$
T\left[a_{1}, a_{2}, \ldots, a_{n}\right]\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

or just $T\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ if it is clear which is the sequence x used here.

Using the technique given in [3] for Muirhead's theorem, we find the following inequality:

Proposition 3. If $a \ll b$ and $y_{i}, z_{i} \in \mathbf{C}, \quad y_{i}, z_{i} \neq 0, \quad i \in$ $\{1, . ., n\}$ then

$$
\sum^{!} f_{A}\left(\left|y_{1}\right|^{a_{1}}\left|y_{2}\right|^{a_{2}} \ldots\left|y_{n}\right|^{a_{n}}\right) g_{A}\left(\left|z_{1}\right|^{a_{1}}\left|z_{2}\right|^{a_{2}} \ldots\left|z_{n}\right|^{a_{n}}\right) \leq
$$

$$
\leq \sum^{!} f_{A}\left(\left|y_{1}\right|^{b_{1}}\left|y_{2}\right|^{b_{2}} \ldots\left|y_{n}\right|^{b_{n}}\right) g_{A}\left(\left|z_{1}\right|^{b_{1}}\left|z_{2}\right|^{b_{2}} \ldots\left|z_{n}\right|^{b_{n}}\right)
$$

where f, g, f_{A} and g_{A} are as in Theorem 1 , $\left|y_{\sigma(1)}\right|^{a_{1}}\left|y_{\sigma(2)}\right|^{a_{2}} \ldots\left|y_{\sigma(n)}\right|^{a_{n}}$, $\left|z_{\sigma(1)}\right|^{b_{1}}\left|z_{\sigma(2)}\right|^{b_{2}} \ldots\left|z_{\sigma(n)}\right|^{b_{n}} \in D(0, R)$ for any σ, σ being an arbitrary permutation of the numbers $\{1,2, \ldots, n\}$.
Proof. We consider in Muirhead's inequality instead of x_{i}, $\left|y_{i}\right|^{j}\left|z_{i}\right|^{k}, i \in\{1,2, \ldots, n\}$ we multiply by $\left|p_{j}\right|\left|q_{k}\right|$, and summing over $j, k \in\{0, \ldots, m\}$ we get the desired inequality when m tends to infinity. \square

3 Applications related to the average information

1. Next, we present an application related to the average information for two messages.

For $n=2$ in Theorem 4, with $f(z)=\sum_{n>0} a_{n} z^{n}, g(z)=$ $\sum_{n \geq 0} b_{n} z^{n}, a_{n}, b_{n} \geq 0$, for all $n=1,2, \ldots$, we deduce the following inequality:

$$
\lambda f(a) g(c)+(1-\lambda) f(b) g(d)-f\left(a^{\lambda} b^{1-\lambda}\right) g\left(c^{\lambda} d^{1-\lambda}\right) \geq
$$

$\geq \min \{\lambda .1-\lambda\}[f(a) g(c)+f(b) g(d)-2 f(\sqrt{a b}) f(\sqrt{c d})]$.

If we take $g(x)=1$ in inequality (12), we obtain the inequality:

$$
\begin{array}{r}
\lambda f(a)+(1-\lambda) f(b)-f\left(a^{\lambda} b^{1-\lambda}\right) \geq \\
\geq \min \{\lambda, 1-\lambda\}[f(a)+f(b)-2 f(\sqrt{a b})] \tag{13}
\end{array}
$$

But, we have

$$
\begin{aligned}
f(a)+f(b) & =\sum_{n \geq 0} a_{n} a^{n}+\sum_{n \geq 0} a_{n} b^{n}=\sum_{n \geq 0} a_{n}\left(a^{n}+b^{n}\right) \geq \\
& \geq 2 \sum_{n \geq 0}(\sqrt{a b})^{n}=2 f(\sqrt{a b}),
\end{aligned}
$$

so we find the inequality

$$
\begin{aligned}
f(a)+f(b) & =\sum_{n \geq 0} a_{n} a^{n}+\sum_{n \geq 0} a_{n} b^{n}=\sum_{n \geq 0} a_{n}\left(a^{n}+b^{n}\right) \geq \\
& \geq 2 \sum_{n \geq 0}(\sqrt{a b})^{n}=2 f(\sqrt{a b}) .
\end{aligned}
$$

Therefore $\lambda f(a)+(1-\lambda) f(b)-f\left(a^{\lambda} b^{1-\lambda}\right) \geq 0$ for all $\lambda \in[0,1]$ and $0<a, b<1$, i.e. f is an GA-convex function.

From Information Theory and Coding, let messages be m_{1} and m_{2} and they have probabilities of occurrence as p and $1-p$. Suppose that a sequence of n messages is transmitted. If n is sufficiently large, then we say that $n p$
messages of m_{1} are transmitted and $n(1-p)$ messages of m_{2} are transmitted.

The information due to message m_{1} will be $I_{1}=\log _{2}\left(\frac{1}{p}\right)$ and the information due to message m_{2} will be $I_{2}=\log _{2}\left(\frac{1}{1-p}\right)$. Then the total information carried due to the sequence of n message will be

$$
\begin{gathered}
I=n p I_{1}+n(1-p) I_{2}= \\
=n\left[p \log _{2}\left(\frac{1}{p}\right)+(1-p) \log _{2}\left(\frac{1}{1-p}\right)\right] .
\end{gathered}
$$

Average information is the ratio between I and n, so is represented by Shannon entropy H given by

$$
H=p \log _{2}\left(\frac{1}{p}\right)+(1-p) \log _{2}\left(\frac{1}{1-p}\right)
$$

This function denoted by $\Omega($.$) is also called as Horseshoe$ function, where

$$
\Omega(p)=p \log _{2}\left(\frac{1}{p}\right)+(1-p) \log _{2}\left(\frac{1}{1-p}\right)
$$

In inequality (13), we consider $f(x)=\ln \left(\frac{1}{1-x}\right)=\ln 2 \cdot \log _{2} \frac{1}{1-x}, \quad \lambda=p, a=1-p$ and $b=p$.

Therefore we obtain the following inequality

$$
\begin{gather*}
H=\ln 2 \cdot \Omega(p) \geq \\
\geq \ln \frac{1}{1-(1-p)^{p} p^{1-p}}+r \ln \frac{(1-\sqrt{p(1-p)})^{2}}{p(1-p)} \geq \\
\geq \ln \frac{1}{1-(1-p)^{p} p^{1-p}} \tag{14}
\end{gather*}
$$

where $r=\min \{p, 1-p\}$.
2. Using a similar method as in $[19,20]$ we present an application of such inequalities in Information Theory. For that we consider the inequality

$$
\begin{gathered}
A B+r\left(A^{p}+B^{q}-2 A^{\frac{p}{2}} B^{\frac{q}{2}}\right) \leq \\
\frac{1}{p} A^{p}+\frac{1}{q} B^{q} \leq A B+(1-r)\left(A^{p}+B^{q}-2 A^{\frac{p}{2}} B^{\frac{q}{2}}\right)
\end{gathered}
$$

where r is as in [8], inequality (1.5). In this inequality we put, as in the proof of the classical Hölder's inequality, $A=\frac{a_{i}}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}} \quad$ and $\quad B=\frac{b_{i}}{\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}} \quad$ where $a_{i}, b_{i}>0, i \in\{1,2, \ldots, n\}$ (here $p>1$) and summing over i from 1 to n we get

$$
\begin{gathered}
\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}}+ \\
+2 r\left[1-\frac{\left(\sum_{i=1}^{n} a_{i}^{\frac{p}{2}} b_{i}^{\frac{q}{2}}\right.}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{2}}}\right] \leq 1
\end{gathered}
$$

$$
\begin{gathered}
1 \leq \frac{\sum_{i=1}^{n} a_{i} b_{i}}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}}+ \\
+2(1-r)\left[1-\frac{\left(\sum_{i=1}^{n} a_{i}^{p} b_{i}^{q}\right.}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{2}}}\right]
\end{gathered}
$$

or

$$
\begin{gather*}
\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}\{1-2 r[1- \\
\left.\left.-\frac{\left(\sum_{i=1}^{n} a_{i}^{p} b_{i}^{\frac{q}{2}}\right.}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{2}}}\right]\right\} \geq \sum_{i=1}^{n} a_{i} b_{i} \\
\sum_{i=1}^{n} a_{i} b_{i} \geq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}\{1-2(1-r)[1- \\
\left.\left.-\frac{\left(\sum_{i=1}^{n} a_{i}^{p} b_{i}^{q}\right.}{\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{2}}}\right]\right\} . \tag{15}
\end{gather*}
$$

We will replace from now r by r_{1} in previous inequalities. If $a_{i}=h_{i}^{r} t_{i}^{r}, b_{i}=t_{i}^{-r}, p=\frac{1}{r}, \frac{1}{s}+\frac{1}{r}=1$ then by calculus we obtain:

$$
\begin{gathered}
\sum_{i=1}^{n} h_{i} t_{i}\left\{1-2 r_{1}\left[1-\frac{\sum_{i=1}^{n} h_{i}^{\frac{1}{2} t_{i}^{\frac{s+1}{2}}}}{\left.\left.\left(\sum_{i=1}^{n} h_{i} t_{i}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} t_{i}^{s}\right)^{\frac{1}{2}}\right]\right\}^{\frac{1}{r}} \leq}\right.\right. \\
\leq\left(\sum_{i=1}^{n} h_{i}^{r}\right)^{\frac{1}{r}}\left(\sum_{i=1}^{n} t_{i}^{s}\right)^{\frac{1}{s}} \leq \\
\leq \sum_{i=1}^{n} h_{i} t_{i}\left\{1-2\left(1-r_{1}\right)\left[1-\frac{\sum_{i=1}^{n} h_{i}^{\frac{1}{2}} t_{i}^{\frac{s+1}{2}}}{\left(\sum_{i=1}^{n} h_{i} t_{i}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} t_{i}^{s}\right)^{\frac{1}{2}}}\right]\right\}^{\frac{1}{r}},
\end{gathered}
$$

where $0<r<1, s<0$.
Let Λ be the utility information scheme, as in Remark 3.2 , see $[19,20]$ where $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the alphabet; $p^{\beta}=\left(p_{1}^{\beta}, p_{2}^{\beta}, \ldots, p_{n}^{\beta}\right) \quad$ is the power probability distribution; $U^{2}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is the utility distribution $u_{k}>0$ for all $k=1,2,3, \ldots, n ; \beta \neq 1, \beta>0, \sum_{k=1}^{n} p_{k}^{\beta}=1$. Then, for every uniquely decipherable code, Singh et al. [21] obtained

$$
\frac{\alpha}{1-\alpha} \log _{D}\left(\sum_{k=1}^{n} \frac{p_{k}^{\beta} u_{k}^{\frac{1}{\alpha}} D^{D_{k} \frac{1-\alpha}{\alpha}}}{\left(\sum_{i=1}^{n} p_{i}^{\beta} u_{i}\right)^{\frac{1}{\alpha}}}\right) \geq \frac{\log _{2} \sum_{k=1}^{n}\left(\frac{p_{k}^{\beta \alpha_{k}} u_{k}}{\sum_{i=1}^{\beta} p_{i}^{\beta} u_{i}}\right)}{(1-\alpha) \log _{2} D}
$$

where $\alpha>0, \alpha \neq 1, D \geq 2, l_{k}$ integers, $p_{k} \geq 0$, $k=1,2, \ldots, n$ and $\sum_{i=1}^{n} D^{-l_{k}} \leq 1$. According to [21] the "useful" information of order α for power distribution P^{β} is defined as

$$
\frac{1}{1-\alpha} \log \sum_{k=1}^{n}\left(\frac{p_{k}^{\beta \alpha} u_{k}}{\sum_{i=1}^{n} p_{i}^{\beta} u_{i}}\right)
$$

and the exponential "useful" mean lengths of codewords weighted with the function of power probabilities and utilities is defined as

$$
\frac{\alpha}{1-\alpha} \sum_{k=1}^{n} p_{k}^{\beta}\left(\frac{u_{k}}{\sum_{i=1}^{n} p_{i}^{\beta} u_{i}}\right)^{\frac{1}{\alpha}} D^{\frac{(1-\alpha) l_{k}}{\alpha}} .
$$

The last inequality is a generalization of Shannon inequality.
Theorem 5. Let $\alpha>0, \beta>0, \alpha, \beta \neq 1$, $p_{k} \geq 0, k=1,2,3, \ldots, n$ and $\sum_{k=1}^{n} p_{k}^{\beta}=1$, let $D(D \geq 2)$ is the size of the code alphabet. If $l_{k}, k=1,2,3, \ldots, n$ are the lengths of the codewords satisfying $\sum_{k=1}^{n} D^{-l_{k}} \leq 1$ then for every uniquely decipherable code, the "useful" α average length of codewords satisfies

$$
\begin{gather*}
\frac{\alpha}{1-\alpha} \log _{D}\left(\sum_{k=1}^{n} \frac{p_{k}^{\beta} u_{k}^{\frac{1}{\alpha}} D^{k} \frac{1-\alpha}{\alpha}}{\left(\sum_{i=1}^{n} p_{i}^{\beta} u_{i}\right)^{\frac{1}{\alpha}}}\right)+\frac{\alpha}{\alpha-1} \log _{D} M\left(p_{k}, u_{k} ; \alpha\right) \\
\geq \frac{\log _{2} \sum_{k=1}^{n}\left(\frac{p_{k}^{\beta \alpha} u_{k}}{\sum_{i=1}^{n} p_{i}^{u_{i}}}\right)}{(1-\alpha) \log _{2} D} \tag{16}
\end{gather*}
$$

where

$$
\begin{gathered}
M\left(p_{k}, u_{k} ; \alpha\right)= \\
=1-2\left(1-r_{1}\right)\left[1-\frac{\sum_{k=1}^{n} D^{-\frac{k_{k}}{2}} p_{k}^{\frac{\alpha \beta}{2}} u_{k}^{\frac{1}{2}}}{\left(\sum_{k=1}^{n} D^{-l_{k}}\right)^{\frac{1}{2}}\left(\sum_{k=1}^{n} p_{k}^{\alpha \beta} u_{k}\right)^{\frac{1}{2}}}\right],
\end{gathered}
$$

when $\alpha>1$.
Proof. Using the substitution $r=\frac{\alpha-1}{\alpha}>0, s=1-\alpha<0$,

$$
h_{k}=p_{k}^{\frac{\alpha \beta}{\alpha-1}}\left(\frac{u_{k}}{\sum_{i=1}^{n} u_{i} p_{i}^{\beta}}\right)^{\frac{1}{\alpha-1}} D^{-l_{k}}
$$

and

$$
t_{k}=p_{k}^{\frac{\alpha \beta}{1-\alpha}}\left(\frac{u_{k}}{\sum_{i=1}^{n} u_{i} p_{i}^{\beta}}\right)^{\frac{1}{1-\alpha}}
$$

in (15) and after suitable calculus we obtain inequality (16) when $\alpha>1$.

4 Conclusions

This paper has proposed several inequalities concerning functions defined by convergent power series with real or nonnegative coefficients. This method is useful, because many difficult inequalities can be easily solved and often they can be extedded.

As in [4], there exist some inequalities for special functions such as polylogarithm, hypergeometric, Bessel and modified Bessel functions for the first kind. It is known that $L i_{n}(z),{ }_{2} F_{1}(a, b ; c ; z), J_{a}(z)$ and $I_{a}(z)$ are power series with real coefficients and convergent on the open disk $D(0,1)$. Therefore, like in [4], we can think to rewrite the inequalities given before under conditions from our theorems.

In addition, as in [4], because the functions $\exp (z), \quad z \in \mathbf{C}, \quad \frac{1}{1-z}, \quad z \in D(0,1), \quad \ln \left(\frac{1}{1-z}\right), \quad z \in$ $D(0,1), \sinh (z), z \in \mathbf{C}$ are power series with real coefficients and convergent on the open disk $D(0,1)$ we can think to rewrite the inequalities given before under conditions from our theorems.

Also many inequalities involving the polylogarithm, hypergeometric, Bessel and modified Bessel functions can be found in the literature, see [13, 14, 15, 16, 17, 18] and references therein, and on the other hand it is wellknown that the power series and special functions have important applications in engeneering sciences and applied mathematics as parts of Information Sciences, therefore new questions will arise from new applications.

Moreover, in Information Theory appear many inequalities and concepts such as Singh's inequality ([21]) and Shannon entropy which can be obtained from generalizations of Hölder's inequality as in Remark 3.2 and Remark 3.4 from [19,20]. Therefore considering particular suitable functions in our results, new inequalities can be deduced for some of these concepts.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

[1] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young's inequality, Journal of Mathematical Inequalities, 5, Nr. 4, 595-600, (2011).
[2] S. Furuichi, On refined Young inequalities and reverse inequalities, Journal of Mathematical Inequalities, 5, 121-31 (2011).
[3] A. Ibrahim, S. S. Dragomir, Power series inequalities via Buzano's result and applications, Integral Transforms and Special Functions, 22 No. 12, 867-878 (2011).
[4] A. Ibrahim, S. S. Dragomir, M. Darus, Power series inequalities via Young's inequality with applications, Journal of Inequalities and Applications, 2013:314 (2013).
[5] W. S. He, Generalization of a sharp Hölder's inequality and its application, J. Math. Anal. Appl. 332, 741-750 (2007).
[6] Z. Kadelburg, D. Dukić, D. Lukić, I. Matić, Inequalities of Karamata, Schur and Muirhead and some applications, The Teaching of Mathematics, $\mathbf{1}$ Vol. VIII, 31-45 (2005).
[7] J. Karamata, Sur une inégalité rélative aux fonctions convexes, Publ. Math. Univ. Belgrade 1, 145-148 (1932), Zbl 0005.20101.
[8] N. Minculete, A refinement of the Kittaneh-Manasrah inequalities, Creat. Math. Inform., 20 2, 157-162 (2011).
[9] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 764 pp, 1992.
[10] J. Moonja, Inequalities via power series and CauchySchwarz inequality, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 19, Number 3, 305-313 (2012).
[11] C. Mortici, A Power Series Approach to Some Inequalities, The American Mathematical Monthly, 119, No. 2, 147-151 (2012).
[12] P . Cerone, S. S . Dragomir, Some applications of de Bruijn's inequality for power series, Integral Transforms and Special Functions, 18, (6), 387-396, (2007).
[13] A. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math., 26, 279-293 (2008).
[14] RW. Barnard, KC. Kendall, On inequalities for hypergeometric analogues of the arithmetic-geometric mean, J. Inequal. Pure Appl. Math., 8(3), 1-12 (2007).
[15] B. He, B. Yang, On a Hilbert-type inequality with a hypergeometric function, Commun. Math. Anal. 9(1), 84-92 (2010).
[16] MM Jemai, A main inequality for several special functions, Comput. Math. Appl. 60, 1280-1289 (2010).
[17] SR Yadava, B. Singh, Certain inequalities involving special functions, Proc. Math. Acad. Sci. India, Sect. A Phys. Sci. 57(3), 324-328 (1987).
[18] L. Zhu, Jordan type inequalities including the Bessel and modified Bessel functions, Comput. Math. Appl. 59, 724-736 (2010).
[19] J. Tian, Reversed version of a generalized sharp Hölder's inequality and its applications, Information Sciences, 201, 61-69 (2012).
[20] J. Tian, New property of a generalized Hölder's inequality and its applications, Information Sciences, 288, 45-54 (2014).
[21] R. P. Singh, R. Kumar, R. K. Tuteja, Applications of Hölder's inequality in information theory, Information Sciences, 152 145-154 (2003).
[22] Y. Li, H. Wu, Global stability analysis in Cohen-Grossberg neural networks with delays and inverse Hölder neuron activation functions, Information Sciences, 180 (20) 40224030 (2010).
[23] R. W. Hamming, Coding and Information Theory, New Jersey, 1980.
[24] L. L. Campbell, A coding theorem and Renyi's entropy, Inform. Constr., 8 423-429 (1965).

Loredana Ciurdariu received the PhD degree in Mathematics at West University of Timişoara, România. She is a teaching assistant at "Politehnica" University of Timişoara, România. Her research interests are in the areas of pure and applied mathematics, in analysis and inequalities and operator theory.

Nicuşor Minculete is a lecturer at Transilvania University of Braşov, România. His main research interest are: theory of multiplicative arithmetic functions, real functions and inequalities, Euclidean geometry.

[^0]: * Corresponding author e-mail: cis11177@yahoo.com

