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Abstract: We investigate integral Galois stable representationsitéfgroups over local and global fields and their integedeuthe
ground field extensions related to permutation modules. &lisider normal extensiorts/F and subgroup& C GLy(E) stable under
the natural operation of the Galois groupEfF with some extra integrality conditions. The possible zlon fields ofG with these
integrality conditions are of special interest, and we aigrscertain criteria of integrality for representationsiLn(E). We also study
a series of related arithmetic problems and examples.
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1 Introduction of the formindS ¢ for some homomorphism: H — (p)
of a subgroupH of G.

In this paper we study some arithmetic problems for Theorem ([12], Theorem 3). LetM be an
representations of finite groups over algebraic numbeR-representation of the finitep-group G so that
fields, local fields and arithmetic rings of characteristic 0M = M/7M is a permutatiofirp-module ofG. ThenM is

under the ground field extensions. a generalized permutation lattice fer
The following definition and result generalize and
[23): Some related questions concerning isomorphic

permutation modules have been studied by K. W.
Roggenkamp and R. M. Guralnick. We consider some
Galois extensiork /F of finite degreed with the Galois
group I for a field F of characteristic 0 and a finite
abelian subgrouis C GL,(E) of the given exponent,
where we assume thdab is stable under the natural
coefficientwisd™ -operation.

Throughout the papeDg is the maximal order oE
andF (G) denotes a field that is obtained via adjoining to

Fix a prime numbep, a primitive p-th root of unity  F all matrix coefficients of all matriceg < G.

{p, and setr=1—{p,R=Zp({p) andFp = R/7R. The main objective of this paper is to prove the
We sayR-representatioM of G foranRGmoduleM  existence of abelian™-stable subgroupss such that
which is free of finite rank as arR-module. A F(G) = E provided some reasonable restrictions for the

permutation lattice (respectively module) f@ris a direct  fixed normal extensio /F and integers,t,d hold and
sum of Z,G (resp.FpG for a finite field Fp containingp  to study the interplay between the existencd e$table
elements) modules of the forindS(1). A generalized groupsG over algebraic number fields and over their
permutation lattice foG is a direct sum oRG-modules  rings of integers.

Definition 1. Consider a finite Galois extensi#h of
the rationalsQ and a freeZ-moduleM of rankn with
basismy,...,m,. The groupGL,(Ok) acts in a natural
way on Ok ® M = @ ;O0cmi. The finite group
G C GLy(Ok) is said to be ofA-type, if there exists a
decompositiorM = @K ; M; such that for everg ¢ G
there exists a permutatidi(g) of {1,2,...,k} and roots
of unity & (g) such thakti(9)gM; = M q); for L <i <k.
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We use the following result proven id]f see section for solvable and nilpotent groups, many results are just
3 below: related to representations abelian groups. However, it is
also useful to establish the conditions for existence of
) - faithful representations of groups of the given nilpotency
Galois groug”, and letG C GLn(Ok ) be a finitel” -stable o555 (seed]) and study some extra related properties of
subgroup. Thef® is a group ofA-type. abstract groups (se8,[10]) and to establish properties of

For local fields this is is not true in general, we give Permutability for abstract groups which can be used
some examples in section 3. independently. In paper9,[10] the properties of finite

groups with X-permutable maximal subgroups were

The results related to the Galois stability of finite studied, and it is specially interesting to follow the
groups in the situation similar to ours arise in the theoryanalogy concerning the above definition for
of definite quadratic forms and Galois cohomology of p-supersolvable, p-solvable groups and criteria obtained
certain arithmetic groups F is an algebraic number field in [9,10], for example, Theorem 3.1 irl{]: A group G is
and G is realized over its maximal order (/][ see  supersolvable if and only if it has nilpotent subgroups A
also [B]). In our context we study whether a given fiédd  and B such thaG = AB andA\B is tightly embedded in
normal over~ can be realized as a fiekl= F (G) in both G in the sense determined ifhq).
casesG C GLy(E) and G C GL,(Og), and if this is so
what are the possible ordemsof matrix realizations and
the structure o6.

Theorem A. Let K/Q be a normal extension with

Notation. Throughout this paper we deno® R, Q
andQp the fields of complex, real, rational and rational

We give a positive answer to the first question: we P-adic numbersZ andZ, are the rings of rational and
prove that any finite normal field extensi&yF can be r'atlonal p-adic |nteg§rs.GLn(R) denotes the general
obtained as F(G)/F if n > @(t)d where linear group over a ringr. [E : F] denotes the degree of
¢=(t) = [E(¢) : E] is the generalized Euler function and the f'e;(_j fexterl]ﬂsmlrE/F. We t\_/vr:\t/le I'qur (‘;aI(?ls”groups,
¢ is a primitivet-root of 1. An explicit construction of o,y €I for the elements of . My(R) is the full matrix

these fields is given in Theorems 2.1 and 2.2 in section 28/9€bra over a rin@. Finite groups are usually denoted

gy capital letterss, H, and their elements by small letters,
of [11], and we establish the lower bounds for their €9-9 € G, heH, (ab..) denotes a group generated by

possible orders. We show (see Theorem 2.2 in section &P+ We write ¢ for a primitivet-root of 1. We denote

- : ; : by @ (t) = [K(&) : K] the generalized Euler function for
_2|_)h:3h05:te:1162.rfsctzrilr(]:t:]oor;sbfeoirngg?o%l(\a/(ejh integexs, andd in a fieldK. I, stands for a unitn x m-matrix. deM is the

T ; ; ; determinant of a matriM. If G is a finite linear group
The situation becomes different i is an algebraic . ; L '
number field and all matrix coefficients @f € G are F(G). stand_s _for a field obtqlned by adjomlng'FoaII
algebraic integers matrix coefficients of all matriceg € G. Forl" acting on
. A .
The existence of any Galois stable subgroupsG and anyo € I andg € G we writeg? for th_e image of
G C GLa(Og) such thatF(G) # F is a rather subtle g under o-operation.dimkA denotes the dimension of
question. In particular, foF — Q all fields F (G) whose K-algebraA over the fieldK. Ok denotes the maximal

discriminant is divisible by an odd prime must contain order of a number fiel.

non-trivial roots of 1 [, 2,4] Some similar questions for

I -stable orders in simple algebras were by J. Ritter an(k . . o .

A. Weiss. There is a series of results on extension o Galois stability and realization fields

Jordan-Zassenhaus Theorem for extensions ground rin : . .
(see 1L5)) g gIShe well known classical Deuring-Noether theorem gives

Our results have some applications to positive definitethe condition of isomorphism of modules under the

guadratic lattices, see section 3. Note that some intaggesti g'round'field extensions: : if two represgntations of fjnite
results on orthogonal decompositions of integral Iattices(’“mens.Ional F-algebras are isomorphic over a field
can be found ing). extensionE of F, then they are isomorphic ovér. This

It is interesting to study the relationship between thetheorem can.be used, in partlgular, fpr classn‘lcat!on of
classical representatiors: H — GLn(K) over fieldsK quadratic lattices (se€d]). In this section we consider

and some related representatiohs H — GLn(S) over integral representations of finite groups over local and
Dedekind ringsS in ?( as well as establighing extra global fields, and we focus on the following existence

properties of these representations; here we are intdrestéheore.m' Thel_p_rt<|)ofﬂ<1)f tht's tr;eorem(ljs t(r:]onstructtlve,t_so W?
in the property of stability ofh(H) under the natural tcr?en glt\)/eelisa(?'l-c's)tlablg SSLT)C :JorSrgnC G?_ c(cl)zr)\si:]ucﬂl]c;n 0
action of Galois group. This condition was consideredtheorem below 9 n

earlier for Galois stability of groups and orders 4] '

and some other papers. It would be also interesting to use Theorem 2.1LetF be an algebraic number field, let
the explicit construction of the subgrou@sc GLn(Ok,,) d,t be some prescribed positive integers and eitherl
together with Theorem A. In some mysterious way the such thanh > @:(t)d, ort =d = 1, and letE be a given
representations involved appear to be of special intereshormal extension oF having the Galois groupp and
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degreed. Then there is an abeliain- stable subgroup
G C GLn(E) of the exponerit such thaE = F(G).

In fact, G can be generated by matricg§ y € I for
someg € GLn(E).

Note that the orden = dg=(t) in our construction is
the minimum possible.

Proof of Theorem 2.1

Ifort=d=1, we have oiE = F andG = {ly}, in
this case the theorem is trivial. If or> 1,d = 1, thenE =
F, and we can consider an irreducible polynomnfigt) =
X+ a1 X1+ +ax+ag for k= g=(t) — 1 such that
f({t) =0. SinceE = F, all & € F, and we can consider the
following matrix corresponding to a regular representatio
of Zt:

0 0...04a

1 0...0ag
RM)=| .

0 0...1a

We haveR(M)! = I, and(R(M)) is a cyclic group of order
t. Next takeg = R(M) @ In_k € GLn(E), the direct sum of
In_k andR(M). Then the groufs = (g), generated by,
satisfies the requirements of the theorem.

Therefore, we can assume that 1 andd > 1.

For a given basisvi,wo,...,wy of E/F we intend to
construct a matrixg = [g;j]ij = Y2, Biw and pairwise
commuting matricesB; in such a way that the normal
closure of the fieldF(gi11,012,...,0nn) Over F coincides
with E and so the groufs generated byg?,0 €I is an
abelianl” -stable group of exponent First we determine
the eigenvalues that matric& should have ifg has the

prescribed set of eigenvalues. Collecting the given.

eigenvalues of pairwise commuting semisimple matrices o .
%n associative and commutative separaBlealgebra

and using the regular representation, we construct
I -stable abelian grou@ for integral parameters given in
Theorem 2.1

We consider two different cases in our proof.

1) We suppose thdt ({;) andE are linearly disjoint
overF and[E : F] =d. In this caseg:(t) = @ (t). Let
wy = 1, Wo,...,Wy be a basis oE({;) overF (&), and let
I" be the Galois group oE({;) over F({). Let g be a
semisimpled x d-matrix having eigenvalueg;,1,...,1.
Using the expansiog = By +WBy + ... + WgBgq we can
construct the matriceB;,i = 1,2, ...,d, and we can prove
that the groupG generated bygY,y € I’ is an abelian
I -stable group of exponemt Let us consider the matrix
W= [wiaj]i,j for {01 =1,07,...,04} = I". Denote byW,
the matrixW whosei-th column is replaced bg chosen
eigenvaluegt, 1, ...,1 of g. We can calculate

- detw
' detw

and construct matrice®; as regular representations
Bi = R(A)) of A in E({)/F(&). Let ai be the

coefficients of the inverse matriw/ ! = [aijlij- Then
al = aj and A = (& — L)aig for i # 1, and
A =1+ (& —Dagg. SoA” = (& —Da = (& —1)aj;

for i # 1, andA;’ = (& — Dags +1 = (& — L)agj + 1.
Since any linear relation

d
kl(/\l_ 1)+ ;kl/\l = Oakl € F(Zt)al = 1727"'7d
i=
implies the linear relation
gj d gj
ki(A{! —1)+ %ki/\i '=0k eF(&),i=12,...d
=

for all g € I, this would also implydetw1 = 0, which
is impossible. Therefored; — 1,A,,...,Ag generate the
field E(¢) overr((;), and soB; — I4,By,...,By generate
F(&)-spanF (¢:)[By,...,Bg] overF({). Note thatB; can
be expressed as a linear combinatiog®fi = 1,2,....d
with coefficients inE: B; z?:laijgai. This can be
obtained from the system of matrix equations

d
. aj .
galz W-JBi,J:]_,Z,...,d
i; I

if we considerB; as indeterminates. Sin€zhas exponent
t, F(&) is a splitting field forG, the group generated by
all g9,0 € I'. Therefore, the dimension d&({;)-span
E({)G = E({t) ®F(q) F(&)G over E(&) is d, and so
F (¢ )-dimension ofF ({;)-spanF({; )G is alsod.

Let us denote byE’' the image ofE({;) under the
regular representation d&({;)/F({:) over F({). Then
A=E({)G = E(&) ®F(g) F(4)G, theE({t)-span ofG,

s the GaloisE’-algebra in the sense of]], that is, it is

aving a normal basis. We can choose idempotents

& (gaj_ld)aj:1727"'7d

:Zt—l

as a normal basis @ overE’ so thatgj = €.

We have F({)G F(&)[(g%,...,9%)]
F(&)[(g—1d)%, ..., (9 — 1a)%], anddimg 4 F (¢)G = d.
As the length of the orbit oM = [mj] = (g—I4) under
I -operation isd, we can use the coefficients of matrices
MY,i=1,2,...,d to construct an elemet = ¥; ; kijmj,
ki € F(&), which generates a normal basis of
E(&)/F(&). Therefore, for any givenr € E(¢) we have
a =Yk 6% for somek; € F({).

Therefore, our choice of eigenvalues implies that
F(%)(G) = E(4).

Now, we can apply the regular representati®n of
F (&) overF to matricesM = [my]; j,mj € F({;) in the
following way: Rr (M) = [Re (my;)]ij. S0, usingRr for all
components of matricé®; € My(F({)) we can obtain an
abelian subgroupG ¢ GLn (E),ny = [F(&) : Fld of
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exponentt which is I-stable if we identify the Example. Letd = 2,t = 2. PickE = Q(\/a) andg =
isomorphic Galois groups of the extensioBgF and O 1
E(&)/F(4). We have agairdimeFG = dimgEG, E is
again the Galois algebra, adG) = E. Now, using the I‘ is a group of order 2 an® = {l,,—l»,9,—g} is al -

natural embedding o to GLa(E),n > ny, we complete  staple abelian group of exponent 2.
the proof of Theorem 2.1 in the case 1).

2) In virtue of 1) we can consider the case when the

\/éfor anya € F whichis not a square iR. Then

intersectiorFo = Proof of Theorem 2.2.

ENF(&) # F. We can use the regular representatoof We can use the proof of Theorem 2.1.

E overF. Let [ = {0},0;,....,04} be the set of some Let G C GL,(E) be a group given in the formulation
extensions of elements = {01,02,...,04} 10 E(&)/F,  of Theorem 1.1, and let be minimal possible. Then we

and letw; = 1,w,,...wy be a basis oE overF. Sowe can  have the following decomposition &-spanA = EG:
use our previous notation and go through a similar

argument as in the part 1) of the proof for construction of A=A+ A+ ...+ &A
Z 1Biwi and matrices B as the regular

representatlonEo of eigenvalues for some primitive idempotentsy,...,g of A. & are
conjugate under the operation of the Galois group
__detW_(pE(U)\__Zj 12 d I ={o1,...,04}. For if the sum ofa,j_12 dis
' detw gl Hhl T e not I then In = ey + &, for e = &* +. +£fd and
e = Ip—ey, ander, e are fixed byl and soe, e are
in the following way: we consider conjugate inGL,(F) to a diagonal form. Since either of 2
component®G has rank smaller than, there is a group
_ Z R()\ij)Zj, satisfying the conditions of Theorem 2.1 of smaller than
degree.

Thereforeg = sf‘ ,k=dand the idempotents, ..., &

have/\l‘ = ay +1’)\ =ajj for j=2,...,d . Now, if we not smaller thang:(t). Indeed,&G contains an element
have any linear relation between the rows of the matrix&ig, fOf someg € G of ordert such that(&g)" = &, but
(59)K # & for k < t. We can findg € G in the following
i (¢ — Dlij, this would imply a Ilnearl relation  yay Sincely = &1+ ... + & for anyh € G of ordert there
between its columns, and so the columns\6f™ = [aij] s ¢; such that(g;h)t = g, but (gh)k + & for k < t, and
are linearly dependent, andetW ! = 0 which is a the same property holds true fgjh with anyoe . Then

contradiction. So, again we obtain thif — 1,1z, ..., Ag using the property of normal basis = e’ we can take
are linearly independent over F, SO

dimeFG' = dimeF[By — 1g,Bp,...,Bq] = dimeEG =d 97
for G’ generated b}g"i/,i =1,2,...,d. As earlier we can
consider the elementwise regular representaiofB; ) of

ho o,
So, the irreducible component;G determines a
faithful irreducible representation of a cyclic group
matricesB; in the field extensiorE({;)/E. So we obtain .genera.ted byg. But if .T 1C = GL.’(E) is a faithful

q irreducible representation of a cyclic gro@generated
% = 2i=1RE(Bi)V‘g_' .and we can take the grou . o elemeng of ordert, its degree is equal tog (t). It
generated by alby',i = 1,2,....d. Since [E(&) : F] = follows that the rank of matrices; is ¢e(t). So the
[E(¢) @ EJ[E : F] = ¢e(t)d, the ordern = ¢=()d  gimension ofA overE is ¢ (t)d.
coincides with the one required in the formulation of If G is generated byg’, y € I and its order is

Theorem 2.1. In this way we can constructastable  mjnimal, -stability implies thag hasd conjugates under

groqu that satisfies the conditions of Theorem 2.1. I -operation, and s& an abelian group of typé., ...,t)
This completes the proof of Theorem 2.1. and ordert™ for some positive integem < d. This
As a corollary of Theorem 2.1 we have completes the proof of Theorem 2.2.

Theorem 2.2.Let E/F be a given normal extension
of algebraic number fields with the Galois grolip
[E:F] =d, and letG C GLn(E) be a finite abelian . .
I -stable subgroup of exponensuch thaE — F(G) and 3 Integrallt_y of representations over global
n is the minimum possible. Then= dg:(t) andG is  and local fields
irreducible under conjugation BLn(F). Moreover, ifG
has the minimum possible order, th@ris a group of type  In this section we consider normal extensids~ and
(t.t,...,t) and ordet™ for some positive integen < d. subgroupss C GL,(K) stable under the natural operation

of the Galois group ofK/F with extra integrality

In the case of quadratic extensions we can give arconditions focusing on the cade = Q. The possible
obvious example. realization fields of5 with these integrality conditions are
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of special interest, and we consider certain criteria of

integrality for representations BL,(K). We also study a
series of related arithmetic problems and examples.

Corollary. Let K/Q be a normal extension with
Galois groud™, and letG C GL,(Ok) be a finitel” -stable
subgroup. ThenG C GLy(Ok,) where Ky, is the

For complex representations of finite groups we canmaximal abelian ove® subfield of K.

formulate the following problem. LeB be a finite group
andf : G — GL,(C) a complex representation Gf LetF
be the field generated by the traces{d{g) : g € G}. In
this context it would be reasonable to ask a question:

Is it true that there exist a
h: G — GLy(K) over a number fielK, normal overF
with Galois groupl” = Gal(K/F), similar to f(G), such
thath(G) is I -invariant? Under what conditiorgG) is
realizable inGLn(K)?

Let K be a number field with the maximal ordéx,

G an algebraic subgroup of the general linear group

GLn(C) defined over the field of rationaf3. Because of
the embedding o6 in GLy(C) the intersectior(Ok ) of
GLn(Ok) andG(K), the subgroup oK-rational points of
G, can be considered as the group @{-points of an
affine group scheme ové, the ring of rational integers.

representation

Similar results for totally real extensiohs/Q were
considered earlier. In this case there are some interesting
arithmetic applications to positive definite quadratic
lattices and Galois cohomology.

Butif an extensioie /F of number fields is unramified,
the situation is completely different.

In the case of unramified extensions the following
proposition for integral representations in a similar
situation is proven ing]:

Proposition. Letd > 1,t > 1 be given rational integers,
and letE /F be an unramified extension of degrke

1)If n > @ (t)d, there is a finite abeliai - stable
subgroup G C GLy(Og) of exponentt such that
E=F(G).

2)If n > ¢=(t)dh andh is the exponent of the class

AssumeG to be definite in the following sense: the real group ofF, there is a finite abeliafi -stable subgroup
Lie group G(R) is compact. The problem which is our G C GLn(Og) of exponent such thaE = F(G).

starting point is the question: Does the condition

G(Ok) = G(Z) always hold true?

3)If n > @=(t)d andh is relatively prime ton, thenG
given in 1) is conjugate irGL,(F) to a subgroup of

This problem is easily reduced to the following GLn(Og).

conjecture from the representation theory: KetQ be a
finite Galois extension of the rationals aGd— GLn(Ok )

be a finite subgroup stable under the natural operation of

the Galois groupl” := Gal(K/Q). Then there is the
following

Conjecture 1.If K is totally real, thers C GLy(2).

4)Ifd is odd, therts given in 1) is conjugate i L, (F)
to a subgroup oBL,(Ok).
In all cases abov& can be constructed as a group
generated by matriceg,y € I for someg € GL,(E).

Let us formulate a criterion for the existence of an
integral realization of an abelian gro@with properties
introduced above. This theorem has interesting

There are several reformulations and generalizationsipplications in 1], and [2].

of the conjecture. Consider an arbitrary not necessarily

totally real finite Galois extensiol of the rationalsQ.

Let E, L be finite extensions of a number fiefd Let

Og, Of, O be semilocal rings that are obtained by

The following conjecture generalizes (and would imply) intersection of valuation rings of all ramified prime ideals

conjecture 1:

Conjecture 2. Any finite subgroup o5L,(Ok ) stable
under the Galois group = Gal(K/Q) is of A-type.

For totally real fieldsK conjecture 2 reduces to
conjecture 1.

Let F(G) denote the field obtained via adjoiningfo
the matrix coefficients of all matriceg= G. The following
result was obtained inl] (see also 2, 4] for the case of
totally real fields).

The caseF = Q, the field of rationals, is specially
interesting. The following theorem was proven ify [
using the classification of finite flat group schemes &er
annihilated by a prime obtained by V. A. Abrashkin and
J.- M. Fontaine:

Theorem 3.1.Let K/Q be a normal extension with
Galois groud™, and letG C GL,(Ok) be a finitel” -stable
subgroup. Thef is a group ofA-type in the sense of our
definition given in the introduction.

in the ringsOg, Of, O.. If F = Q we can defin®r to be
the intersection oF andOg. Letwy,w»,. .., Wy be a basis

of O over O, and letD be a square root of the
discriminant of this basis. By the definition
D2 = defTre/e(Wiwj)jij. It is  known that

D = detwi]xm. Let us suppose that some matrix
g € GLn(E) has ordet (g' = I,) and alll" -conjugateg,

y € I generate a finite subgro@c GL,(E) of exponent

t. Letoy =1, 0o,...,04 denote all automorphisms of the
Galois group ' of E over F. Assume that
L= E(Z(l)a Z(Z)a ceey Z(n)) WhereZ(l)v Z(Z)v L) Z(n) are the
eigenvalues of the matrig. We shall reserve the same
notations for certain fixed extensions afi to L.
Automorphisms of. overF will be denotedoy, 0, ..., oy,

r > d. Theorem 2.1 from section 2 implies the existence
of the groupG providedn > ¢:(t)[E : F]. LetE = F(G)

be obtained by adjoining tB all coefficients of allg € G.

For an appropriate set af eigenvalues(1),{2), - -, {(q)
which depends on the primitive idempotents of algebra
LG the following Theorem is true (see alsB)
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Theorem 3.2.Let G C GLy(E) be irreducible under Theorem 3.3.1f there is an abeliaiif -stable subgroup
GLn(F)-conjugation. The® is conjugate irGL,(F) toa G C GLm(Og) generated byg’, y € I' such that
subgroup oGL(Og) if and only if all determinants E = F(G) # F as above, thenGLny(F)-irreducible

componentss; C GLy (E), i = 1,...,k of G are conjugate
in GLy (F) to subgroupsG| C GLn(Og) such that
Wi Wi (g Wi - W E = F(G1)F(Gy)...F(Gy). In particular,F(G;) # F for

N W% W2y WSy W some indices.
=de
K : Proof of Theorem 3.3.
W ngl (g;’ ngl “.ng If G C GLm(Og) is a group of exponent and

g = Biwy + Bowy + - -+ 4+ Bgwy for a basisws,...,wy of
Ot over O, then B; € Mn(Of), and it follows from
Lemma 1 that the eigenvalues Bf are contained Dy .

In this theorenG is I -stable and generated lpyand ~ But eigenvalues are preserved under conjugation, so the
all g%,y € I but this condition is not very restrictive for 2 latter claim is also true for all componen®. We can
reasons. Firstly, any -stable subgroupH € GL,(E)  apply Theorem 3.2tG;,i =1,....k. It follows thatG; are
contains subgroups likés. And by Theorem 2.2 in conjugate to subgroups; C Gl (Og). Now, Lemma 2
section 2, ifH is a minimal subgroup of exponentvith  implies E = F(G1)F(Gy)...F(Gk). This completes the
the propertyE = F(H), thenH is just of the form given  proof of Theorem 3.3.

in Theorem 3.2. , , _ Theorem 3.4. Let E/F be a normal extension of
The proof of Theorem 3.2 is constructive. It is based ,,;mper fields with Galois group. LetG C GLy(E) be

on the commutativity of thé-algebral G, theL-span of o, apejiar -stable subgroup of exponengenerated by
G, and uses a system of linear equations that arises fror@ = ByWy + BoWo + - - - + Bgwy and all matrices,y € I

simultaneous diagonalization of commuting matrices and letE = F(G). ThenG is conjugate inGLn(F) to
G C GLy(Of) if and only if all eigenvalues of matrices

are divisible byD in the ringQO; .

g— iWiBi o = inBi ocrl Bi,i =1,....d are contained i@, , whereL = E({).
- 9 - | ) ?
i= i= Proof of Theorem 3.4.
Let

whose solutions are the eigenvalues of commuting
matricesB;, i =1,2,...,d. Gy %
In fact, we prove that the eigenvalueskf, By, . .., By clac—
are just the elements of the sgD;D~1)Y, y are varying a
in the Galois group of /F}. 0 G
We also use the fact that each semisimple marix . .
GLq(F) is conjugate irGLy(F) to a matrix fromGL,(Of)  for C € GLy(F) and irreducible components
if and only if all its eigenvalues are contained@ (see ~ Gi C GLn(E),i=1,...k

[1, [2)): Then
Lemma 1. 1) Let all eigenvaluegd;, i =1,2,...,n of O1 *
a semisimple matriB C GLn(F) be contained in the ring ClgCc= . = Bjwi + Bowo 4 - - + Bjwy
O, for some field. > F. ThenB is conjugate irGL,(F) 0 ' g
to a matrix that is contained BLn(Of ). 2) Conversely, if K
a matrixB is contained irGLy(Of ), then its eigenvalues for B = C"IB/C. Let us considerF-algebra A
are contained i@{ . generated by allB/,i = 1,...,d over F. Since A is

esemisimple, it is completely reducible. It follows that

matricesB; are simultaneously conjugate @L,(F) to

the block-diagonal form. Therefor& is conjugate in
Lemma 2. If G C GLy(E1) is a finite I -stable  GLy(F) to a direct sum of its irreducible componef@s

subgroup which hasGL,(F1)-irreducible components We can apply Theorem 3.2 to each of them. Theorem 3.3

G1,Gy, ..., Gy, andEy, Fy are rings having quotient fields implies that eachG; is conjugate in GLy(F) to

E andF respectively, thek (G) is the composite of fields G| C GLy, (O ) if and only if all eigenvalues of matrices

F(G1), F(Gz), ..., F(Gy). Bi,i =1,...,d are contained ii®{, whereL; = F (Gj)(¢).

But F(G) = F(G1)F(Gy)...F(Gk) by Lemma 2, and so

- LiLo...Lx. This completes the proof of Theorem 3.4.

We note that the reduction to the case of an irreducibl
groupG is motivated by the following easy lemma, pJ:

Theorem 3.2 can be used in the problem of existenc
for I"-stable subgroup& C GLn(Og) with the property

F(G) # F for some integem. The following Corollary of Note that Theorems 3.2, 3.3 and 3.4 remain true for
Theorem A reduces the problem of existencelfestable = some other Dedekind subringsC L. They can also be
groupsG to the case oGL,(F)-irreducibleG. reformulated for the rings of intege@g,Or and Op

(@© 2015 NSP
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providedOg andO_ haveOg-bases (the latter is always d¢,c e Z, where
true forF = Q).

6 v1-062
The approach to describe dll-stable matrix groups g= _Jiez 0l

up to GLn(R)-conjugation for certain Dedekind rings
R C E can be based on either of Theorems 3.2, 3.3 or 3.
for the existence of integral realization of the given
[ -stable subgroupG C GLn(E). So, if we have a ; _ ;
description ofG up to GLy(F)-conjugation, we can also ?dd _prgni 3% 3(29?4)' a:gjen trfg gcsn i:r:r:lie
determine whethe® is GL,(F)-conjugate to a subgroup °9 ~ T ; . 9

of GLa(R) for any fixedn,E andF. In fact, we have an X +1=0(modp has no solutions iff p= 3(mocH).

algorithm to answer the question: for a given field We can ask a question for the grou@sover local

extensionE /F is it possible to find & -stable subgroup fields:Let K be a finite Galois extension @, and G be a

G C GLn(R) which is not contained iGLn(F)? Theorem  finite subgroup of Gk(Ox) which is stable under the

3.2 and Theorem 3.3 reduce this question to the case Gdatural operation of the Galois group of the field K. Is

GLn(F)—irreducibleG. it true that G C GLn(Ok,,) holds, Ky the maximal
Actually, for a given Galois extensioR/F having  apelian subextension of K ovex,?

Galois groupl” and givent andn with g=(t)[E : F] <n . )

Theorem 2.1 (see section 2 above) provides a However, the answer is negative as we can see from

construction of al -stable subgrous ¢ GL,(E) such  the following example:

that E = F(G). Our argument in proof of Theorems 2.1 Example B. Let K = Qp(Zp, ¥/P+1), the extension
and 2.2 in section 2 SpeCIfy thﬁ can be Chosen as a K/Qp is norma| and not abe”an. We can put
group generated bgY, y € I'. Theorem 3.2 allows us to

Note that K/Qp is an abelian tamely ramified extension
and G is a cyclic subgroup of GLOk ) of order p. If the

check efficiently, whether it is possible to reali@eover 0 ¥p+i 0... 0
the ringOg, in the terms of the basis @ overOf andt. 0 0¢p+i... 0
Certain refinement of our argument in Theorem 3.2 for _ _

Ok instead ofO; providedOk is a freeOs-module (and 9= : " "

O has an Og-basis) makes possible to apply this 0 0VYp+1
approach to subgroups C GLn(Og), in particular for \rypTll*p 0 0

F = Q, as well as for other arithmetic rindgs If a list of
I"-stable finite subgroup& C GLn(E) is given, we can  Theng’,y € I’ = Gal(K/Qp) and {plp generate a finite
apply Theorem 3.2 to their generating elements. I -stable subgroup dBL,(Ok) andK = Qp(G).

But an extra condition that

The results of Theorems 3.3 and 3.4 can beG = G(p)={g€ &[g=Tn(modp)} (for the prime
reformulated for the case of maximal ordés andOg  divisorp of pin O) allows to get a positive answer to the
of local fields, whereE and F are extensions o,. In  following question for any elementary abelidistable
this case the concept of permutation modules can bé-subgroups C GLn(Ok):
reformulated, but Theorem 3.1 is not true in the general Let K be a finite Galois extension @, and G be a

case. Below we give some details and examples. finite subgroup of G(Ok) which is stable under the
natural operation of the Galois group of the field K and

G = G(p) for the prime divisop of p in Ok. Is it true that
G C GLn(Ok,,) holds, Ky the maximal abelian
subextension of K oveép,?

Example A above shows that for abelian extensions
K/Qp this is still not true. But it is possible to give a
positive answer to the Question above for an elementary

Definition 2. Consider a finite Galois extensioryR,  abelian I"-stable p-subgroupG C GLn(Ok) provided
for p+# 2 and a freeZ,-module M of rank n with basis G = G(p) is a group of matrices congruentligmodp).
my,...,My. The group Gk(Ok) acts in a natural way on
Ok ®M = @' ;Oxm;. A finite group GC GLn(Ok) is
said to be of A-type, if there exists a decompositionACkn0W|edgment;

M = @K ;M such that for every @ G there exists a
permutation/7(g) of {1,2,...,k} and roots of unity;(g) The authors express their gratitude to the referees for

Consider a finite Galois extensidf/Q, of the field
Qp of rational p-adic numbers forp # 2 and a free
Zp-moduleM of rankn with basismy,...,m,. The group
GLn(Ok) acts in a natural way 0@ @ M = @' ; Oxm.
In this case our definition 1 should be modified:

such thatgi (g)gMi = Mp(g)i for 1 <i <k. many useful remarks, helpful suggestions and corrections
. in the paper. This research was supported by Grant nr.
Example A. For a primitive p-root{, of 1 and6 = 3048 from the Deanship of the Scientific Research at

3(Zp+,) we can consider K= Q,(6,v/1—62) anda  Taibahu University, Al-Madinah Al-Munawwarah, Saudi
I -stable subgroup & GL,(Ok) generated by matrices Arabia
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