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Abstract: This paper studies the Davey-Stewartson equation with power law nonlinearity. The bifurcation analysis will be carried out.
This analysis will obtain several different solutions to this equation. The phase portraits will also be given. Additionally, the ansatz
method will reveal the fact that topological defects, also known as topological solitons, will exist provided the powerlaw nonlinearity
collapses to cubic nonlinear medium.
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1 Introduction

There are several nonlinear evolution equations (NLEEs)
that are studied globally [1,2,3,4,5,6,7,8,9,10,11,12,13,
14,15]. These NLEEs appear in various areas of
theoretical physics, mathematical physics and engineering
sciences. They govern various kinds of physical
phenomena and form the fabric of nonlinear sciences.
This paper is going to focus on one such NLEE that
appears in the study of long-wave short-wave resonances
and other patterns of propagating waves and is known as
the Davey-Stewartson (DS) equation. In order to maintain
it on a generalized setting, DS equation will be
considered with power law nonlinearity that condenses to
the cubic law for a special value of the power law
nonlinearity parameter.
The focus of this paper will be its integrability aspect.
The bifurcation analysis will be carried out for the DS
equation with power law nonlinearity. The Hamiltonian
will be computed and several phase portraits will be
displayed. Various solutions to the DS equation will be
thus obtained and listed. Additionally, the ansatz method
will be applied to extract the topological defects for this
equation. Topological defects are alternatively known as
topological solitons or shock wave solutions. This method
will prove that these topological solitons for the DS

equation will exist provided the power law nonlinearity
collapses to cubic nonlinear medium. This is a very
important observation that will be made for the first time
in this paper.

2 Governing equation

The dimensionless form of the DS equation with power
law nonlinearity, that will be studied in this paper, is given
by
{

iqt +a(qxx+qyy)+b|q|2nq= αqr,

rxx+ ryy+β
(

|q|2n
)

xx
= 0.

(1)

In equations (1), q(x,y, t) is the complex valued wave
function while r(x,y, t) is the real valued wave function.
Also, in (1), x and y are spatial independent variables
while t is the temporal independent variable. Thus, this is
a nonlinear wave equation in (2+1)-D setting. The
constantsa, b, α and β are all non-zero real-valued
constants. The power law nonlinearity parameter isn. The
special case, whenn = 1, is known as the DS equation
with cubic law nonlinearity.
In order to give a brief history of this equation, DS
equation was studied before by several authors[1,2,3,4,5,
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6,7,14,15]. The traveling wave hypothesis, ansatz
method, G′/G-expansion method were all applied to
extract several kinds of wave solutions to this equation[1,
2]. This paper will extract the topological soliton solution
to (1) for the first time by the ansatz method.
Additionally, the bifurcation analysis for this equation
was also studied earlier for the special case whenn = 1
[10]. This paper will now focus on the bifurcation
analysis of the DS equation for any arbitrary value of the
parametern.

2.1 Topological soliton solution

In order to solve (1) for topological 1-soliton solution, the
starting hypothesis is taken to be
{

q(x,y, t) = A1 tanhp1 τeiφ ,
r(x,y, t) = A2 tanhp2 τ, (2)

whereA1 and A2 are free parameters of the topological
soliton and p1, p2 are the unknown exponents whose
values will fall out during the course of derivation of the
soliton solution to (1). Additionally,

τ = B1x+B2y− vt (3)

and from the phase component,

φ(x,y, t) =−κ1x−κ2y+ωt+θ . (4)

The parametersB1 andB2 are also free parameters, while
the velocity of the soliton is given byv. Now, from the
phase component,κ1 andκ2 are frequencies in thex- and
y-directions respectively whileω is the wave number and
θ is the phase constant.
Substituting the ansatz (2) into (1) and then decomposing
into real and imaginary parts reveals the following three
relations respectively

−
(

ω +aκ2
1 +aκ2

2

)

tanhp1 τ +bA2n
1 tanh(2n+1)p1 τ

+ ap1
(

B2
1+B2

2

){

(p1−1) tanhp1−2 τ −2p1 tanhp1 τ

+ (p1+1) tanhp1+2 τ
}

= αA2 tanhp1+p2 τ, (5)

(v+2aκ1B1+2aκ2B2)
(

tanhp1−1 τ − tanhp1+1 τ
)

= 0, (6)

p2A2
(

B2
1+B2

2

){

(p2−1) tanhp2−2 τ −2p2 tanhp2 τ

+ (p2+1) tanhp2+2 τ
}

−2np1βA2n
1 B2

1

{

4np1 tanh2np1 τ

− (2np1−1) tanh2np1−2 τ − (2np1+1) tanh2np1+2 τ
}

= 0. (7)

From the imaginary part equation (6), the soliton velocity
is given by

v=−2a(κ1B1+κ2B2) . (8)

From the balancing principle applied to (5), equating the
exponents(2n+1)p1 andp1+2 leads to

(2n+1)p1 = p1+2, (9)

that implies

p1 =
1
n
. (10)

Similarly, equating the exponents(2n+1)p1 andp1+ p2
in (5), leads to

p2 = 2np1, (11)

so that by virtue of (10),

p2 = 2. (12)

Now from (5), the stand-alone linearly independent term is
tanhp1−2 τ. whose coefficient must therefore be zero. This
yields

p1 = 1, (13)

so that from (10),

n= 1. (14)

Therefore, the DS equation with power law nonlinearity
must reduce to DS equation with cubic nonlinearity in
order to support the topological soliton solution. Now,
setting the coefficients of the other linearly independent
functions tanhp1+ j τ for j = 0, 2, from (5) to zero leads to

B2
1+B2

2 =−ω +a
(

κ2
1 +κ2

2

)

2a
, (15)

and

bA2
1−αA2 = ω +a

(

κ2
1 +κ2

2

)

(16)

. Thus (15), introduces the constraint condition

a
{

ω +a
(

κ2
1 +κ2

2

)}

< 0. (17)

Now, from (7), the balancing principle yields, upon
equating the exponents 2np1 + 2 and p2 + 2, the same
relation as (11) and thereafter the rest of the analysis
follows. Again, setting the coefficients of the linearly
independent functions tanhp2+ j τ for j = −2, 0 and 2,
from (7) to zero, all lead to the same relation given by

2aβA2
1B

2
1−A2

{

ω +a
(

κ2
1 +κ2

2

)}

= 0. (18)

Hence, finally the DS equation with power law
nonlinearity reduces to DS equation with cubic
nonlinearity that is given by
{

iqt +a(qxx+qyy)+b|q|2q= αqr,

rxx+ ryy+β
(

|q|2
)

xx
= 0,

(19)

whose topological 1-soliton solution is given by
{

q(x,y, t) = A1 tanh(B1x+B2y− vt)ei(−κ1x−κ2y+ωt+θ),
r(x,y, t) = A2 tanh2(B1x+B2y− vt),

(20)

where the velocity of the solitons is given by (8) and the
relation between the free parameters is given by the
coupled equations (15), (16) and (18). These introduce
the constraint condition that is given by (17).
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3 Bifurcation analysis

This section will carry out the bifurcation analysis of the
DS equation with power law nonlinearity. Initially, the
phase portraits will be obtained and the corresponding
qualitative analysis will be discussed. Several interesting
properties of the solution structure will be obtained based
on the parameter regimes. Subsequently, the traveling
wave solutions will be discussed from the bifurcation
analysis.

3.1 Phase portraits and qualitative analysis

We assume that the traveling wave solutions of (1) is of the
form
{

q(x,y, t) = eiηϕ(ξ ), r(x,y, t) = φ(ξ ),
η = kx+ ly+wt, ξ = px+my− ct,

(21)

whereϕ(ξ ) andφ(ξ ) are real functions,k, l , w, p, m and
c are real constants.
Substituting (21) into (1)), we find thatc= 2a(kp+ lm), ϕ
andφ satisfy the following system:






(ap2+am2)ϕ ′′−αϕφ − (w+ak2+al2)ϕ
+bϕ2n+1 = 0,
(p2+m2)φ ′′+β p2(ϕ2n)′′ = 0.

(22)

Integrating the second equation (22) twice and letting the
first integral constant be zero, we have

φ =
−β p2ϕ2n

p2+m2 +g, (23)

whereg is the second integral constant.
Substituting (23) into the first equation of (22), we have

a(p2+m2)ϕ ′′− (w+ak2+al2+αg)ϕ

+ (b+
αβ

p2+m2)ϕ
2n+1 = 0. (24)

To facilitate discussions, we let

δ =
αβ p2+b(p2+m2)

a(p2+m2)2 , (25)

θ =
w+ak2+al2+αg

a(p2+m2)
. (26)

Letting ϕ ′ = z, then we get the following planar system
{

dϕ
dξ = z,
dz
dξ =−δϕ2n+1+θϕ .

(27)

Obviously, the above system (27) is a Hamiltonian system
with Hamiltonian function

H(ϕ ,z) = z2+
δ

n+1
ϕ2n+2−θϕ2. (28)

In order to investigate the phase portrait of (31), set

f (ϕ) =−δϕ2n+1+θϕ . (29)

Obviously, whenδθ > 0, f (ϕ) has three zero points,ϕ−,
ϕ0 andϕ+, which are given as follows

ϕ− =−
(

θ
δ

) 1
2n

, ϕ0 = 0, ϕ+ =

(

θ
δ

) 1
2n

. (30)

Whenδθ 6 0, f (ϕ) has only one zero point

ϕ0 = 0. (31)

Letting(ϕi ,0) be one of the singular points of system (27),
then the characteristic values of the linearized system of
system (27) at the singular points(ϕi ,0) are

λ± =±
√

f ′(ϕi). (32)

From the qualitative theory of dynamical systems, we
know that

(I) If f ′(ϕi)> 0, (ϕi ,0) is a saddle point.
(II) If f ′(ϕi)< 0, (ϕi ,0) is a center point.
(III) If f ′(ϕi) = 0, (ϕi ,0) is a degenerate saddle point.

Therefore, we obtain the bifurcation phase portraits of
system (31) in Figure 1.
Let

H(ϕ ,z) = h, (33)

whereh is Hamiltonian.
Next, we consider the relations between the orbits of (27)
and the Hamiltonianh.
Set

h∗ = |H(ϕ+,0)|= |H(ϕ−,0)|. (34)

According to Figure 1, we get the following propositions.

Proposition 1.Suppose thatδ > 0 andθ > 0, we have
(I) When h6 −h∗, system (27) does not any closed

orbit.
(II) When−h∗ < h< 0, system (27) has two periodic

orbitsΓ1 andΓ2.
(III) When h= 0, system (27) has two homoclinic

orbitsΓ3 andΓ4.
(IV) When h> 0, system (27) has a periodic orbitΓ5.

Proposition 2.Suppose thatδ < 0 andθ < 0, we have
(I) When h< 0 or h > h∗, system (27) does not any

closed orbit.
(II) When0< h< h∗, system (27)) has three periodic

orbitsΓ6, Γ7 andΓ8.
(III) When h= 0, system (27) has two periodic orbits

Γ9 andΓ10.
(IV) When h= h∗, system (27) has two heteroclonic

orbitsΓ11 andΓ12.

Proposition 3.(I)Whenδ > 0, θ > 0 and h> 0, system
(27) have a periodic orbits.

(II)Whenδ < 0, θ 6 0, system (27) does not any closed
orbit.
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Figure 1 The bifurcation phase portraits of system (31). (I)
δ > 0, θ > 0, (II) δ < 0, θ < 0, (III)δ < 0, θ > 0 , (IV)

δ > 0, θ 6 0.

From the qualitative theory of dynamical systems, we
know that a smooth solitary wave solution of a partial
differential system corresponds to a smooth homoclinic
orbit of a traveling wave equation. A smooth kink wave
solution or a unbounded wave solution corresponds to a
smooth heteroclinic orbit of a traveling wave equation.
Similarly, a periodic orbit of a traveling wave equation
corresponds to a periodic traveling wave solution of a
partial differential system. According to above analysis,
we have the following propositions.

Proposition 4.If δ > 0 andθ > 0, we have
(I) When−h∗ < h < 0, the equations (1)) has two

periodic wave solutions(corresponding to the periodic
orbitsΓ1 andΓ2 in Figure 1).

(II) When h= 0, the equations (1)) has two solitary
wave solutions(corresponding to the homoclinic orbitsΓ3
andΓ4 in Figure 1).

(III) When h> 0, the equations (1)) has two periodic
wave solutions(corresponding to the periodic orbitΓ5 in
Figure 1) .

Proposition 5.If δ < 0 andθ < 0, we have
(I)When 0 < h < h∗, the equations (1)) has two

periodic wave solutions (corresponding to the periodic
orbit Γ7 in Fig. 1) and two periodic blow-up wave
solutions(corresponding to the periodic orbitsΓ6 and Γ8
in Figure 1).

(II) When h= 0, the equations (1)) has periodic blow-
up wave solutions(corresponding to the periodic orbitsΓ9
andΓ10 in Figure 1).

(III) When h= h∗, the equations (1)) has two kink
profile solitary wave solutions (corresponding to the
heteroclinic orbitsΓ11 andΓ12 in Figure 1).

3.2 Exact traveling wave solutions

Firstly, we will obtain the explicit expressions of traveling
wave solutions for the equations (1)) when δ > 0 and
θ > 0. From the phase portrait, we see that there are two
symmetric homoclinic orbitsΓ3 andΓ4 connected at the
saddle point(0,0). In (ϕ ,z)-plane the expressions of the
homoclinic orbits are given as

z=±
√

δ
n+1

ϕ
√

−ϕ2n+
(n+1)θ

δ
. (35)

Substituting (35) into dϕ
dξ = z and integrating them along

the orbitsΓ3 andΓ4, we have

±
∫ ϕ

ϕ1

1

s
√

−s2n+ (n+1)θ
δ

ds=

√

δ
n+1

∫ ξ

0
ds, (36)

±
∫ ϕ

ϕ2

1

s
√

−s2n+ (n+1)θ
δ

ds=

√

δ
n+1

∫ ξ

0
ds, (37)

whereϕ1 =−
(

(n+1)θ
δ

)
1
2n

andϕ2 =
(

(n+1)θ
δ

)
1
2n

.

Completing above integrals we obtain

ϕ =

(
√

(n+1)θ
δ

sechn
√

θξ

)
1
n

, (38)

and

ϕ =−
(
√

(n+1)θ
δ

sechn
√

θξ

)
1
n

. (39)

Noting that (21) and (23), we get the following solitary
wave solutions










q1(x,y, t) = eiη
(

√

(n+1)θ
δ sechn

√
θξ
)

1
n

,

r1(x,y, t) =
−(n+1)β θ(sechn

√
θξ )2

δ (p2+m2)
+g,

(40)

and










q2(x,y, t) =−eiη
(

√

(n+1)θ
δ sechn

√
θξ
)

1
n

,

r2(x,y, t) =
−(n+1)β θ(sechn

√
θξ )2

δ (p2+m2)
+g,

(41)

whereδ is given by (25), θ is given by (26), η = kx+ ly+
wt andξ = px+my− ct.
Secondly, we will obtain the explicit expressions of
traveling wave solutions for the equations (1)) when
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δ < 0 andθ < 0. From the phase portrait, we note that
there are two special orbitsΓ9 and Γ10, which have the
same hamiltonian with that of the center point(0,0). In
(ϕ ,z)-plane the expressions of the orbits are given as

z=±
√

− δ
n+1

ϕ
√

ϕ2n− (n+1)θ
δ

. (42)

Substituting (42) into dϕ
dξ = z and integrating them along

the two orbitsΓ9 andΓ10, it follows that

±
∫ +∞

ϕ

1

s
√

s2n− (n+1)θ
δ

ds=

√

− δ
n+1

∫ ξ

0
ds, (43)

±
∫ ϕ

ϕ4

1

s
√

s2n− (n+1)θ
δ

ds=

√

− δ
n+1

∫ ξ

0
ds, (44)

whereϕ4 =
(

(n+1)θ
δ

) 1
2n

.

Completing above integrals we obtain

ϕ =±
(
√

(n+1)θ
δ

cscn
√
−θξ

)
1
n

. (45)

ϕ =±
(
√

(n+1)θ
δ

secn
√
−θξ

)
1
n

. (46)

Noting that (21) and (23), we get the following periodic
blow-up wave solutions










q3(x,y, t) =±eiη
(

√

(n+1)θ
δ cscn

√
−θξ

)
1
n

,

r3(x,y, t) =
−(n+1)β θ(cscn

√
−θξ )2

δ (p2+m2)
+g,

(47)

and










q4(x,y, t) =±eiη
(

√

(n+1)θ
δ secn

√
−θξ

) 1
n

,

r4(x,y, t) =
−(n+1)β θ(secn

√
−θξ )2

δ (p2+m2)
+g,

(48)

whereδ is given by (25), θ is given by (26), η = kx+ ly+
wt andξ = px+my− ct.

4 Conclusion

This paper studied the DS equation with power law
nonlinearity in a fairly detailed fashion. First of all, the
ansatz method was applied to the DS equation and thus
the topological soliton or rather, topological defect of the
DS equation was obtained. In this context, the conclusion
is that the DS equation with power law nonlinearity
supports topological solitons provided the power law
nonlinearity parametern collapses ton = 1. This means
that the power law nonlinearity must compress to cubic
nonlinearity in order for the DS equation to support

topological soliton solution. Additionally, this paper also
carried out the bifurcation analysis of this equation. This
analysis lead to the study of the various fixed points and
thus, in turn, other traveling wave solutions were
obtained. These are solitary wave solutions and singular
periodic solutions.
These results are going to be very useful in further future
studies where time-dependent coefficients of dispersion
and nonlinearity terms are gong to be considered.
Additionally, the stochastic perturbation terms are to be
considered where the mean free velocity of the soliton
will be determined by the aid of Langevin equation.
These are just the preliminary pictures of profound future
works.
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