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Abstract: We investigate integral Galois stable representations of finite groups over local and global fields and their integers under the
ground field extensions related to permutation modules. We consider normal extensionsE/F and subgroupsG⊂ GLn(E) stable under
the natural operation of the Galois group ofE/F with some extra integrality conditions. The possible realization fields ofG with these
integrality conditions are of special interest, and we consider certain criteria of integrality for representations in GLn(E). We also study
a series of related arithmetic problems and examples.
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1 Introduction

In this paper we study some arithmetic problems for
representations of finite groups over algebraic number
fields, local fields and arithmetic rings of characteristic 0
under the ground field extensions.

The following definition and result generalize [12] and
[13]:

Definition 1. Consider a finite Galois extensionK of
the rationalsQ and a freeZ-moduleM of rank n with
basism1, . . . ,mn. The groupGLn(OK) acts in a natural
way on OK ⊗ M ∼=

⊕n
i=1OKmi . The finite group

G ⊂ GLn(OK) is said to be ofA-type, if there exists a
decompositionM =

⊕k
i=1Mi such that for everyg ∈ G

there exists a permutationΠ(g) of {1,2, . . . ,k} and roots
of unity εi(g) such thatεi(g)gMi = MΠ(g)i for 1≤ i ≤ k.

Fix a prime numberp, a primitive p-th root of unity
ζp, and setπ = 1− ζp,R= Zp(ζp) andFp = R/πR.

We sayR-representationM of G for anRGmoduleM
which is free of finite rank as anR-module. A
permutation lattice (respectively module) forG is a direct
sum ofZpG (resp.FpG for a finite fieldFp containingp
elements) modules of the formindG

H(1). A generalized
permutation lattice forG is a direct sum ofRG-modules

of the formindG
Hφ for some homomorphismφ : H → 〈ζp〉

of a subgroupH of G.

Theorem ([12], Theorem 3). Let M be an
R-representation of the finitep-group G so that
M = M/πM is a permutationFp-module ofG. ThenM is
a generalized permutation lattice forG.

Some related questions concerning isomorphic
permutation modules have been studied by K. W.
Roggenkamp and R. M. Guralnick. We consider some
Galois extensionE/F of finite degreed with the Galois
group Γ for a field F of characteristic 0 and a finite
abelian subgroupG ⊂ GLn(E) of the given exponentt,
where we assume thatG is stable under the natural
coefficientwiseΓ -operation.

Throughout the paperOE is the maximal order ofE
andF(G) denotes a field that is obtained via adjoining to
F all matrix coefficients of all matricesg∈ G.

The main objective of this paper is to prove the
existence of abelianΓ -stable subgroupsG such that
F(G) = E provided some reasonable restrictions for the
fixed normal extensionE/F and integersn, t,d hold and
to study the interplay between the existence ofΓ -stable
groups G over algebraic number fields and over their
rings of integers.
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We use the following result proven in [1], see section
3 below:

Theorem A. Let K/Q be a normal extension with
Galois groupΓ , and letG⊂ GLn(OK) be a finiteΓ -stable
subgroup. ThenG is a group ofA-type.

For local fields this is is not true in general, we give
some examples in section 3.

The results related to the Galois stability of finite
groups in the situation similar to ours arise in the theory
of definite quadratic forms and Galois cohomology of
certain arithmetic groups ifF is an algebraic number field
and G is realized over its maximal order ( [7], see
also [8]). In our context we study whether a given fieldE
normal overF can be realized as a fieldE = F(G) in both
casesG ⊂ GLn(E) and G ⊂ GLn(OE), and if this is so
what are the possible ordersn of matrix realizations and
the structure ofG.

We give a positive answer to the first question: we
prove that any finite normal field extensionE/F can be
obtained as F(G)/F if n ≥ φE(t)d where
φE(t) = [E(ζt) : E] is the generalized Euler function and
ζt is a primitive t-root of 1. An explicit construction of
these fields is given in Theorems 2.1 and 2.2 in section 2.
In fact, we construct some Galois algebras in the sense
of [11], and we establish the lower bounds for their
possible ordersn. We show (see Theorem 2.2 in section
2) that the restrictions for the given integersn, t, andd in
Theorem 2.1 can not be improved.

The situation becomes different ifE is an algebraic
number field and all matrix coefficients ofg ∈ G are
algebraic integers.

The existence of any Galois stable subgroups
G ⊂ GLn(OE) such thatF(G) 6= F is a rather subtle
question. In particular, forF = Q all fields F(G) whose
discriminant is divisible by an odd prime must contain
non-trivial roots of 1 [1, 2, 4] Some similar questions for
Γ -stable orders in simple algebras were by J. Ritter and
A. Weiss. There is a series of results on extension of
Jordan-Zassenhaus Theorem for extensions ground rings
(see [15]).

Our results have some applications to positive definite
quadratic lattices, see section 3. Note that some interesting
results on orthogonal decompositions of integral lattices
can be found in [3].

It is interesting to study the relationship between the
classical representationsh : H → GLn(K) over fieldsK
and some related representationsf : H → GLn(S) over
Dedekind ringsS in K as well as establishing extra
properties of these representations; here we are interested
in the property of stability ofh(H) under the natural
action of Galois group. This condition was considered
earlier for Galois stability of groups and orders in [14]
and some other papers. It would be also interesting to use
the explicit construction of the subgroupsG⊂ GLn(OKab)
together with Theorem A. In some mysterious way the
representations involved appear to be of special interest

for solvable and nilpotent groups, many results are just
related to representations abelian groups. However, it is
also useful to establish the conditions for existence of
faithful representations of groups of the given nilpotency
class (see [5]) and study some extra related properties of
abstract groups (see [9,10]) and to establish properties of
permutability for abstract groups which can be used
independently. In papers [9, 10] the properties of finite
groups with X-permutable maximal subgroups were
studied, and it is specially interesting to follow the
analogy concerning the above definition for
p-supersolvable, p-solvable groups and criteria obtained
in [9,10], for example, Theorem 3.1 in [10]: A groupG is
supersolvable if and only if it has nilpotent subgroups A
and B such thatG = AB andA\B is tightly embedded in
G in the sense determined in [10].

Notation. Throughout this paper we denoteC, R, Q
andQp the fields of complex, real, rational and rational
p-adic numbers.Z and Zp are the rings of rational and
rational p-adic integers.GLn(R) denotes the general
linear group over a ringR. [E : F ] denotes the degree of
the field extensionE/F. We write Γ for Galois groups,
σ ,γ ∈ Γ for the elements ofΓ . Mn(R) is the full matrix
algebra over a ringR. Finite groups are usually denoted
by capital lettersG,H, and their elements by small letters,
e.g.g ∈ G, h ∈ H, 〈a,b...〉 denotes a group generated by
a,b, .... We writeζt for a primitivet-root of 1. We denote
by φK(t) = [K(ζt) : K] the generalized Euler function for
a field K. Im stands for a unitm×m-matrix. detM is the
determinant of a matrixM. If G is a finite linear group,
F(G) stands for a field obtained by adjoining toF all
matrix coefficients of all matricesg∈ G. ForΓ acting on
G and anyσ ∈ Γ andg∈ G we writegσ for the image of
g under σ -operation.dimKA denotes the dimension of
K-algebraA over the fieldK. OK denotes the maximal
order of a number fieldK.

2 Galois stability and realization fields

The well known classical Deuring-Noether theorem gives
the condition of isomorphism of modules under the
ground field extensions: : if two representations of finite
dimensional F-algebras are isomorphic over a field
extensionE of F , then they are isomorphic overF . This
theorem can be used, in particular, for classification of
quadratic lattices (see [3]). In this section we consider
integral representations of finite groups over local and
global fields, and we focus on the following existence
theorem. The proof of this theorem is constructive, so we
can give explicitly the structure and the construction of
the abelianΓ - stable subgroupG ⊂ GLn(E) in the
theorem below.

Theorem 2.1Let F be an algebraic number field, let
d, t be some prescribed positive integers and eithert > 1
such thatn ≥ φE(t)d, or t = d = 1, and letE be a given
normal extension ofF having the Galois groupΓ and
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degreed. Then there is an abelianΓ - stable subgroup
G⊂ GLn(E) of the exponentt such thatE = F(G).

In fact, G can be generated by matricesgγ , γ ∈ Γ for
someg∈ GLn(E).

Note that the ordern = dφE(t) in our construction is
the minimum possible.

Proof of Theorem 2.1
If or t = d = 1, we have orE = F andG = {In}, in

this case the theorem is trivial. If ort > 1,d = 1, thenE =
F, and we can consider an irreducible polynomialf (x) =
xk +ak−1xk−1 + ...+a1x+a0 for k = φE(t)−1 such that
f (ζt ) = 0. SinceE = F, all ai ∈ F, and we can consider the
following matrix corresponding to a regular representation
of ζt :

R(M) =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 . . . 0 a0
1 0 . . . 0 a1

0
...

0 0 . . . 1 ak

∣

∣

∣

∣

∣

∣

∣

∣

We haveR(M)t = Ik, and〈R(M)〉 is a cyclic group of order
t. Next takeg= R(M)

⊕

In−k ∈ GLn(E), the direct sum of
In−k andR(M). Then the groupG = 〈g〉, generated byg,
satisfies the requirements of the theorem.

Therefore, we can assume thatt > 1 andd > 1.
For a given basisw1,w2, ...,wn of E/F we intend to

construct a matrixg = [gi j ]i, j = ∑d
i=1Biwi and pairwise

commuting matricesBi in such a way that the normal
closure of the fieldF(g11,g12, ...,gnn) over F coincides
with E and so the groupG generated bygσ ,σ ∈ Γ is an
abelianΓ -stable group of exponentt. First we determine
the eigenvalues that matricesBi should have ifg has the
prescribed set of eigenvalues. Collecting the given
eigenvalues of pairwise commuting semisimple matrices
and using the regular representation, we construct a
Γ -stable abelian groupG for integral parameters given in
Theorem 2.1

We consider two different cases in our proof.
1) We suppose thatF(ζt) andE are linearly disjoint

over F and [E : F] = d. In this caseφE(t) = φF(t). Let
w1 = 1,w2, ...,wd be a basis ofE(ζt) over F(ζt), and let
Γ be the Galois group ofE(ζt) over F(ζt). Let g be a
semisimpled × d-matrix having eigenvaluesζt ,1, ...,1.
Using the expansiong = B1 +w2B2 + ...+wdBd we can
construct the matricesBi , i = 1,2, ...,d, and we can prove
that the groupG generated bygγ ,γ ∈ Γ is an abelian
Γ -stable group of exponentt. Let us consider the matrix
W = [w

σ j
i ]i, j for {σ1 = 1,σ2, ...,σd} = Γ . Denote byWi

the matrixW whosei-th column is replaced byd chosen
eigenvaluesζt ,1, ...,1 of g. We can calculate

λi =
detWi

detW

and construct matricesBi as regular representations
Bi = R(λi) of λi in E(ζt)/F(ζt). Let αi, j be the

coefficients of the inverse matrixW−1 = [αi, j ]i, j . Then
ασ j

i1 = αi j and λi = (ζt − 1)αi1 for i 6= 1, and
λ1 = 1+(ζt −1)α11. Soλ σ j

i = (ζt −1)ασ j
i1 = (ζt −1)αi j

for i 6= 1, andλ σ j
1 = (ζt − 1)ασ j

11 + 1 = (ζt − 1)α1 j + 1.
Since any linear relation

k1(λ1−1)+
d

∑
i=2

kiλi = 0,ki ∈ F(ζt), i = 1,2, ...,d

implies the linear relation

k1(λ
σ j
1 −1)+

d

∑
i=2

kiλ
σ j
i = 0,ki ∈ F(ζt ), i = 1,2, ...,d

for all σ j ∈ Γ , this would also implydetW−1 = 0, which
is impossible. Therefore,λ1 − 1,λ2, ...,λd generate the
field E(ζt) overF(ζt), and soBi − Id,B2, ...,Bd generate
F(ζt )-spanF(ζt)[B1, ...,Bd] over F(ζt ). Note thatBi can
be expressed as a linear combination ofgσi , i = 1,2, ...,d
with coefficients inE: Bi = ∑d

j=1αi j gσ j . This can be
obtained from the system of matrix equations

gσ j =
d

∑
i=1

w
σ j
i Bi , j = 1,2, ...,d

if we considerBi as indeterminates. SinceG has exponent
t, F(ζt ) is a splitting field forG, the group generated by
all gσ ,σ ∈ Γ . Therefore, the dimension ofE(ζt)-span
E(ζt)G = E(ζt)⊗F(ζt ) F(ζt )G over E(ζt) is d, and so
F(ζt )-dimension ofF(ζt)-spanF(ζt)G is alsod.

Let us denote byE′ the image ofE(ζt) under the
regular representation ofE(ζt)/F(ζt) over F(ζt). Then
A = E(ζt)G = E(ζt)⊗F(ζt ) F(ζt )G, theE(ζt)-span ofG,
is the GaloisE′-algebra in the sense of [11], that is, it is
an associative and commutative separableE′-algebra
having a normal basis. We can choose idempotents

εi =
1

ζt −1
(gσ j − Id), j = 1,2, ...,d

as a normal basis ofA overE′ so thatε j = εσ j
1 .

We have F(ζt)G = F(ζt)[〈gσ1, ...,gσd〉] =
F(ζt )[(g− Id)σ1, ...,(g− Id)σd ], anddimF(ζt )F(ζt )G = d.
As the length of the orbit ofM = [mi j ] = (g− Id) under
Γ -operation isd, we can use the coefficients of matrices
Mσi , i = 1,2, ...,d to construct an elementθ = ∑i, j ki j mi j ,
ki j ∈ F(ζt), which generates a normal basis of
E(ζt)/F(ζt). Therefore, for any givenα ∈ E(ζt) we have
α = ∑i kiθ σi for someki ∈ F(ζt).

Therefore, our choice of eigenvalues implies that
F(ζt )(G) = E(ζt).

Now, we can apply the regular representationRF of
F(ζt ) overF to matricesM = [mi j ]i, j ,mi, j ∈ F(ζt) in the
following way:RF(M) = [RF(mi j )]i, j . So, usingRF for all
components of matricesBi ∈ Mn(F(ζt)) we can obtain an
abelian subgroupG ⊂ GLn1(E),n1 = [F(ζt) : F ]d of
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exponent t which is Γ -stable if we identify the
isomorphic Galois groups of the extensionsE/F and
E(ζt)/F(ζt). We have againdimFFG = dimEEG, E is
again the Galois algebra, andF(G) = E. Now, using the
natural embedding ofG to GLn(E),n ≥ n1, we complete
the proof of Theorem 2.1 in the case 1).

2) In virtue of 1) we can consider the case when the
intersectionF0 =
E∩F(ζt) 6= F . We can use the regular representationR of
E over F. Let Γ0 = {σ ′

1,σ
′
2, ...,σ

′
d} be the set of some

extensions of elementsΓ = {σ1,σ2, ...,σd} to E(ζt)/F,
and letw1 = 1,w2, ...wd be a basis ofE overF . So we can
use our previous notation and go through a similar
argument as in the part 1) of the proof for construction of
g = ∑d

i=1Biwi and matrices Bi as the regular
representationsR0 of eigenvalues

λi =
detWi

detW
=

φE(t)

∑
j=1

λi j ζ j , i = 1,2, ...,d,

in the following way: we consider

Bi = R0(λi) =
φE(t)

∑
j=1

R(λi j )ζ j ,

whereR is the regular representation ofE overF. We also

haveλ
σ ′

j
1 = α1 j +1,λ

σ ′
j

i = αi j for j = 2, ...,d . Now, if we
have any linear relation between the rows of the matrix

[αi j (ζ
σ ′

j
t − 1)]i, j , this would imply a linear relation

between its columns, and so the columns ofW−1 = [αi j ]

are linearly dependent, anddetW−1 = 0 which is a
contradiction. So, again we obtain thatλ1 − 1,λ2, ...,λd
are linearly independent over F , so
dimFFG′ = dimFF [B1 − Id,B2, ...,Bd] = dimEEG′ = d
for G′ generated bygσ ′

i , i = 1,2, ...,d. As earlier we can
consider the elementwise regular representationRE(Bi) of
matricesBi in the field extensionE(ζt)/E. So we obtain
g0 = ∑d

i=1RE(Bi)wi , and we can take the groupG
generated by allgσi

0 , i = 1,2, ...,d. Since [E(ζt) : F] =
[E(ζt) : E][E : F] = φE(t)d, the order n = φE(t)d
coincides with the one required in the formulation of
Theorem 2.1. In this way we can construct aΓ -stable
groupG that satisfies the conditions of Theorem 2.1.

This completes the proof of Theorem 2.1.

As a corollary of Theorem 2.1 we have

Theorem 2.2.Let E/F be a given normal extension
of algebraic number fields with the Galois groupΓ ,
[E : F] = d, and let G ⊂ GLn(E) be a finite abelian
Γ -stable subgroup of exponentt such thatE = F(G) and
n is the minimum possible. Thenn = dφE(t) and G is
irreducible under conjugation inGLn(F). Moreover, ifG
has the minimum possible order, thenG is a group of type
(t, t, ..., t) and ordertm for some positive integerm≤ d.

In the case of quadratic extensions we can give an
obvious example.

Example.Let d = 2, t = 2. PickE = Q(
√

a) and g=
∣

∣

∣

∣

0 1
a−1 0

∣

∣

∣

∣

√
a for anya∈ F which is not a square inF . Then

Γ is a group of order 2 andG = {I2,−I2,g,−g} is a Γ -
stable abelian group of exponent 2.

Proof of Theorem 2.2.
We can use the proof of Theorem 2.1.
Let G ⊂ GLn(E) be a group given in the formulation

of Theorem 1.1, and letn be minimal possible. Then we
have the following decomposition ofE-spanA= EG:

A= ε1A+ ε2A+ ...+ εkA

for some primitive idempotentsε1, ...,εk of A. εi are
conjugate under the operation of the Galois group
Γ = {σ1, ...,σd}. For if the sum ofεσ j

i , j = 1,2, ...,d is
not In then In = e1 + e2 for e1 = εσ1

1 + ... + εσd
1 and

e2 = In − e1, and e1,e2 are fixed byΓ and soe1,e2 are
conjugate inGLn(F) to a diagonal form. Since either of 2
componentseiG has rank smaller thann, there is a group
satisfying the conditions of Theorem 2.1 of smaller thann
degree.

Therefore,εi = εσi
1 , k=d and the idempotentsε1, ...,εd

form a normal basis ofA. But the rank of a matrixεi is
not smaller thanφE(t). Indeed,εiG contains an element
εig, for someg ∈ G of order t such that(εig)t = εi , but
(εig)k 6= εi for k < t. We can findg ∈ G in the following
way. SinceIn = ε1+ ...+ εk for anyh∈ G of ordert there
is ε j such that(ε jh)t = ε j , but (ε j h)k 6= ε j for k < t, and
the same property holds true forε jh with anyσ ∈ Γ . Then
using the property of normal basisεk = εσk

1 we can take

g= hσ−1
j σi .

So, the irreducible componentεiG determines a
faithful irreducible representation of a cyclic group
generated byg. But if T : C → GLr(E) is a faithful
irreducible representation of a cyclic groupC generated
by an elementg of ordert, its degreer is equal toφE(t). It
follows that the rank of matricesεi is φE(t). So the
dimension ofA overE is φE(t)d.

If G is generated bygγ , γ ∈ Γ and its order is
minimal,Γ -stability implies thatg hasd conjugates under
Γ -operation, and soG an abelian group of type(t, ..., t)
and order tm for some positive integerm ≤ d. This
completes the proof of Theorem 2.2.

3 Integrality of representations over global
and local fields

In this section we consider normal extensionsK/F and
subgroupsG⊂ GLn(K) stable under the natural operation
of the Galois group ofK/F with extra integrality
conditions focusing on the caseF = Q. The possible
realization fields ofG with these integrality conditions are
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of special interest, and we consider certain criteria of
integrality for representations inGLn(K). We also study a
series of related arithmetic problems and examples.

For complex representations of finite groups we can
formulate the following problem. LetG be a finite group
and f : G→ GLn(C) a complex representation ofG. LetF
be the field generated by the traces of{ f (g) : g ∈ G}. In
this context it would be reasonable to ask a question:

Is it true that there exist a representation
h : G → GLn(K) over a number fieldK, normal overF
with Galois groupΓ = Gal(K/F), similar to f (G), such
that h(G) is Γ -invariant? Under what conditionsh(G) is
realizable inGLn(K)?

Let K be a number field with the maximal orderOK ,
G an algebraic subgroup of the general linear group
GLn(C) defined over the field of rationalsQ. Because of
the embedding ofG in GLn(C) the intersectionG(OK) of
GLn(OK) andG(K), the subgroup ofK-rational points of
G, can be considered as the group ofOK-points of an
affine group scheme overZ, the ring of rational integers.
AssumeG to be definite in the following sense: the real
Lie group G(R) is compact. The problem which is our
starting point is the question: Does the condition
G(OK) = G(Z) always hold true?

This problem is easily reduced to the following
conjecture from the representation theory: LetK/Q be a
finite Galois extension of the rationals andG⊂ GLn(OK)
be a finite subgroup stable under the natural operation of
the Galois groupΓ := Gal(K/Q). Then there is the
following

Conjecture 1. If K is totally real, thenG⊂ GLn(Z).

There are several reformulations and generalizations
of the conjecture. Consider an arbitrary not necessarily
totally real finite Galois extensionK of the rationalsQ.
The following conjecture generalizes (and would imply)
conjecture 1:

Conjecture 2.Any finite subgroup ofGLn(OK) stable
under the Galois groupΓ = Gal(K/Q) is of A-type.

For totally real fieldsK conjecture 2 reduces to
conjecture 1.

Let F(G) denote the field obtained via adjoining toF
the matrix coefficients of all matricesg∈G. The following
result was obtained in [1] (see also [2, 4] for the case of
totally real fields).

The caseF = Q, the field of rationals, is specially
interesting. The following theorem was proven in [1]
using the classification of finite flat group schemes overZ
annihilated by a primep obtained by V. A. Abrashkin and
J.- M. Fontaine:

Theorem 3.1.Let K/Q be a normal extension with
Galois groupΓ , and letG⊂ GLn(OK) be a finiteΓ -stable
subgroup. ThenG is a group ofA-type in the sense of our
definition given in the introduction.

Corollary. Let K/Q be a normal extension with
Galois groupΓ , and letG⊂ GLn(OK) be a finiteΓ -stable
subgroup. ThenG ⊂ GLn(OKab) where Kab is the
maximal abelian overQ subfield of K.

Similar results for totally real extensionsK/Q were
considered earlier. In this case there are some interesting
arithmetic applications to positive definite quadratic
lattices and Galois cohomology.

But if an extensionE/F of number fields is unramified,
the situation is completely different.

In the case of unramified extensions the following
proposition for integral representations in a similar
situation is proven in [6]:

Proposition.Letd> 1, t >1 be given rational integers,
and letE/F be an unramified extension of degreed.

1)If n ≥ φE(t)d, there is a finite abelianΓ - stable
subgroup G ⊂ GLn(O′

E) of exponent t such that
E = F(G).

2)If n ≥ φE(t)dh and h is the exponent of the class
group of F , there is a finite abelianΓ -stable subgroup
G⊂ GLn(OE) of exponentt such thatE = F(G).

3)If n≥ φE(t)d andh is relatively prime ton, thenG
given in 1) is conjugate inGLn(F) to a subgroup of
GLn(OE).

4)If d is odd, thenG given in 1) is conjugate inGLn(F)
to a subgroup ofGLn(OE).

In all cases aboveG can be constructed as a group
generated by matricesgγ ,γ ∈ Γ for someg∈ GLn(E).

Let us formulate a criterion for the existence of an
integral realization of an abelian groupG with properties
introduced above. This theorem has interesting
applications in [1], and [2].

Let E, L be finite extensions of a number fieldF. Let
O′

E, O′
F , O′

L be semilocal rings that are obtained by
intersection of valuation rings of all ramified prime ideals
in the ringsOE, OF , OL. If F = Q we can defineOF to be
the intersection ofF andOE. Let w1,w2, . . . ,wd be a basis
of O′

E over O′
F , and let D be a square root of the

discriminant of this basis. By the definition
D2 = det[TrE/F(wiwj)]i j . It is known that
D = det[wσk

m ]k,m. Let us suppose that some matrix
g∈ GLn(E) has ordert (gt = In) and allΓ -conjugatesgγ ,
γ ∈ Γ generate a finite subgroupG⊂ GLn(E) of exponent
t. Let σ1 = 1, σ2, . . . ,σd denote all automorphisms of the
Galois group Γ of E over F. Assume that
L = E(ζ(1),ζ(2), . . . ,ζ(n)) whereζ(1),ζ(2), . . . ,ζ(n) are the
eigenvalues of the matrixg. We shall reserve the same
notations for certain fixed extensions ofσi to L.
Automorphisms ofL overF will be denotedσ1,σ2, ...,σr ,
r > d. Theorem 2.1 from section 2 implies the existence
of the groupG providedn ≥ φE(t)[E : F ]. Let E = F(G)
be obtained by adjoining toF all coefficients of allg∈ G.
For an appropriate set ofd eigenvaluesζ(1),ζ(2), . . . ,ζ(d)
which depends on the primitive idempotents of algebra
LG the following Theorem is true (see also [1]):
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Theorem 3.2.Let G ⊂ GLn(E) be irreducible under
GLn(F)-conjugation. ThenG is conjugate inGLn(F) to a
subgroup ofGLn(O′

E) if and only if all determinants

Dk = det

∣

∣

∣

∣

∣

∣

∣

∣

∣

w1 . . . wk−1 ζ(1) wk+1 . . . wd

wσ2
1 . . . wσ2

k−1 ζ σ2
(2) wσ2

k+1 . . . wσ2
d

...
wσd

1 . . . wσd
k−1 ζ σd

(t) wσd
k+1 . . . wσd

d

∣

∣

∣

∣

∣

∣

∣

∣

∣

are divisible byD in the ringO′
L.

In this theoremG is Γ -stable and generated byg and
all gγ ,γ ∈ Γ but this condition is not very restrictive for 2
reasons. Firstly, anyΓ -stable subgroupH ∈ GLn(E)
contains subgroups likeG. And by Theorem 2.2 in
section 2, ifH is a minimal subgroup of exponentt with
the propertyE = F(H), thenH is just of the form given
in Theorem 3.2.

The proof of Theorem 3.2 is constructive. It is based
on the commutativity of theL-algebraLG, the L-span of
G, and uses a system of linear equations that arises from
simultaneous diagonalization of commuting matrices

g=
d

∑
i=1

wiBi ,g
σ =

d

∑
i=1

wσ
i Bi , σ ∈ Γ ,

whose solutions are the eigenvalues of commuting
matricesBi , i = 1,2, . . . ,d.

In fact, we prove that the eigenvalues ofB1,B2, . . . ,Bd
are just the elements of the set{(D jD−1)γ , γ are varying
in the Galois group ofL/F}.

We also use the fact that each semisimple matrixB ∈
GLn(F) is conjugate inGLn(F) to a matrix fromGLn(O′

F)
if and only if all its eigenvalues are contained inO′

L (see
[1], [2]):

Lemma 1. 1) Let all eigenvaluesλi, i = 1,2, . . . ,n of
a semisimple matrixB⊂ GLn(F) be contained in the ring
O′

L for some fieldL ⊃ F. ThenB is conjugate inGLn(F)
to a matrix that is contained inGLn(O′

F). 2) Conversely, if

a matrixB is contained inGLn(O′
F), then its eigenvalues

are contained inO′
L.

We note that the reduction to the case of an irreducible
groupG is motivated by the following easy lemma [1,2]:

Lemma 2. If G ⊂ GLn(E1) is a finite Γ -stable
subgroup which hasGLn(F1)-irreducible components
G1,G2, . . . ,Gr , andE1, F1 are rings having quotient fields
E andF respectively, thenF(G) is the composite of fields
F(G1), F(G2), . . . ,F(Gr).

Theorem 3.2 can be used in the problem of existence
for Γ -stable subgroupsG ⊂ GLm(O′

E) with the property
F(G) 6= F for some integerm. The following Corollary of
Theorem A reduces the problem of existence forΓ -stable
groupsG to the case ofGLn(F)-irreducibleG.

Theorem 3.3.If there is an abelianΓ -stable subgroup
G ⊂ GLm(O′

E) generated bygγ , γ ∈ Γ such that
E = F(G) 6= F as above, thenGLm(F)-irreducible
componentsGi ⊂ GLmi (E), i = 1, ...,k of G are conjugate
in GLmi (F) to subgroupsG′

i ⊂ GLmi (O
′
E) such that

E = F(G1)F(G2)...F(Gk). In particular,F(Gi) 6= F for
some indicesi.

Proof of Theorem 3.3.
If G ⊂ GLm(O′

E) is a group of exponentt and
g = B1w1 + B2w2 + · · ·+ Bdwd for a basisw1, ...,wd of
O′

E over O′
F , then Bi ∈ Mm(O′

F), and it follows from
Lemma 1 that the eigenvalues ofB j are contained inO′

L.
But eigenvalues are preserved under conjugation, so the
latter claim is also true for all componentsGi . We can
apply Theorem 3.2 toGi , i = 1, ...,k. It follows thatGi are
conjugate to subgroupsG′

i ⊂ GLmi (O
′
E). Now, Lemma 2

implies E = F(G1)F(G2)...F(Gk). This completes the
proof of Theorem 3.3.

Theorem 3.4. Let E/F be a normal extension of
number fields with Galois groupΓ . Let G ⊂ GLn(E) be
an abelianΓ -stable subgroup of exponentt generated by
g= B1w1+B2w2+ · · ·+Bdwd and all matricesgγ ,γ ∈ Γ ,
and let E = F(G). Then G is conjugate inGLn(F) to
G ⊂ GLn(O′

F) if and only if all eigenvalues of matrices
Bi , i = 1, ...,d are contained inO′

L, whereL = E(ζt).

Proof of Theorem 3.4.
Let

C−1GC=

∣

∣

∣

∣

∣

∣

∣

G1 ∗
. . .

0 Gk

∣

∣

∣

∣

∣

∣

∣

for C ∈ GLn(F) and irreducible components
Gi ⊂ GLni (E), i = 1, ...,k.

Then

C−1gC=

∣

∣

∣

∣

∣

∣

∣

g1 ∗
. . .

0 gk

∣

∣

∣

∣

∣

∣

∣

= B′
1w1+B′

2w2+ · · ·+B′
dwd

for B′
i = C−1BiC. Let us considerF-algebra A

generated by allB′
i , i = 1, ...,d over F . Since A is

semisimple, it is completely reducible. It follows that
matricesB′

i are simultaneously conjugate inGLn(F) to
the block-diagonal form. Therefore,G is conjugate in
GLn(F) to a direct sum of its irreducible componentsGi .
We can apply Theorem 3.2 to each of them. Theorem 3.3
implies that eachGi is conjugate in GLni (F) to
G′

i ⊂ GLni (O
′
F) if and only if all eigenvalues of matrices

B′
i , i = 1, ...,d are contained inO′

Li
, whereLi = F(Gi)(ζt ).

But F(G) = F(G1)F(G2)...F(Gk) by Lemma 2, and so
L = L1L2...Lk. This completes the proof of Theorem 3.4.

Note that Theorems 3.2, 3.3 and 3.4 remain true for
some other Dedekind subringsR⊂ L. They can also be
reformulated for the rings of integersOE,OF and OL
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providedOE andOL haveOF -bases (the latter is always
true forF = Q).

The approach to describe allΓ -stable matrix groups
up to GLn(R)-conjugation for certain Dedekind rings
R⊂ E can be based on either of Theorems 3.2, 3.3 or 3.4
for the existence of integral realization of the given
Γ -stable subgroupG ⊂ GLn(E). So, if we have a
description ofG up to GLn(F)-conjugation, we can also
determine whetherG is GLn(F)-conjugate to a subgroup
of GLn(R) for any fixedn,E andF. In fact, we have an
algorithm to answer the question: for a given field
extensionE/F is it possible to find aΓ -stable subgroup
G⊂ GLn(R) which is not contained inGLn(F)? Theorem
3.2 and Theorem 3.3 reduce this question to the case of
GLn(F)−irreducibleG.

Actually, for a given Galois extensionE/F having
Galois groupΓ and givent andn with φE(t)[E : F ] ≤ n
Theorem 2.1 (see section 2 above) provides a
construction of aΓ -stable subgroupG ⊂ GLn(E) such
that E = F(G). Our argument in proof of Theorems 2.1
and 2.2 in section 2 specify thatG can be chosen as a
group generated bygγ , γ ∈ Γ . Theorem 3.2 allows us to
check efficiently, whether it is possible to realizeG over
the ringO′

E, in the terms of the basis ofO′
E overO′

F andt.
Certain refinement of our argument in Theorem 3.2 for
OE instead ofO′

E providedOE is a freeOF -module (and
OE has an OF -basis) makes possible to apply this
approach to subgroupsG ⊂ GLn(OE), in particular for
F = Q, as well as for other arithmetic ringsR. If a list of
Γ -stable finite subgroupsG ⊂ GLn(E) is given, we can
apply Theorem 3.2 to their generating elements.

The results of Theorems 3.3 and 3.4 can be
reformulated for the case of maximal ordersOE andOF
of local fields, whereE and F are extensions ofQp. In
this case the concept of permutation modules can be
reformulated, but Theorem 3.1 is not true in the general
case. Below we give some details and examples.

Consider a finite Galois extensionK/Qp of the field
Qp of rational p-adic numbers forp 6= 2 and a free
Zp-moduleM of rankn with basism1, . . . ,mn. The group
GLn(OK) acts in a natural way onOK ⊗M ∼=⊕n

i=1OKmi .
In this case our definition 1 should be modified:

Definition 2. Consider a finite Galois extension K/Qp
for p 6= 2 and a freeZp-module M of rank n with basis
m1, . . . ,mn. The group GLn(OK) acts in a natural way on
OK ⊗ M ∼= ⊕n

i=1OKmi . A finite group G⊂ GLn(OK) is
said to be of A-type, if there exists a decomposition
M =

⊕k
i=1Mi such that for every g∈ G there exists a

permutationΠ(g) of {1,2, . . . ,k} and roots of unityεi(g)
such thatεi(g)gMi = MΠ(g)i for 1≤ i ≤ k.

Example A. For a primitive p-rootζp of 1 andθ =
1
2(ζp+ ζ−1

p ) we can consider K= Qp(θ ,
√

1−θ 2) and a
Γ -stable subgroup G⊂ GLn(OK) generated by matrices

gc,c∈ Z, where

g=

∣

∣

∣

∣

θ
√

1−θ 2

−
√

1−θ 2 θ

∣

∣

∣

∣

.

Note that K/Qp is an abelian tamely ramified extension
and G is a cyclic subgroup of GL2(OK) of order p. If the
odd prime p ≡ 3(mod4), then ζp 6∈ K since
ζp = θ +

√
−1 · θ−1 and the congruence

x2+1≡ 0(modp) has no solutions iff p≡ 3(mod4).

We can ask a question for the groupsG over local
fields:Let K be a finite Galois extension ofQp and G be a
finite subgroup of GLn(OK) which is stable under the
natural operation of the Galois groupΓ of the field K. Is
it true that G ⊂ GLn(OKab) holds, Kab the maximal
abelian subextension of K overQp?

However, the answer is negative as we can see from
the following example:

Example B. Let K = Qp(ζp,
p
√

p+1), the extension
K/Qp is normal and not abelian. We can put

g=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 p
√

p+1 0. . . 0
0 0 p

√
p+1. . . 0

...
...

.. .
0 . . . 0 p

√
p+1

p
√

p+11−p
. . . 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Thengγ ,γ ∈ Γ = Gal(K/Qp) andζpIp generate a finite
Γ -stable subgroup ofGLp(OK) andK = Qp(G).

But an extra condition that
G = G(p) = {g ∈G|g≡ In(modp)} (for the prime
divisorp of p in OK) allows to get a positive answer to the
following question for any elementary abelianΓ -stable
p-subgroupG⊂ GLn(OK):

Let K be a finite Galois extension ofQp and G be a
finite subgroup of GLn(OK) which is stable under the
natural operation of the Galois groupΓ of the field K and
G= G(p) for the prime divisorp of p in OK . Is it true that
G ⊂ GLn(OKab) holds, Kab the maximal abelian
subextension of K overQp?

Example A above shows that for abelian extensions
K/Qp this is still not true. But it is possible to give a
positive answer to the Question above for an elementary
abelian Γ -stable p-subgroup G ⊂ GLn(OK) provided
G= G(p) is a group of matrices congruent toIn(modp).
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