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Abstract: In recent years, several interesting families of genegdfimctions for various classes of hypergeometric and gdized
hypergeometric functions in one, two and more variablegwvmrestigated systematically. Here, in this sequel, weatigstablishing
several (presumably) new generating relations for thergéimed Gauss type hypergeometric functions which aredhtced by means
of some generalizations of the classical Beta funcBom, 3). Special cases of the main results are also presented.
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1 Introduction and Definitions in the monograph on this subject by Srivastava and
Manocha 23].

. . ) . ) We begin by recalling the fact that, in the
Various fam|I.|es of generating functions, espemally_for widely-scattered literature on the subject of this paper,
sequences involving (for example) the generalizedyne can find several interesting generalizations of the
hypergeometric functionFs with r numerator ands  famjjiar (Euler's) Gamma functior (z) as well as the
denominator parameters, play an important role in thecorresponding generalizations and extensions of the Beta
investigation of many useful properties of the sequencesnction B(a,B), the hypergeometric functionsF; and
which they generate. They are used in finding severaEFl’ and the generalized hypergeometric functios
interesting properties, characteristics and formulasifer  \yith r numerator ands denominator parameters. For
generated numbers and polynomials in a wide variety Ofexample, for an appropriately bounded sequence
research subjects in (for example) analytic numbertheory{K/}FENO of essentially arbitrary (real or complex)
and modern combinatorics (see, for detai§8[1218,  nympers, Srivastavat al. [25, p. 243et sed] recently

19; see also 1314,2022). For a systematic considered the functio® ({k/}scr,;2) given by
introduction to, and for several interesting (and useful)

applications of the various methods of obtaining linear,

bilinear and bilateral (or mixed multilateral) generating ° 7 _ o
functions for a fairly wide variety of sequences of special 2 a (2 <R R>0:ko:=1)
functions (and polynomials) in one, two and more® ({<}eni?) = L

variables, among much abundant available literature, we Mo 2* exp(2) [HO(H)] (17 = o0; Mo > 0; we C)
refer the interested reader to the extensive work presented (1)
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for some suitable constant®l; and w depending
essentially upon the sequenge }/cy,- Then, in terms of
the function® ({k,}seny; 2) defined by (1), Srivastavet

al. [25] introduced some remarkably deep generalizations B,

of the extended Gamma functidp(z), the extended Beta

function By(a,B) and the extended hypergeometric

functionF, (a,b; c; z) (see, for details,4] and[5]) by

r ({Kf}fewo)(

) :/omtz_le({Kg}geNo;—t—$)dt @)

(O(z)>0:0(p) 2 0),

%g{K(}FENo) (a,B) = %({KK}KENO) (a,B;p)

1
— / ta—l(l _t)Bfl
0

-0 ({KE}EGNO; _t(l’;—t)> dt  (3)

(min{0(a),0(B)} > 0; O(p) = 0)
and
zsg{Ké‘}é‘eNo;P) (abc2)
1 2 KegeeNg z
“amen & e

@)

(2 <1;0(c) > O(b) > 0; O(p) 2 0),

provided that the defining integrals in (2), (3) and (4) exist

Here, and in what follows(A), (A,v € C) denotes the

Pochhammer symbol (or the shifted factorial) defined (in

general) by
_T(A+v)
(A)v ._W
1 (v=0;1eC\{0})
A+ +n—1) (v=neN; A€Q),

()

it being understoocconventionallythat (0)p := 1 and
assumedacitly that thel” -quotient exists (see, for detalils,
[23, p. 21et seq]), N being (as usual) the set of positive
integers.

In the same paper published in 2012, Srivaseival.
[25 pp. 256-257, Section 6Jurther extended the
definitions (3), (4)and many other related definitions by
introducing oneadditionalparameter; (with 0(q) = 0).
Thus, in terms of the@-function given by (1), we have
the followingtwo-parameteextensions of the definitions
in (3) and (4) (see, for details25, p. 256, Egs. (6.1) and

(6.2)]):

({Kz}zeNo) (a,B) = %({K(}AENO) (a,B;p,q)

1
= / TG T O s
0

© ({Ké}ﬁeNo; T %) (6)

0(B)} > 0; min{O(p),0(a)} 2 0)

(min{O(a),

and

O(a)}

({Kz:}é‘eNOJPﬂ)(

281 a,b;c;2)
1 (o]

Kesren . z
:mn;(a)n %({ } 0)(b+n,C—b,p,q)H
(@)

(I7 < 1; O(c) > O(b) > 0; min{0O(p),0(q)} = 0),

provided that the defining integrals in (6) and (7) exist. The
generalized Beta function

%gf:z}z;eNo) (a,B)

defined by (6) was used recently by Luo and Raida [
with a view to extending the family of generalized
hypergeometric functions (see alsB])[ Moreover, the
special case of the Gamma function

I_p({Kz:}z;eNo) )

given by (2) when

k=1 (¢ € Np) (8)
was applied recently in another paper by Srivasttval.
[16) (see also 29 and the references cited therein to
many other related recent works on this subject).
Obviously, whenq = p, the definitions in (6) and (7)
would reduce immediately to those in (3) and (4),

respectively.

We now recall that some fundamental properties and
characteristics of the following generalized Beta type
function (@B

By ™ (a,0)
were considered very recently by Parmar (see, for details,
[11, p. 37, Eq. (19)]):

B"™ (a.B)

1
::/ 1@
0

B-1 . p
i ()
©
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(D(p) = 0; min{0O(a),0(B),0(m)} > 0; (a1=1;,a1=Db; 1 =c)
yeC; 5eC\7Zy), coincides precisely with the definition (4). Also, for
where H=v=m and g=r=s=1 (14)
Za = Z7U{0} (27 = {—1,—2,—3,---}). (al:]_; a;=b; yl:(;)7

Clearly, the casen = 1 of the definition (9), which (for ~and with the sequencec} ., specialized as in (10), the
m=1andy = &) can be found in the earlier works of definition (12) woul_d obvu_)usly correspond to the Gauss
Chaudhryet al.(see B, p. 20, Eq. (1.7)] andg, p. 591, Eq.  YP€ hypergeometric function

(1.7)]), corresponds to the special case of the generalized

Beta type function defined by (3) when Fp(y’&m) (a,b;c;2)
defined by (seelll, p. 44
K[:((?)“ (n,£eNg; yeC; 6 C\Zy). (10) Y (seelll. p. 44)
n 0 .0,
) ) ) F(V-,Cs;m) (a b c Z) — (a) B(py ™) (b+ n,c— b) i
In our present investigation, we shall make use of a " P VS nZO n B(b,c—b) n!
substantially more general family of generalized Beta type B 15
functions defined by (|Z| <1;0(p) = 0; min{O(a),0(B8),0(m)} > 0;
3 {1)0) (o, B) = B0 (1, Brps . v) () >0() >0 yeC; §€C\Z),
1 which, in the special case when= 1, was introduced and
= / o1 -t)ft studied by Chaudhrst al.[5, p. 591, Egs. (2.1) and (2.2)].
0 We remark in passing that a special case of the generalized
.0 ({Kz}eeNoi _tu(lp—t)‘/> dt (11) Gauss type hypergeometric function in (12) when

H=v=1 and gq—1=r=s=0 (16)
(min{O(a),0(B),0(k),0(v)} > 0; O(p) 2 0),

which, in the special case whgn= v = 1, yields the (ar=biy=c),
definition (3). On the other hand, upon settjag- v =m  and with the sequend }cry, specialized as in (8), was
and choosing the sequende;}en, as in (10), the also mvestlgated.earller by Cha\_udmyal.[s, p. 592, Eq_.
definition (11) coincides with that in (9). (2.3)]. For various other investigations involving
generalizations of the hypergeometric functiphs of r
Motivated by the definitions of the Gauss type numerator ands denominator parameters, the interested

functions in (4) and (7), and also by their various specialreader may be referred to the recent works 17,21, 24,
cases studied in earlier works (see, for exampbe,p| 26,27,28,29,30.

591, Egs. (2.1) and (2.2)]; see al®) p. 39, Chapter 4],

: : This paper is motivated by such recent investigations
[10, p. 4606, Section 3] andL], p. 44])), we introduce .
here a family of generalized Gauss type hypergeometri@S (for example)1,2,3,23. We propose here to derive
functions as follows: several classes of generating relations involving the

generalized Gauss type hypergeometric function which
we have defined by (12). We also consider some
interesting (and potentially useful) special cases of our
main results.

e ai, - ,a,01, - ,0q;
S<{K‘}‘ENO'p’“’V)|: 1, 8,01, , g ,

r+qSsiq

C1yo G Vi Vs

1(aj)n q {B(mmm)(aﬁn,yjor,-;p:u,v)} z 12)
(ci

P 1= B<{K[)/€NO>(‘7]=Vj*W:P:N:W "

o 13-
L

;:nii
j 2 A Set of Main Results
(ar.s€ No; O(y;) > O(atj) >0 (j=1,---.q);

min{0(u),0(v)} > 0; O(p) = 0), |
be defined (for real or complex parametérand ) by
where, as usual, an empty product is interpreted as 1 and

the involved parameters and the argumerdre tacitly A) . rA+1) _. ( A ) (A, €C)
assumed to be so constrained that the series on thed/ = T(u+Dr(A—p+1) = \A—p ’ ’

right-hand side is absolutely convergent. The special case . .
o?the definition (12) when y g P so that, in the special case whgn=n (n € Np), we have

: . . . (A
First of all, a generalized binomial coefficient | may

pu=v=1 and qgq=r=s=1 (13) (’\) — AA=D-Antd) (D" (A (n€ Np),

n n! n!
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where(A)y (A,v € C) denotes the general Pochhammer be abbreviated byA(N;A), the array being empty when
symbol given, as above, by (5). N = 0. Then each of the following generating relations
holds true for the generalized Gauss type hypergeometric
We now state the following lemma (due to R. function
Srivastava 27, Lemmal]), which will be required in our
proof of Theorem 1 below.

r+qg§:@he%;p;u7\/)
) defined by(12):
Lemma (R. Srivastava 27, p. 133, Lemma]).Let
{Zn}nen, be a suitably bounded sequence of essentially (anl)

' <{K1)15N0;p?“=") A(N;A+n),a,---,a, 01, ,Ag; .
arbitrary real or complex parameters. Suppose also that Zb no ) NrtaSsig e byt y_z t
AeC and p,020 (p+0>0).
o A(N;A), @, ,ar, 01, ,Ag;
_ {Ke ey PiHV q z
Then =(1-t) A N+r+qt7>:s(+q oo ) [ P W
155 C Y1 Y

i()mtn—l)(‘” e Zk)rﬂ (20
n=| n -
—pk.ok; ] (tf<;AeCNeN)
Caegry M (g | o el
(1=2A)ok a A = k! and

@an

({M HengiPinev)

&, 01,00, Ag;
n
r+qUN+s+q z|t

) (|t|<1’)\ €C p70—:0 (p+0>0)), ) nZD< [A(N;l)\n)-,Cl,"'.,Cs,yl.;u,yq;
provided that each member of the assertj@i) exists.
Throughout this investigation, exceptional values of
the complex parameter which would render either side
of such generating functions as (for example) the
assertion (17) of the Lemma undefined or invalid are
tacity excluded. Also, since the generalized ) .
hypergeometric series fofFs would reduce to its first (th<1;AeC NeN),
term 1 whenever one or more of its numerator provided that both members of each of the generating
parameters take on the value 0, we are led easily to théunctions(20) and(21) exist.
following special cases of the Lemma when— 0+ or

whenp — 0+ (see, for details,J7)):

A+n—1
n

. A, .01, 0q)
_ {Kehoeng Py e Ebie
=(1-t) Ar+q§ys+s+q€ 0 )
A(N;L—A),C1..Co iy, Vo

Proof. In the generating function (18), we set

%) A +n— 1 0 _ Zk | PN and 5 jl;ll(aj)k q {B({K/}’ENO)(GJ'+k.,Yj—ij§p;IJ,V)}
20( n ) kZ)()\ ek =k g )t e iU BT ayy —ajipiny)
n=| = . i
22)
o —pk (
—(1-t)* %(/\)pkgk% (N € No; k,q,r,s€ No),
12 ] k= ' 1 make use of the following familiar identity:
(t]<1;A€C; p>0) (18) (A)N”:nNn<%>n()\T+l)n'”<A+T’\H)n (neNg; NeN; A €C),
and and replace by
S A4+n-1\[2 v —_ \.n z
T o = — N eN).
nZO( n ) <kzok! (1=A—n)gk _k>t NN ( )
& = [z1-t)9 Then, upon interpreting each of the resultikgums by
=(1-t) z 1-2) K means of the definition (12), we obtain the assertion (20)
k=0 oK ' of Theorem 1.
(t| <1;A €C; 0>0), (19)

Our demonstration of the assertion (21) of Theorem 1

provided that both members of each of the generatings much akin to that of the assertion (20), which has

functions (18) and (19) exist.

Theorem 1.Let the array of N parameters

already been given above.

Remark 1. In their special cases when

A A+l A+N-1
NN N (AeC; NeN) ke=1 (¢ e€Np) and p=0, (23
(@© 2015 NSP
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the generalized Gauss type hypergeometric functions Applications of Theorem 2
involved in the generating functions (20) and (21) were

investigated earlier by (among others) Chen andin this section, we apply Theorem 2 in order to derive

Srivastava 3, p. 171et sed].

We next introduce the sequences

("N Db, and {ZN @ ner,

of generalized Gauss type hypergeometric function

defined by

@M (2) = MV ag, a1, GgiCL G Ve Ve
((K()zeNo PiM V) A(N;A+n),ag,--,a, 01,7, Ag;
= N+r+qgs+q z
Cry ey Cs Vi Yo
(24)
and
N @) =M [an, s an e Ggicr s Y Ve 1

_ (e} rengiwiny)
*T I+HQUN+s+q

ag, L ar, 01,000, Ok
z|.

|:A<N'1A 7n>_rcly,.. ,Csy Vi, ot -,Yq:
(25)

By applying the generating functions (20) and (2di)h
A= A+m (me Ny, we are led to the following
interesting Consequence of Theorem 1.

Theorem 2. The following generating relationships hold
true for the sequences

(TN (@) ner,

{0 @) }nen,  and

various interesting classes of linear, bilinear and hitdte
(or mixed multilateral) generating functions for the
sequences

(TN (@) ner,

{0 (@ }nen,  and

Sefined by (23) and (24), respectively, in terms of the

generalized Gauss type hypergeometric function

r+q%,({K1}éENo PIHLY)

defined by (12).

Theorem 3. Corresponding to a non-vanishing function

Mp(&1,---,&u) of u complex variabled,,--- &, (ueN)
and involving a complex parametgr called the orderlet
Aihalz & it
B Zomn Wing ™ (@) My np(&r,-- E)t” (28)
(An#0; me Ng; N,p,geN; 0 € C)
and
Ahalz & Et]
= zo%nzmﬁa‘”q’ 2) - Mpsnp(&r, -, E" (29)

of generalized and extended hypergeometric functions

defined by(23) and (24), respectively

1
)o@

(@)

(t] <1; meNg; A €C)

hd <)\+m+n—
n=0 n

(A.N)

= (1= "y (26)

and

A 1
s (M e
=1-t) A MV za-tN)  (27)

(t| <1; me Ng; A €C).

Remark 2. The specialized cases of each of the
generating functions (26) and (27) under the conditions

(an#0; me No; N,p,qeN; o € C).

Suppose also that

ONRE O (Z &, &uin)
va /A +m+ogi+n—1 (A+a
_ q/,N)
10( o ) (N g
Mo rpe(Ex,--- &N’ (30)
and
PLREO (Z, &1, Euin)
VA A+ mtogi4n—1 (a+o
_ q¢,N)
/;( o )% 810N )
Mype(E1, &)N°, (31)

given by (23) were derived earlier by Chen and Srivastava
[3, p. 171, Egs. (5.15) and (5.16)], who also consideredwhere the sequences
various interesting consequences and further extensions

involving multiple sequences. {wé/\’N)(Z)}neNo and

(2N (2) Y nen,

(@© 2015 NSP
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are defined by24) and(25), respectively. Then relation betweeriormal power seriesfor those values of
" the various parameters and variables involved for which
Zoerfr\]ﬁ Oz &, Et" = (1—t) A each member of the assertion (32) exists.
n=f
z td The method of proof of the first assertion (32) of
AD . N <1 : . »
“/im.pg (1_t)NvEl7“' & (1—t)(o+Da (th<1) Theorem 3 can be appliedutatis mutandisn order to

(32) derive the secon assertion (33) of Theorem 3 below,
which would evidently yield bilateral or mixed
and multilateral generating relations for the sequence

{ng)\ N (2 }neng

defined by (25) in terms of the generalized Gauus type

ta ; )
A {Z(l_t)N;EL Eu,( ’7)0+1)q (t|<1), hypergeometric function

Z)cvﬁ Nz &, Eant" = (1) A

(33) ({Ke}eeng Pibiv)
r+qs
provided that each member of the asserti(8®) and(33) .
exists. defined by (12).

Proof. For convenience, let the first member of the Remark 3. A special case of Theorem 3 when the
assertion (32) of Theorem 3 be denoted .bY. Then,  congitions in (23) are satisfied would correspond to a

upon substituting for the polynomials known result due to Chen and Srivastad p. 180,
3 Theorem 1]. Furthermore, the multivariable extensions of
Onhd? (z &1, ésin) the special cases of Theorem 3 under the conditions in
(23) can also be found in the work of Chen and Srivastava
from (30) into the left-hand side of (32), we obtain [3, pp. 182—183, Theorems 2 and 3]. As a matter of fact,
all such classes of bilateral (or mixed multilateral)
 e.n VA A+ mtogi4n—1 (A+0qt,N) generating functions for various sequences of functions in
S=5t /Z) N 2 Wy (2) . ;
= —qf one or more variables can be derived whenever one can

’ find generating functions for these sequences, which fit
Mppe (81,0, &u)n easily in the following general pattern (see, for example,
l 23, p. 437, Equation 8.5(1)]):
:/Z)Qlﬂ Mope (81, &) (D" [23.p a Sl
© A+m+(0+D)g+n—1\ (oqN) > Cun Wan (z, -, 2)t" =8z, 2t)
.n 0 n M4+-N+q¢ (2t n=0
r ,(617'"'7E)¢07 (34)
( prpl ° ) 'Wu(LIJ1(Zl7"'7Zv§t)7"'7LI-’V(217"'7Zv§t)) (36)
where we have inverted the order of the double summation
involved. (Le©),
The innem-series in (34) can be summed by appealing
to the generating function (26) witim andA replaced by
m+ qg¢ andA + oq¢, respectively(? € No; g€ N; o € C).

where the coefficientg, n (n € No) are independent of
2, -,z andt, and 3, ¢ and yn,---,yy are suitable

We thus find from (34) that function_s of 71,5 and t. Obviously, e_ach of the
generating functions (26) and (27), which we have
)" S 2,00 (A+0GeN) z applied in proving Theorem 3, does indeed belong to the
-\ ; Cmiqe (1—t)N family given by (36) wherv=1 anduy =m (me Np).
td ¢
Myype(€a,---,&s) (u_gm) (It} < 1),
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