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Abstract: We prove that a discrete evolution familyU := {U(n,m) : n ≥ m ∈ Z+} of bounded linear operators acting on a complex
Banach spaceX is uniformly esponentially stable if and only if for each forcing term( f (n))n∈Z+

belonging toAP0(Z+,X), the solution
of the discrete Cauchy Problem

{

x(n+1) = A(n)x(n)+ f (n), n ∈ Z+

x(0) = 0

belongs also toAP0(Z+,X), where the operators-valued sequence(A(n))n∈Z+
generates the evolution familyU. The approach we use

is based on the theory of discrete evolution semigroups associated to this family.

Keywords: Exponential stability, Non-autonomous discrete problems, discrete evolution families of bounded linear operators,discrete
evolution semigroups

1 Introduction

During the last decades, the theory of difference
equations has gained a lot of attention by researchers. In
fact, these equations are involved in different areas such
as biology (the study of competitive species in population
dynamics), physics (the study of motions of interacting
bodies), control theory, the study of control theory, etc.
See ([1], [12])

Difference equations usually describe the evolution of
certain phenomena over the course of time. For instance,
if we are interested in the study of a poluation dynamic,
assuming that this population has discrete generations, the
size of the(n+1)th generation, denoted byx(n+1), is a
function of the size of thenth generation. In other words,
for some function f , we are able to formulate this
problem as the form of a certain difference equation
x(n+ 1) = f (x(n)), for all integer numbern ∈ Z. Here,
we denote byZ the set of all integer numbers.

One of the most common problem is the study of the
stability of such difference equations. Indeed, recently,
the issue of the different kinds of stability has become of
great interest for researchers in a large number of fields
such as social sciences ([17]), numerical analysis ([3]),

neural networks ([15], [16], [19]). For the autonomous
systems, many spectral characterizations can be revealed
to show their stability, or more generaly to asymptotic
behaviour of the semigroups appeared for ths kind of
systems. Unfortunately, these spectral characterizations
are no longer valid for the nonautonomous systems. This
is principaly due to the fact that the term generated by the
forcing term cannot be seen as as classical convolution.
This matter of stability can be avoided using an evolution
semgoups approach. The method of evolution semigoups
is an efficient method for this aim, [6], [7].

Another topic which has been progressed in the last
decades is the almost periodicity, [4], [5]. In fact, due to
the interesting properties and to the worth structure of the
spaces of almost periodic functions, the notion of almost
periodicity seems to be a powerful tool in the study of
differential and difference equations. Many contributions
in the study of continuous and discrete versions of almost
periodic functions have been done in this direction,
showing the importance of almost periodicity. For more
details, we can refer the reader to [18], [8], [9], [13].

However, the litterature linking the difference
equations and the discrete almost periodic functions
remains really scare. We find among others few works
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dealing with these notions. We set, for example, [14], [2],
[20].

In this paper, we aim to study the asymptotic behaviour
of linear non-autonomous difference equation having the
form

x(n+1) = A(n)x(n)+ f (n),n ∈ Z+,

where(A(n))n∈Z+ is a L (X)-valued sequence. Here,X
stands for a complex Banach space and we denote by
L (X) the Banach algebra of all linear and bounded
operators acting onX .

More precisely, we prove that the evolution family
associated to this equation is uniformly exponentially
stable if and only if for each almost periodic forcing term
f := ( f (n))n∈Z+ , the solution of this equation is also
almost periodic. See the next section for the
corresponding definitions.

2 Definitions and Preliminaries

The norms onX andL (X) will be denoted by the same
symbol, namely ‖ · ‖. The set nonnegative integer
numbers is denoted byZ+. The linear space of all
X-valued sequences will be denoted byXZ+ .

A sequencex := (x(n))n∈Z+ ∈ XZ+ is said to be
almost periodic if for each real numberε > 0, there exists
a positive integerlε ∈ Z+ \ {0} such that each discret
integer interval of lengthlε contains at least an integer
p ∈ Z+ verifying ‖x(n+ p)− x(n)‖ ≤ ε for any n ∈ Z+,
[10].

The space of almost periodicX-valued sequences
defined onZ+ is denoted byAP(Z+,X). It is not difficult
to show that this space is a linear subspace ofB(X).

Now, let us defineAP0(Z+,X) the linear subspace of
AP(Z+,X) as

AP0(Z+,X) := {x= (x(n))n∈Z+ ∈AP(Z+,X) : x(0) = 0}.

It is clear thatAP0(Z+,X) is a closed subspace of
AP(Z+,X).

Endowed with the supremum norm, the space
AP(Z+,X) becomes Banach space. It follows that
AP0(Z+,X) is a Banach space, too.

Let Y be a Banach space. A familyT := {T ( j) : j ∈
Z+} of linear bounded operators acting onY is called a
discrete semigroup if

1.T (0) = I, whereI denotes the identity operator onY ,
and

2.T ( j+ k) = T ( j)◦T (k), for all j,k ∈ Z+.

It follows that for all j ∈ Z+, we haveT ( j) = T (1) j. T (1)
is called so the algebraic generator of the semigroupT.
The infinitesimal generator of the semigroupT is defined
asG := T (1)− I.

The Taylor formula of order one for discrete
semigroups may be written as:

T ( j) f − f =
j−1

∑
k=0

T (k)G f , ∀ j ∈ Z+ : j ≥ 1, f ∈Y (1)

Indeed,

j−1

∑
k=0

T (k)G f =
j−1

∑
k=0

[T (k+1)−T(k)] f = T ( j) f − f .

The discrete semigroupT := {T ( j) : j ∈ Z+} is
uniformly exponentially stable if there existN ≥ 1 and
µ > 0 such that‖T ( j)‖ ≤ Ne−µ j for eachj ∈ Z+.

A discrete evolution family on the Banach spaceX is
a family of linear bounded operators acting onX , U :=
{U(n,m) ∈ L (X) : n ≥ m ∈ Z+} having the properties

1.U(m,m) = I, whereI is the identity operator onX , and
2.U(m, p)U(p,n) =U(n,m =, for all n ≥ m ∈ Z+.

The discrete evolution familyU is said to have an
exponential growth if there existM ≥ 1 andω ∈ R such
that ‖U(n,m)‖ ≤ Meω(n−m), for each pair(n,m) ∈ Z+

with n ≥ m.
While the semigroups have automatically an

exponential growth, the discrete evolution families do not
necesseraly have an exponential growth.

Throughout this paper, for a given operatorA acting on
the Banach spaceX , we use the following notations:

1.ρ(A) for the resovent set ofA, that is, the set of all
complex scalarsz ∈ C for which the operatorzI −A is
not invertible

2.σ(A) := C\ρ(A) for the spectrum ofA, and
3.r(A) := sup{|z|; z ∈ σ(A)} for the spectral radius ofA.

It is well-known, [11], that

r(A) = lim
n→∞

‖An‖1/n. (2)

It follows from (2) that a discrete semigroup
T := {T ( j) : j ∈ Z+} is uniformly exponentially stable if
and only if the spectral radiusr(T (1)) is less than one.

3 Criterion for Uniform Exponential
Stability of Evolution Famillies on Z+

Let U = {U(n,m) ∈ L (X) : n ≥ m ∈ Z+} be a discrete
evolution family of bounded linear operators acting on a
Banach spaceX having exponential growth.

Before investigating the evolution semigroup
associated to the familyU, let us define the space
A0(Z+,X) as the set of all the sequencesx = (x(n))n≥0
for which there is an integernx ≥ 0 and a sequence
Fx := (Fx(n))n≥0 with the propertyx(n) = 0 if 0 ≥ 0≥ nx
andx(n) = Fx(n) if n ≥ nx.

The spaceA0(Z+,X) is evidently a subspace of
AP(Z+,X).
Lemma 3.1.The spaceA0(Z+,X) is dense inAP(Z+,X).
Proof. Let f := ( f (n))n∈Z+ ∈ AP(Z+,X) and define the
sequence(g j) j∈Z+ given by

g j(n) =

{

f (n) for all 0≤ n ≤ j−1
0 otherwise.
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It is clear that the sequence(g j) j∈Z+ belongs toAP(Z+,X)
and converges tof as j tends to infinity.�

Now, we define the evolution semigroup associated to
the familyU for eachf ∈ AP(Z+,X) as

[T ( j) f ](n) =

{

U(n,n− j) f (n− j) for all n ≥ j
0 otherwise.

(3)

Lemma 3.2.The semigroup{T ( j) : j ≥ 0} defined in3
acts onAP(Z+,X).

Proof. Let us first show thatT ( j) f ∈ A0(Z+,X) for each
sequencef ∈ A0(Z+,X). Given f ∈ A0(Z+,X), we can
find, by definition, an integern f ≥ 0 and sequenceFf :=
F( f (n))∈AP(Z+,X) such that

f (n) =

{

Ff (n) if n ≥ n f

0 if 0 ≤ n ≤ n f .

Let us choose the integernT ( j) f := j+n f and the sequence
(FT ( j) f (n))n :=(U(n,n− j)Ff (n− j))n∈Z+ . Then, we have

[T ( j) f ](n) =

{

FT( j) f (n) if n ≥ nT ( j) f

0 if 0 ≤ n ≤ nT ( j) f .

Indeed, ifn≤ nT( j) f = j+n f , then it is clear thatn− j ≤ n f

which implies thatf (n− j) = 0 and so that[T ( j) f ](n) =
U(n,n− j) f (n− j) = 0. In addition, ifn ≥ nT( j) f ≥ j+n f

i.e.n− j ≥ n f , then f (n− j) = Ff (n− j) and therefore,

[T ( j) f ](n) = U(n,n− j) f (n− j)

= U(n,n− j)Ff (n− j)

= FT( j) f (n).

We have then proved thatT ( j) f ∈ A0(Z+,X).
Now, if f ∈ AP(Z+,X), from the Lemma 3.1., for anyε >
0, there existsg ∈ A0(Z+,X) such that‖ f − g‖B(Z+,X) <
ε. We have

‖T ( j) f −T ( j)g‖ = sup
n≥ j

‖U(n,n− j)[ f (n− j)− g(n− j)]‖

≤ Meν j sup
n≥ j

‖ f (n− j)− g(n− j)‖

≤ Meνrε.

SinceT ( j)g ∈A0(Z+,X) andε > 0 is arbitrarily choosen,
we obtain the result.�

Lemma 3.3.Let U = {U(n,m) ∈ L (X) : n ≥ m ∈ Z+}
be a 1-periodic evolution family andR = {R( j) : j ≥ 0}
the evolution semigroup associated toU on the space
AP0(Z+,X) having GR as infintesimal generator. Let
consider x := (x(n))n∈Z+ and f := ( f (n))n∈Z+ . The
following statementes are equivalent.

1.x belongs to the domain ofGR i.e. x ∈ D(GR) and
GRx =− f

2.x(n) = ∑n
k=0U(n,k) f (k) for everyn ≥ 0.

Proof. Let show first the implication1. ⇒ 2.. Using the
Taylor formula1, one has

R(n)x− x =
n−1

∑
m=0

R(m)GRx =−
n−1

∑
m=0

R(m) f .

This implies when applying ton on both sides

x(n) = [R(m)x]n +
n−1

∑
m=0

[R(m) f ](n)

= U(n,0)x(0)+
n−1

∑
m=0

U(n,n−m) f (n−m)

=
n

∑
k=0

U(n,k) f (k).

For the converse implication2.⇒ 1., we have

GR(n) = [R(1)− I]x(n)

= U(n,n−1)x(n−1)− x(n)

= U(n,n−1)
n−1

∑
k=0

U(n−1,k) f (k)− x(n)

=
n−1

∑
k=0

U(n,k) f (k)−
n

∑
k=0

U(n,k) f (k)

= − f (n),

which completes the proof of the Lemma.�

Lemma 3.4. Let U be a discrete evolution family of
bounded linear operator family acting onX having an
exponential growth. If there exists a positive constantc
such that for alln ≥ j,

(n− j+1)‖U(n, j)‖≤ c,

then the evolution familyU is uniformly exponentially
stable.
Proof. There exists a positive integerN such that c

n− j+1 ≤
1
2 for eachn− j ≥ N. Then, in virtue of the assumption,
we get

‖U(n, j)‖ ≤
1
2
,

for all n ≥ j+N.
Let us denote byp the integer part ofn− j

N . It is ten clear
that p ≥ 1 andn = j+ pN +ρN with ρ ∈ (0,1). It follows
then

U(n, j) =U( j+ pN+ρN, j+ pN)U( j+ pN, j).

Since the evolution familyU has an exponential growth,
we deduce that

‖U(n, j)‖ ≤ MeωN‖U( j+ pN, j)‖.

The evolution property
U( j + Nm, j) = U( j + Nm, j + N(m − 1))U( j + N(m −
1), j+N(m−2)) · · ·U( j+N, j) implies that

‖U( j+Nm, j)‖ ≤
1

2m .
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Finaly, we obtain that

‖U(n, j)‖ ≤ MeωN 1
2m ≤ MeωN(

1
2
)

n− j
N −1 = Le−ν(n− j),

whereL = 2MeωN andν = ln(2)
N . �

Now, let us state the main results for this section in this
paper

Theorem 3.1. Let U = {U(n,m) : n ≥ m ∈ Z+} be a
discrete evolution family acting on the space of BanachX
and having an exponential growth. Let us set the
following map defined for each sequencef ∈ AP0(Z+,X)
by

xU, f :=
n

∑
k=0

U(n,k) f (k).

If for all f ∈ AP0(Z+,X), the mapxU, f belongs to
AP0(Z+,X), then the evolution familyU is uniformly
exponentially stable.

Proof. We denote byK the linear operator defined by

K : AP0(Z+,X)→ AP0(Z+,X)

K f (n) := xU, f (n), for eachn ∈ Z+ and f ∈ AP0(Z+,X).

It is clear that the operatorK is a linear one.
We first show that the operatorK is bounded on

AP0(Z+,X). To this end, and by virtue of the Closed
Graph theorem, it is enough to prove thatK is closed.

Let ( f j) j ∈ (AP0(Z+,X))Z+ and f ,g ∈ AP0(Z+,X)
such that( f j) j converges tof in AP0(Z+,X) and(K f j) j
converges tog in AP0(Z+,X) as j tends to infinity.

It follows that, for each fixedj ∈ Z+, the X-valued
sequence( f j(k))k converges tof (k).

The continuity of the operatorsU(n,k) implies that
for eachn ∈ Z+, the sequence((K f j)(n))n converges to
K f (n) as j → ∞. We obtain then for alln ∈ Z+,
g(n) = K f (n), i.e. g = K f . This shows that the linear
operatorK is closed.

Therefore, there exists a positive constantc such that
for each sequencef ∈ AP0(Z+,X) with ‖ f‖AP0(Z+,X) ≤ 1,
‖K f‖AP0(Z+,X) = supn∈Z+

‖K f (n)‖ ≤ c.
Now, let us prove that the evolution familyU is

uniformly bounded.
We extend the evolution familyU by U(n,m) = 0 for

eachn < m. Consider the functionsf j , defined for each
j ∈ Z+, j ≥ 1 by

f j(k) =

{

eik, if k = j
0, otherwise,

It is obvious that f j ∈ AP0(Z+,X) and ‖ f j‖ ≤ 1. We
deduce that

‖U(n, j)(ein)‖= ‖K f j(n)‖ ≤ ‖K f j‖AP0(Z+,X) ≤ c,

for eachn ≥ j ≥ 1.

On the other hand, we have

‖U(n,0)‖= ‖U(n,1)U(1,0)‖

≤ ‖U(n,1)‖‖U(1,0)‖≤ c‖U(1,0)‖.

Takingc1 := max{c,c‖U(1,0)‖}, we get that

sup
n≥ j≥0

‖U(n, j)‖ ≤ c1 < ∞,

which means that the evolution familyU is uniformly
bounded.

Next, if we define the function
h j(k) := 1

c1
χ[[ j,∞[[(k)U(k, j)(eik), for j ≥ 1. Here, by

[[ j,∞[[, we mean the discrete interval of integer numbers
which are greater than or equal toj and we denote by
χ[[ j,∞[[ the function defined asχ[[ j,∞[[(k) = 1, if k ≥ 1 and
χ[[ j,∞[[ = 0, otherwise.

It follows then thath j belongs to the spaceAP0(Z+,X)
and that‖h j‖AP0(Z+,X) ≤ 1 since we have‖U(n, j)‖ ≤ c1.
This implies, using the boundedness of the operatorK, that
‖Kh j(n)‖ ≤ ‖Kh j‖ ≤ c.

Moreover, we have

(Kh j)(n) =
1
c

n

∑
k=0

U(n,k)h j(n)

=
1
c

n

∑
k= j

U(n, j)b

=
1
c
(n− j+1)U(n, j)b.

We obtain so that for all integersn ≥ j ≥ 1,
‖(n − j + 1)U(n, j)b‖ ≤ cc1, where, as above,
c1 = max{c,c‖U(1,0)‖}.

For j = 0, we can write that, using the evolution
property,(n + 1)‖U(n,0)‖ = (n + 1)‖U(n,1)U(1,0)‖ ≤
(n+1)‖U(n,1)‖‖U(1,0)‖.

Since
(n + 1)‖U(n,1)‖‖U(1,0)‖ = n n+1

n ‖U(n,1)‖‖U(1,0)‖ ≤
2cc1‖U(1,0)‖,
we get that‖U(n,0)‖ ≤ 2cc1‖U(1,0)‖.

Then, settingc2 := max{cc1,2cc1‖U(1,0)‖}, we have
for all integersn ≥ j ≥ 0, that‖U(n, j)‖ ≤ c2

n− j+1.

Finally, applying the Lemma 3.4., we ensure the
existence of postive constantsK andν such that for any
integersn ≥ j ≥ 0, ‖U(n, j)‖ ≤ Ke−ν(n− j). �

Now, the main resut for this section reads as follow. It
gives, namely, a new criterion to characterize the
exponential stability for difference non-autonomous
systems in terms of almost periodic sequences.

Theorem 3.2.Let U := {U(n,m) ∈ L (X) : n ≥ m ∈ Z+}
be an evolution family acting on the Banach spaceX
having exponential growth. The following assertions are
equivalent

1.U is uniformly exponentially stable.
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2.The evolution semigroupT associated to te familyU
is uniformly exponentially stable onAP0(Z+,X).

3.The infinitesimal generatorG := T (1) − I of T is
invertible.

4.The solutionx f (n,0) of the non-autonomous Cauchy
Problem

{

x(n+1) = A(n)x(n)+ f (n), n ∈ Z+

x(0) = 0
(4)

belongs to AP0(Z+,X) for each forcing term
f ∈ AP0(Z+,X).

Proof. From the definition of the evolution semigroup, the
statement1. implies2.

If 2. holds true, then the spectral radiusr(T (1)) < 1.
So, 1∈ ρ(A), which implies thatT (1)− I is an invertible
operator and hence,2. implies3.

Now, assuming that 3. holds true, for each
f ∈ AP0(Z+,X), there exists a uniquex ∈ AP0(Z+,X)
such that[T (1)− I]x = − f . By virtue of the Lemma 3.3,
this is equivalent tox( j) = ∑ j

k=0U( j,k) fk for all j ∈ Z+.

Thus,∑ j
k=0U( j,k) fk belongs toAP0(Z+,X).

On the other hand, the solution of (4) is given by

x f ( j,0) :=
j

∑
k=0

U( j,k) fk,

which belongs, consequently, toAP0(Z+,X).
From the Theorem 3.1., we conclude that4. implies1.
The proof of the theorem is now complete.
�

Example Let A ∈ L (X) and consider the following
discrete Cauchy problem associated toA

{

x(n+1) = Ax(n)+ f (n), n ∈ Z+

x(0) = 0.

The solution of this problem is given by
x(n,0) = ∑n

k=0 An−k f (k). Here, the evolution family
U := {U(k, j), j ≥ k ≥ 0} associated to this system is
defined asU(k, j) := A j−k.

The solution(x(n))n is in AP0(Z+,X) if and only if the
solution of the homogeneous equation

{

z(n+1) = Az(n), n ∈ Z+

z(0) = b,

that isz(n) = Anb, decays exponentially, or similarly, this
means the existence of two constantsµ > 0 andM ≥ 1
such that for each vectorx ∈ X , ‖T (k)x‖ ≤ Me−µk‖x‖.

4 Conclusion

We investigated the asymptotic behaviour of linear non-
autonomous difference equation having the form

x(n+1) = A(n)x(n)+ f (n),n ∈ Z+.

In general, unlike the autonomous case, the study of such
behaviour is more complicated for the nonautonomous
systems. In this paper, we gave a new criterion to
characterize the uniform exponential stability of such
systems using the almost periodic sequences. The almost
periodic sequences are indeed a useful tool in such study.
The method we use was based on the evolution
semigroups theory. The last theory has shown a great
efficiency to avoid the major difficulties appearing for the
nonautonomous differential systems in both the
continuous and discrete cases.
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