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Abstract: We prove that a discrete evolution family:= {U(n,m) : n>me Z. } of bounded linear operators acting on a complex
Banach spack is uniformly esponentially stable if and only if for eachdorg term(f(n))ncz, belonging toAPy(Z, X), the solution
of the discrete Cauchy Problem

x(n+1) = A(n)x(n)+ f(n), ne Z4

x(0)=0

belongs also té&\Py(Z, X), where the operators-valued seque(®n))ncz, generates the evolution family. The approach we use
is based on the theory of discrete evolution semigroupscagsd to this family.

Keywords: Exponential stability, Non-autonomous discrete probletiscrete evolution families of bounded linear operatdiscrete
evolution semigroups

1 Introduction neural networks (5], [16], [19]). For the autonomous
systems, many spectral characterizations can be revealed
to show their stability, or more generaly to asymptotic
Rehaviour of the semigroups appeared for ths kind of
igystems. Unfortunately, these spectral characterization
are no longer valid for the nonautonomous systems. This

dynamics), physics (the study of motions of interactingis principaly due to the fact that the term generated by the

bodies), control theory, the study of control theory, etc.for.Cing term cannot be seen as as cIassicaI convolu'gion.
See (1, [12)) This matter of stability can be avoided using an evolution

. . : . semgoups approach. The method of evolution semigoups
Difference equations usually describe the evolution of.S an efficient method for this aime], [7].

certain phenomena over the course of time. For instance . . )
if we are interested in the study of a poluation dynamic, ~ Another topic which has been progressed in the last
assuming that this population has discrete generatioas, thdecades is the almost periodicitd] [[5]. In fact, due to
size of the(n+ 1)!" generation, denoted byn+ 1), is a the interesting properties and to the worth structure of the
function of the size of thet" generation. In other words, spaces of almost periodic functions, the notion of almost
for some functionf, we are able to formulate this Periodicity seems to be a powerful tool in the study of

pr0b|em as the form of a certain difference equationdiﬁ:erential and difference equations. Many contribusion
x(n+ 1) = f(x(n)), for all integer numben € Z. Here,  in the study of continuous and discrete versions of almost

we denote byZ the set of all integer numbers. periodic funqtions have been done .in _this direction,
One of the most common problem is the study of theShowing the importance of almost periodicity. For more

stability of such difference equations. Indeed, recently,details, we can refer the reader i8], [8], [9)], [13).

the issue of the different kinds of stability has become of  However, the litterature linking the difference

great interest for researchers in a large number of fieldequations and the discrete almost periodic functions

such as social sciencesl{]), numerical analysis §]), remains really scare. We find among others few works

During the last decades, the theory of difference
equations has gained a lot of attention by researchers. |
fact, these equations are involved in different areas suc
as biology (the study of competitive species in population
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dealing with these notions. We set, for example][[2], Indeed,
[20.

In this paper, we aim to study the asymptotic behaviour
of linear non-autonomous difference equation having the

form

- -
:(on(k)Gf = IJ(ZO[T(H 1)~ T(K]f =T(j)f - f.

X(n+1) =An)x(n)+ f(n),ne Z,,
where (A(n))nez, is a.Z(X)-valued sequence. Herk,

stands for a complex Banach space and we denote b§/

Z(X) the Banach algebra of all linear and bounded X ; : .
operators acting oK. a family of linear bounded operators acting ¥n U :=

More precisely, we prove that the evolution family 1Y(n:M €.Z(X): n=>me Z; } having the properties

associated to this equation is uniformly exponentially 1.U(m,m) =1, wherel is the identity operator oK, and
stable if and only if for each almost periodic forcing term  2U (m, p)U (p,n) =U (n,m=, foralln>me Z,..

The discrete semigrou := {T(j) : j € Z+} is
uniformly exponentially stable if there exidt > 1 and
> 0 such that|T(j)|| < Ne ¥l for eachj € Z...

A discrete evolution family on the Banach spatés

f := (f(n))nez,, the solution of this equation is also
almost periodic. See the next section for
corresponding definitions.

2 Definitions and Preliminaries

The norms orX and_Z(X) will be denoted by the same
symbol, namely | - ||. The set nonnegative integer
numbers is denoted b¥.,. The linear space of all
X-valued sequences will be denotedX¥+.

A sequencex = (X(N))nez, € X%+ is said to be
almost periodic if for each real number> 0, there exists
a positive integel; € Z \ {0} such that each discret
integer interval of length, contains at least an integer
p € Z, verifying [|x(n+ p) —x(n)|| < € for anyn € Z,
[10].

The space of almost periodi¥-valued sequences
defined orZ. is denoted byAP(Z., X). It is not difficult
to show that this space is a linear subspac&(X).

Now, let us defineARy(Z, X) the linear subspace of
AP(Z4,X) as

AR(Z4,X) = {X=(X(N))nez, € AP(Z,X) : x(0) =0}.

It is clear thatAPy(Z4,X) is a closed subspace of
AP(Z,X).

Endowed with the supremum norm, the space
AP(Z,,X) becomes Banach space. It follows that LetU = {U(n,m)c . (X):

APy(Z,X) is a Banach space, too.

LetY be a Banach space. A family:={T(j): j €
Z.} of linear bounded operators acting Wnis called a
discrete semigroup if

1.T(0) = I, wherel denotes the identity operator of
and
2T(j+k) =T(j)oT(k), forall jkeZ,.
It follows that for allj € Z., we haveT (j) = T(1)). T(1)
is called so the algebraic generator of the semigroup
The infinitesimal generator of the semigrotips defined
asG:=T(1) 1.
The Taylor formula of order one for discrete
semigroups may be written as:
j-1
ZT(k)Gf, VieZy: j>1 fey (1)
K=0

T(Hf—f=

the

The discrete evolution familyJ is said to have an
exponential growth if there exidfl > 1 andw € R such
that [|U (n,m)| < Me®(™™ for each pair(n,m) € Z,
with n > m.

While the semigroups have automatically an
exponential growth, the discrete evolution families do not
necesseraly have an exponential growth.

Throughoutthis paper, for a given operataaicting on
the Banach spacé, we use the following notations:

1.p(A) for the resovent set oA, that is, the set of all
complex scalarg € C for which the operatozl — Ais
not invertible

2.0(A) :=C\ p(A) for the spectrum oA, and

3r(A) :=sup(|z; ze o(A)} for the spectral radius &.
It is well-known, [L1], that

i n|1/n
r(A) = lim [[A"H". )
It follows from (2) that a discrete semigroup

T:={T(j): j € Z.} is uniformly exponentially stable if

and only if the spectral radiugT (1)) is less than one.

3 Criterion for Uniform Exponential
Stability of Evolution Famillies on Z

n>me Z;} be a discrete
evolution family of bounded linear operators acting on a
Banach spac¥ having exponential growth.

Before investigating the evolution semigroup
associated to the familyJ, let us define the space
0(Z4+,X) as the set of all the sequences- (X(n))n>o0
for which there is an integen, > 0 and a sequence
Fx := (Fx(n))n>0 with the propertyx(n) = 0if 0 > 0 > ny
andx(n) = K(n) if n> ny.

The spacea(Z4,X) is evidently a subspace of
AP(Z,X).

Lemma 3.1.The space#y(Z+,X) is dense ilAP(Z., X).
Proof. Let f := (f(n))nez, € AP(Z,,X) and define the
sequenceg;)jcz, given by
) f(n) forall0<n<j-1
gi(m) = {O otherwise
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Itis clear that the sequen(g)) <z, belongstAP(Z, ,X)
and converges tb asj tends to infinity

Proof. Let show first the implicatiorl. = 2.. Using the
Taylor formulal, one has

Now, we define the evolution semigroup associated to

the familyU for eachf € AP(Z4,X) as

ﬁmdﬂm>={§““”‘”fm_j)

foralln> |
otherwise

3)

Lemma 3.2.The semigroud T(j) : j > 0} defined in3
acts onAP(Z4., X).

Proof. Let us first show thaT (j)f € o%(Z.,X) for each
sequence € o(Z4,X). Given f € a(Z+,X), we can
find, by definition, an integems > 0 and sequencié; :=
F(f(n))eAP(Z4,X) such that

f(n) = {Ef(n)

Letus choose the integef ;s := j +n¢ and the sequence
(FT(j)f(n))n = (U(n,n—j)Ft(n—]j))nez, - Then, we have

if n>ns
if 0 <n<n;s.

- _ JFrpe(n) i n=ng)
WUMKm—{O 0N,
Indeed, ifn <nyj)s = j +ns, thenitis clear that — j < n¢
which implies thatf (n— j) = 0 and so thafT (j) f](n) =
U(n,n—j)f(n—j)=0.Inaddition, ifn > nr(js > j+ns
i.e.n—j>ng, thenf(n—j) = Fs(n— j) and therefore,

TN =U(nn-}f(n-j)
=U(nn-j)F(n—j)

= Frjy(n).

We have then proved that(j) f € <% (Z+,X).

Now, if f € AP(Z.,X), from the Lemma 3.1., for ang >
0, there existg € (Z+,X) such that|f —g|| 5z, x) <
€. We have

T =Tl = -:'g}OIIU("Ln— DIF(n=1)—g=JI

< MeIsup||f(n—j)—g(n—j)|

n>j
< Me“'e.

SinceT (j)g € @(Z+,X) ande > 0 is arbitrarily choosen,
we obtain the result]

Lemma 3.3.LetU={U(n.m) € Z(X) : n>meZ,}
be a 1-periodic evolution family anld = {R(j) : j > 0}
the evolution semigroup associated tbon the space
APy (Z+,X) having Gr as infintesimal generator. Let
consider X := (X(n))nez, and f := (f(N))nez,. The
following statementes are equivalent.

1x belongs to the domain dBr i.e. x € D(Ggr) and
GRX::—f
2x(n) = Yp_oU(n,k)f(k) for everyn> 0.

n-1 n-1

R(n)x—x = z R(M)Grx = — z R(m) f.
m=0 m=0

This implies when applying ta on both sides

n-1
[R(M)Xn + ZO[R(m) fl(n)

=U(n,0)x(0) + nfu(n,n— m) f(n—m)
m=0

x(n) =

n

= Z U (n,k)f (k).
K=o
For the converse implicatioh = 1., we have

Gr(n) = [R(1) —1]x(n)

=U(n,n—1)x(n—1) —x(n)

=U(n,n— 1)nilu(n— 1K) f (k) —x(n)

k=0
_ nfum,k)f(k) _ i U(n,k) f(K)
k=0 k=0
=-—f (n)v

which completes the proof of the Lemnia.

Lemma 3.4. Let U be a discrete evolution family of
bounded linear operator family acting of having an
exponential growth. If there exists a positive constant
such that for alh > |,

(n—j+Hunjl<c

then the evolution familyJ is uniformly exponentially
stable.
Proof. There exists a positive integhirsuch thatrﬁ <
% for eachn— j > N. Then, in virtue of the assumption,
we get
. 1
u(n <=
Juni)<3.

foralln> j+N. _

Let us denote by the integer part o?,g—l. Itisten clear
thatp > 1 andn= j+ pN + pN with p € (0,1). It follows
then

U(n,j)=U(j+pN+pN,j+pN)U(j+pN,j).

Since the evolution familyJ has an exponential growth,
we deduce that

U, i)l < Me*MU(j+pN, j)l]-

The evolution property
U(j+Nmj) =U(j+Nm,j+Nm-21)U(j +N(m—
1), j+N(m—2))---U(j+N,j) implies that

. . 1
I\U(J+Nm,1)||§ﬁ.
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Finaly, we obtain that On the other hand, we have

. 1 1 nj - U(n,0)|| = lU(n,1)U(1,0
Hu(n’J)”SMewNﬁSMewN(E)—Nifl:Lefv(nfj)’ ” (n )” ” (n ) ( )”

<U(n, DIV (L0 < cfu (1,0,

wherelL = 2Me“N andv = % 0 Takingc; := max{c,c||U(1,0)| }, we get that
Now, let us state the main results for this section in this _
paper sup [[U(n,j)|| <cp <o,

n>j>0

Theorem 3.1.LetU = {U(nm): n>me Z,} be a
discrete evolution family acting on the space of Bandch which means that the evolution family is uniformly
and having an exponential growth. Let us set thebounded.

following map defined for each sequentce APy (Z,X) Next, if we define the function

by ) hj(K) == 2 X (WU (K )(€Y), for j > 1. Here, by
. [[J,[[, we mean the discrete interval of integer numbers

Xt k;U(n’k)f(k)' which are greater than or equal joand we denote by

X[[j.o| the function defined agjj . (k) = 1, if k> 1 and
If for all f € ARy(Z,X), the mapxy ¢ belongs to X[[j'm[[ — 0, otherwise. ;

APy(Z+,X), then the evolution familyJ is uniformly It follows then thah; belongs to the spadiPy(Z, , X)
exponentially stable. . TR N
P y and that|hj || arz. x) < 1 since we haveU (n, j)|| < c1.
Proof. We denote b the linear operator defined by This implies, using tgle boundedness of the opetdidinat
[[Khj (]| < [[Khjf| <c.
K: ARy(Z4,X) — APy (Z,X) Moreover, we have

Kf(n) :=xy (n), foreachn € Z, andf € ARy(Z,X).

(Khj)(n) = )hj(n)

It is clear that the operatd is a linear one.

We first show that the operatdf is bounded on
APy (Z,X). To this end, and by virtue of the Closed =
Graph theorem, it is enough to prove tiais closed.

Let (fj)j € (APy(Z4, X))+ and f,g € APy(Z+,X)
such that(fj); converges tof in APy(Z.,X) and (Kfj);
converges t@ in ARy (Z., X) asj tends to infinity.

It follows that, for each fixedj € Z., the X-valued ) . .
sequencéf; (k) converges td (k). We .obtaln so.that for all integers > j > 1,

The continuity of the operators (n,k) implies that (N — | + DU(n,j)b]| < cc;, where, as above,
for eachn € Z,, the sequencé(K f;)(n)) converges to €t = Max(C.clU(L,0)[|}. . .
Kf(n) as j — «. We obtain then for alln € Z,, For j = 0, we can write that, using the evolution

g(n) = Kf(n), i.e. g = Kf. This shows that the linear Property,(n+ 1)(lU(n,0)[ = (n+ 1)U (n,U(L,0)| <
operatoKK is closed. (n+1)[U(n,1)[I[U(L,0)]].

~
JyDMJ
C
—
=)
.

il
C
—
=]
Z
(e

Ol Ol Olk

(n—j+1HU(n,j)b.

i iti Since
Therefore, there exists a positive constasuch that L
for each sequencee APy (Z, X) with || f|[apyz, x) < 1, (n+1)[U(n,1)[[JU(L,0)] = %LU (n,1)]|JU(L,0)] <
K| = SUpy. [KF(N) <c v 2cc1[U(L,0)],
APy (Z+,X) cZ+ < C. we get that”U (n70)|| - 2CC1||U (17 0)”

Now, let us prove that the evolution family is
uniformly bounded.

We extend the evolution family by U (n,m) = 0 for
eachn < m. Consider the function$; , defined for each

Then, setting,; := max{ccy, 2ccy||U (1,0)]
for all integersn > j > 0, that||U (n, j)|| < nfj{rl.
Finally, applying the Lemma 3.4., we ensure the

}, we have

jeZ.,j>1by existence of postive constarsand v such that for any
B integersn > j >0, [U(n, j)|| <Ke V(D). O
o if k=] ~ Now, the main resut for this section reads as follow. It
fi(k) = { ’ . gives, namely, a new criterion to characterize the
0,  otherwise exponential stability for difference non-autonomous

_ _ systems in terms of almost periodic sequences.
It is obvious thatfj € ARy (Z+,X) and [[fj[| < 1. We  thaorem3.2.LetU — UhmeZX): n>mez.)}
deduce that be an evolution family acting on the Banach spate
having exponential growth. The following assertions are

U, §)(EM ] = K (M) < 1K Fllagyz, x) < oquivalent
foreachn > j > 1. 1.Uis uniformly exponentially stable.
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2.The evolution semigroup associated to te family In general, unlike the autonomous case, the study of such
is uniformly exponentially stable ofAPy(Z., X). behaviour is more complicated for the nonautonomous

3.The infinitesimal generato6 := T(1) —1 of T is systems. In this paper, we gave a new criterion to
invertible. characterize the uniform exponential stability of such

4.The solutionxs (n,0) of the non-autonomous Cauchy systems using the almost periodic sequences. The almost
Problem periodic sequences are indeed a useful tool in such study.

The method we use was based on the evolution
X(n+1) =A(n)x(n) + f(n), neZ, (4)  semigroups theory. The last theory has shown a great
x(0)=0 efficiency to avoid the major difficulties appearing for the
nonautonomous differential systems in both the
belongs to ARy(Z.,X) for each forcing term continuous and discrete cases.
f € ARy (Z+,X).

Proof. From the definition of the evolution semigroup, the
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