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Abstract: This paper studies the Davey-Stewartson equation with pamenonlinearity. The bifurcation analysis will be cadieut.
This analysis will obtain several different solutions tistequation. The phase portraits will also be given. Addaity, the ansatz
method will reveal the fact that topological defects, alsown as topological solitons, will exist provided the powsw nonlinearity
collapses to cubic nonlinear medium.
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1 Introduction equation will exist provided the power law nonlinearity
collapses to cubic nonlinear medium. This is a very

There are several nonlinear evolution equations (NLEEsjmportant observation that will be made for the first time

that are studied globallyi[2,3,4,5,6,7,8,9,10,11,12,13 in this paper.

14,15. These NLEEs appear in various areas of

theoretical physics, mathematical physics and engingerin

sciences. They govern various kinds of physical2 Gover ning equation

phenomena and form the fabric of nonlinear sciences.

This paper is going to focus on one such NLEE thatThe dimensionless form of the DS equation with power

appears in the study of long-wave short-wave resonancegw nonlinearity, that will be studied in this paper, is give

and other patterns of propagating waves and is known agy

the Davey-Stewartson (DS) equation. In order to maintain on

it on a generalized setting, DS equation will be | idt+a(du+dy)+bla/” q=adqr,

considered with power law nonlinearity that condenses to) r,, +ry, + 3 (|q|2n) —o. (1)
the cubic law for a special value of the power law
nonlinearity parameter. In equations 1), q(x,y,t) is the complex valued wave

The focus of this paper will be its integrability aspect. function whiler(x,y,t) is the real valued wave function.
The bifurcation analysis will be carried out for the DS Also, in (1), x andy are spatial independent variables
equation with power law nonlinearity. The Hamiltonian whilet is the temporal independent variable. Thus, this is
will be computed and several phase portraits will bea nonlinear wave equation in (2+1)-D setting. The
displayed. Various solutions to the DS equation will be constantsa, b, o and 3 are all non-zero real-valued
thus obtained and listed. Additionally, the ansatz methodconstants. The power law nonlinearity parameter. ifhe
will be applied to extract the topological defects for this special case, when = 1, is known as the DS equation
equation. Topological defects are alternatively known aswith cubic law nonlinearity.

topological solitons or shock wave solutions. This methodin order to give a brief history of this equation, DS
will prove that these topological solitons for the DS equation was studied before by several autio?sB, 4,5,
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6,7,14,159. The traveling wave hypothesis, ansatz thatimplies

method, G'/G-expansion method were all applied to

extract several kinds of wave solutions to this equafipn[ p; = ~. (10)
2]. This paper will extract the topological soliton solution n

to (1) for the first time by the ansatz method. Similarly, equating the exponent&n+ 1)p; andp; + p2
Additionally, the bifurcation analysis for this equation in (5), leads to

was also studied earlier for the special case whenl

[10. This paper will now focus on the bifurcation P2=2nPL (11)
analysis of the DS equation for any arbitrary value of thesg that by virtue of 10),
parameten.
p2 =2. (12)
. . . Now from (5), the stand-alone linearly independentterm is
2.1 Topological soliton solution tantP1—2 1. whose coefficient must therefore be zero. This
ields
In order to solve ) for topological 1-soliton solution, the y
starting hypothesis is taken to be p1=1, (13)
{ q(x,y,t) = ArtantP 1é?, @ S° that from £0),
e 2
r(x,y,t) = AptanH2 1, N1 (14)

whereA; and A, are free parameters of the topological . ) ] .
soliton and p;, p; are the unknown exponents whose Therefore, the DS equation with power law nonlinearity

values will fall out during the course of derivation of the Must reduce to DS equation with cubic nonlinearity in

soliton solution to {). Additionally, ordgr to support t.he topological soliton solgtion. Now,
setting the coefficients of the other linearly independent
T = Bix+ By —vt (3)  functions tanRt*i 7 for j =0, 2, from 6) to zero leads to
and from the phase component, 2, .2
P P Bz+82:_w+a(K1+K2) (15)
O(X,Y,t) = —K1X— Koy + wt + 6. 4) 17T P2 oa ’

The parameterB; andB; are also free parameters, while and

the velocity of the soliton is given by. Now, from the 2 2

phase component; andk; are frequencies in the and ~ PAL— 0Az = @+ a(ki+k3) (16)
y-directions respectively while» is the wave number and  Thys (5), introduces the constraint condition

0 is the phase constant.

Substituting the ansat2into (1) and then decomposing a{w+a(k?+«3)} <O. (7)
into real and imaginary parts reveals the following three

relations respectively Now, from (7), the balancing principle yields, upon

equating the exponentsng; + 2 and p; + 2, the same

— (w+ aK12+aK22) tanhP T+ bAZtanH2" 1P relation as {1) and thereafter the rest of the analysis
5 o , follows. Again, setting the coefficients of the linearly
+ ap (Bf+B5) {(pr— D) tantPr“1—2pytanifr 1 independent functions tafti/ 1t for j = —2, 0 and 2,
+ (p+1) tanit2 r} — aAotantPriPer, 5) from (7) to zero, all lead to the same relation given by
2aBAIBE — A {w+a (ki +k3)} =0. (18)

-1 1+1 _
(va+ 2aK1By + 2aK587) (tanH° T tanf? T) 0.(6) Hence, finally the DS equation with power law

nonlinearity reduces to DS equation with cubic
nonlinearity that is given by

+ (p2+ 1)tanH°2+2 '['} — anlﬁA%nB% {4np1tanr?np1 I
~ (2np— DtanH"™ 21 — (2npy + 1)tantf P A T} {

PoA (BS +B3) {(p2— 1)tant’2~21 — 2pytanif2 1

gt +a(aux + Gyy) + blg>q = agr,

19
ot ryy+B (la%) =0 49

=0 ™ whose topological 1-soliton solution is given by
From the imaginary part equatiof)( the soliton velocity .
is given by a(xy,t) = Actanh(Bix+ By — Vt)é(_le_szJrWre)(Qo
r(xy,t) = Agtantf(Byx+ Boy — vt),
V= —2a(K1B1 + K2By) . (8)

where the velocity of the solitons is given b§) @nd the
relation between the free parameters is given by the
coupled equationsl§), (16) and (8). These introduce
2n+1)p1=p1+2, 9) the constraint condition that is given bi/4).

From the balancing principle applied t6){ equating the
exponent$2n+ 1)p; andp; + 2 leads to

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 4, 1719-1724 (2015)www.naturalspublishing.com/Journals.asp 1721

N SS ¥

3 Bifurcation analysis Obviously, whend8 > 0, f(¢) has three zero pointg, ,
¢o and¢.., which are given as follows
This section will carry out the bifurcation analysis of the

DS equation with power law nonlinearity. Initially, the 0 = 6 7
) ¢0 = 07 ¢+ =\|x

phase portraits will be obtained and the corresponding®~ = ~ \ 5 5 (30)
qualitative analysis will be discussed. Several intengsti

properties of the solution structure will be obtained basedWhend6 < 0, f(¢) has only one zero point

on the parameter regimes. Subsequently, the travelin%o -0 (31)

wave solutions will be discussed from the bifurcation

analysis.

3.1 Phase portraits and qualitative analysis

We assume that the traveling wave solutionsldpig of the
form

{q(x,y,t):é”d)(f), r(xayat):(l)(f),

n=kx+ly+wt, &= px+my—ct, (1)

where¢ (&) and@(&) are real functions, |, w, p, mand
c are real constants.

Substituting 21) into (1)), we find thatt = 2a(kp+1m), ¢
andg satisfy the following system:

(apP+anf)¢” —adpp— (Ww+ak’+al?)¢
+bg2 1 =0,
(PP +nP) ¢’ + Bp*(¢*")" = 0.
Integrating the second equatio2?f twice and letting the
first integral constant be zero, we have

—Bp*p™"
T
whereg is the second integral constant.

Substituting 23) into the first equation 0f22), we have

a(p®+nmf)¢” — (w+ak®+al’+ag)¢
ap
P2+ m?
To facilitate discussions, we let
_ aBp?+b(p®+ 1)
- apr+m)z

(22)

+0, (23)

+ (b+ )p2+t=o0.

(24)

(25)

~ w+aki+al’+ag
- a(pP+m?)
Letting ¢’ = z then we get the following planar system

(26)

’ 27
{ =001 6¢. @7

Obviously, the above systeri7) is a Hamiltonian system
with Hamiltonian function

_ 0 oni2 42
H(¢,z)_22+n+1¢ 0¢>. (28)
In order to investigate the phase portrait 81), set
f(¢)=—-56¢>""1+0¢. (29)

Letting (¢i,0) be one of the singular points of syste&Y),
then the characteristic values of the linearized system of
system 27) at the singular pointég;,0) are

Ar =/ ().
From the qualitative theory of dynamical systems, we
know that

() If f'(¢i) >0, (¢i,0) is a saddle point.

(I If f'(¢i) <0, (¢i,0) is a center point.

(nn If f'(¢i) =0, (¢i,0) is a degenerate saddle point.
Therefore, we obtain the bifurcation phase portraits of
system 81) in Figure 1.

Let

H(¢7Z) =h,

whereh is Hamiltonian.

Next, we consider the relations between the orbita@J (
and the Hamiltoniaih.

Set

h*=[H(¢+,0)| = [H(¢-,0)|. (34)
According to Figure 1, we get the following propositions.

(32)

(33)

Proposition 1.Suppose thad > 0and8 > 0, we have

() When hg —h*, system 27) does not any closed
orbit.

(I When—h* < h < 0, systemZ7) has two periodic
orbits 1 and /5.

(1) When h= 0, system Z7) has two homoclinic
orbits 3 and .

(IV) When h> 0, system27) has a periodic orbit’s.

Proposition 2.Suppose thad < 0and8 < 0, we have

() When h< 0 or h > h*, system Z7) does not any
closed orbit.

(I WhenO < h < h*, systemZ7)) has three periodic
orbits s, [7 andls.

(1) When h= 0, systemZ7) has two periodic orbits
I and Mo.

(IV) When h= h*, system Z7) has two heteroclonic
orbits 11 and .

Proposition 3.()Whend > 0, 6 > 0 and h> 0, system
(27) have a periodic orbits.

(IDWhend < 0, 8 <0, systemZ7) does not any closed
orbit.
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(I When h= 0, the equationsl)) has periodic blow-
up wave solutions(corresponding to the periodic orlbgs
andrlgin Figure 1).

(I When h= h*, the equations1)) has two kink
profile solitary wave solutions (corresponding to the
heteroclinic orbits1; and i, in Figure 1).

3.2 Exact traveling wave solutions

Firstly, we will obtain the explicit expressions of travadi
wave solutions for the equationg&)) when é > 0 and
6 > 0. From the phase portrait, we see that there are two

saddle point0,0). In (¢,z)-plane the expressions of the

\& i |
,0). In (¢,2)-
/\ homoclinic orbits are given as
(n+1)6
(ID) 7— + \/n+1¢\/ ¢+ 5) (35)

iz \C

(1) av) " 1 > /[
Figure 1 The bifurcation phase portraits of syst&i) ((1) + ds= \/ 1/ ds, (37)
5>0,6>0, ()3<0,6<0,()5<0,6>0, (V) 192 g, [ —gpn 4 (0116 n+2Jo
0>0,6<0.

n+1)6\ 2n n+1)6
From the qualitative theory of dynamical systems, weWhereg, = — (—( 5> ) and¢, = (—( 5) )
know that a smooth solitary wave solution of a partial Completing above integrals we obtain
differential system corresponds to a smooth homoclinic 1
orbit of a traveling wave equation. A smooth kink wave n+1)6 "
g d (n+1) secm/6¢& |

/

To

[

\ ¢ symmetric homoclinic orbit§3 and I'; connected at the

N’
\:\
N

Substituting 85) into g? = z and integrating them along

Z
m the orbits/3 andls, we have

[0 ¢
= / - ( 1>9ds: V nil/ ds,
. n+ 0
$1 g —@n 4 -

(36)

solution or a unbounded wave solution corresponds to & — > (38)

smooth heteroclinic orbit of a traveling wave equation.

Similarly, a periodic orbit of a traveling wave equation and

corresponds to a periodic traveling wave solution of a 1

partial differential system. According to above analysis,¢ ( (n+1)6 secm\/_g‘) (39)
we have the following propositions. o '

Proposition 4.If > 0and8 > 0, we have Noting that 1) and @3), we get the following solitary
() When—h* < h < 0, the equations1)) has two  wave solutions

periodic wave solutions(corresponding to the periodic 1
orbits 7 and /> in Figure 1). X,V, gn <4/ (n+1) secm\/_f) ’
(1) When h= 0, the equations1)) has two solitary Wbyt = (40)
wave solutions(corresponding to the homoclinic orifgs ra(xy,t) = *<”+1gﬁ92<3‘;°12""\/_5) +9
and /7 in Figure 1). (pm)
(Il) When h> 0, the equationsi)) has two periodic ~and
wave solutions(corresponding to the periodic orbitin 1
Figure 1) . = —¢gn (/08
igure 1) a2(X,y,t) e < ~~secmyv/6¢ | 41)
Proposition 5.I1f 6 < 0and 6 < 0, we have Fo(x v.t) — —(t1D)B6(secmy/BE)? +
(DWhen 0 < h < h*, the equations 1)) has two 2(%%:1) 3(p? ) 9

periodic wave solutions (corresponding to the periodic whered is given by @5), 6 is given by @6), n = kx+1ly+
orbit [7 in Fig. 1) and two periodic blow-up wave wtandé = px+my—ct.

solutions(corresponding to the periodic orbifs and g Secondly, we will obtain the explicit expressions of
in Figure 1). traveling wave solutions for the equation$))( when
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0 < 0 and@ < 0. From the phase portrait, we note that topological soliton solution. Additionally, this papesal

there are two special orbit§ and g, which have the
same hamiltonian with that of the center po{6t0). In
(¢,2)-plane the expressions of the orbits are given as

2= \/n+1¢\/¢2n n+1)9

Substituting 42) into d? = z and integrating them along
the two orbits'g and /g, it follows that

+o0 1 o ¢
Ty A AP
0 g /s (n-%l)e n+1.Jo (43)

(42)

¢ 1 5 /¢
+/ ————ds= ——/ ds, 44
/¢45 /SZn_W%l)f’ S n-+1Jo S (44)
1
where¢, = %
Completing above integrals we obtain
1
¢ = i( (4_5) csony/— E) (45)
1
¢:i< (n+5) seqy — E) (46)

Noting that 1) and @3), we get the following periodic
blow-up wave solutions

a(x,y,t) = £ (\/ (n+1) CSCﬂ\/_E>n,

(47)
ra(xY%,t) = m”m(f,(z‘fﬁéff +9
and
1
n n+1 n
da(x,y,t) = +€ (\/ seqy/ — E) ; (48)

— ( =
ra( 1) <”+1>§pzii;';f =

whered is given by @5), 8 is given by @6), N = kx+1ly+
wt andé = px+ my— ct.

+0,

4 Conclusion

This paper studied the DS equation with power law
nonlinearity in a fairly detailed fashion. First of all, the
ansatz method was applied to the DS equation and thus
the topological soliton or rather, topological defect of th
DS equation was obtained. In this context, the conclusion
is that the DS equation with power law nonlinearity

carried out the bifurcation analysis of this equation. This
analysis lead to the study of the various fixed points and
thus, in turn, other traveling wave solutions were
obtained. These are solitary wave solutions and singular
periodic solutions.

These results are going to be very useful in further future
studies where time-dependent coefficients of dispersion
and nonlinearity terms are gong to be considered.
Additionally, the stochastic perturbation terms are to be
considered where the mean free velocity of the soliton
will be determined by the aid of Langevin equation.
These are just the preliminary pictures of profound future
works.
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