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Abstract: We present a model for obligated mutualistic associationghich two transmissible diseases are allowed to infest ju
one population. As the general model proves too hard to e dmlalytically investigated, some special cases are aadlyAmong
our findings, the coexistence of the two strains does notappessible, under the model assumptions. Furthermoregriicplarly
unfavorable circumstances the ecosystem may disappehis irespect, an accurate computation of the basin of &tirecf the origin

is provided using novel techniques. For this obligated raligtic system the presence of the diseases appears tosbele@gant than
in many other circumstances in ecoepidemiology, includitsg the case of facultative symbiotic associations.
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1 Introduction acquatic, terrestrial or avian environments is contaimed i
[13.
Symbiotic associations occur frequently in nature, Specific examples involving populations living in
although in population theory mathematical models focusSymbiosis can also be found, e.g. several mushrooms
generally more on competing situations or predator-prey(Cantharellus cibariusBoletusspp., Amanitaspp.) with
interactions: the classical examples are thechestnut treesGastanea satia The disease in this case
anemone-damselfish and the ant-plant interactionds represented by chestnut cancéngothia parasitica
leading to pollination, 4]. In the latter context, for ~Symbiotic associations are common among bacteria
instance moths (of genus Tegeticula) pollinate yuccasalone, B3], bacteria together with other organisnsse],
[3]. Other known associations involve mycorrizhal fungi, Plants R3] and plants and mushroom&7 and these
fungus-gardening ants, mixed feeding flocks of birdsSymbiotic systems may affect the whole ecosystem in
dispersing seeds dfasearia corymbosin Costa Rica, Which they thrive, 11]. Other instances are the soil
[17). Commensalism and symbiotic populations havenematode Caenorhabditis elegansthat transfers the
been considered within food chains where some of thehizobium speciesSinorhizobium melotitto the roots of
other populations are in competition with each oth#8,[ the legume Medicago truncatula[2,16], the L-form
19,20,32,12,14,24). A recent contribution along these bacteria in non-pathogenic symbiosis with several plants
lines is ], considering symbiotic models at various that allow the latter to resist other bacterial pathogens
trophic levels in food chains. [31]. These considerations were the underlying
Ecoepidemiology is a rather recent field of study, Mmotivations for studying a symbiotic situation
investigating the effect that epidemics have on the€hcompassing disease80] The investigation has been
underlying demographic populations interactions. Manyextended in15], assuming a Holling type Il term for the
papers by now have been devoted to the study ofpossible mutual rewards of the symbiotic populations.
ecoepidemic systems based on predator-prey or Other developments in epidemiology have dealt with
competing demographics. For an account of some of thehe case of two pathogens affecting together a host.
early developments in this field, see Chapter 724].[In Ecoepidemic situations of this type that have been
fact, diseases cannot be ignored in ecosystems. A wholevestigate previously consist of two diseases that are
wealth of possible ailments affecting populations in assumed to spread in a predator-prey community,
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affecting the predators2f], or the prey, 9,10]. In this m=5.0,e=10,n=6.0,a=1.0
paper, our aim is to further extend the work5], by ‘ ‘ ‘
considering different strains that affect the symbiotic
environment. Specifically, we consider a general
symbiotic model and some particular cases. The
fundamental assumption that relates the two diseases |
that they do not interfere with each other. This means tha
they cannot both affect at the same time the same
individual, i.e. there is no coinfection, nor superinfeat;

i.e. once an individual gets a disease, he is prevented fror
being affected also by the other one. The mutualistic
association is obligated, i.e. without the other one, eact
population would not thrive alone. Possible extensions
that are not discussed here are represented instead |
facultative mutualism; also the assumption that disease!
individuals do not receive benefits from interactions with
the other population could be removed. S

The paper is organized as follows. We briefly discuss

Fhe demo_graphlq model as a further reference, theri:ig. 1 The blue colored region represents the basin of attraction
introduce in Section 3 the general model. As a complete

e . . : . -~ ~>of the origin in theSPphase plane.
analysis is not possible, in Sections 4 and 5 we investigate 9 P P
two particular cases, restricting somewhat the infected

from taking part in the association. A final discussion

concludes the paper. The result is partly unsatisfactory, since from the
biological point of view the ecosystem is bound to
disappear, if the population levels are low, or better daid i

2 Preliminaries they fall in the domain of attraction of the origin,
otherwise they explode. From the ecological point of view

Before introducing the ecoepidemic models, for this latter phenomenon is impossible, since finite

comparison purposes, we briefly discuss their underlyind©SOUrces cannot sustain an ever increasing population.
demographic model, i.e. the model without the infectedHiowever, it is imbedded in the assumptions of the model,

10

individuals, which are kept at a minimal number, in order to better
analyse the ecoepidemic models that follow and compare

ds dpP i i i

2 _nS+aSP — = —mP+eSP (1)  their results with those of the underlying purely

dt Toodt demographic model. In this way the disease influence on

All parameters here and in the next Sections are alwayhe environment transpires more clearly.
assumed to be nonnegative. Systei) llas only two

equilibria, the origirEy = (0,0) and the coexistence point

E; = (meLna ). It is very simple to write down its 3 The general model

Jacobianly, o i
d As before, letSandP be the two symbiotic populations.

—n+aP aS We assume that two recc_)veraplg dis'eases.spread by

Pe —m+eS contact among thé population, giving rise to infected
individuals of typeH andY. We assume that there is

) . ~ ) , neither coinfection nor superinfection, i.e. whenever one

and from its evaluation & to find the eigenvaluesn  ingividual is infected by one strain, it cannot catch the

and—m, while the evaluation &E; gives the eigenvalues other disease and become infected with both, nor can he

+y/mn It follows that the coexistence equilibrium is get the second disease and the latter replace the first one.

unstable, namely a saddle, and the origin is always stabléeThe model, in which all parameters are assumed to be

Thus the phase plane is partitioned into two domains, ongonnegative, reads

for which the origin is an attractor, and the other one in g

Ji=

which the trajectories ultimately drift to infinity. g = -nS-AHS—BYS+aSP+E{H +¢Y, 2
Therefore to prevent the system’s extinction, in practical

situations it is important to assess the basin of attraction - = AHS—uH —&H +qHP,

of the origin. To this end, based on the very recent .y

algorithm presented in1[7], we show in Figurel the G BY S—VY —¢Y +r1YPR,

separatrix of these domains, obtained for the following set ;p

of parameter values = 5.0,e=1.0,n=6.0,a=1.0. ot = ~MP+ eSP+ fHP+gYP
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The first equation models the dynamics of ti®&  we find
population. It dies out at an exponential rate and _ _
reproduces only in presence of the other mutualistic naf+Aqm-apf - va, <é @)
population P, at rate a. By causal encounters with af-eq
infected individuals of typed andY, a susceptible can ~ _ ngf-mig—auf—\4; 2miaf
then become infected, at ratéds and 3 respectively. af—eq e(af —eq)’
Finally, individuals of the latter two classes that recover
from the disease reenter the susceptible class.

The second equation considers the infedtedthey

are recruited among the susceptibles at rate as ueq+ey/a; . peq— Amg+ A,
—_— < < ,

which to be consistent, requiras > eq
In case instead that

mentioned, they recover at ra® and are subject to < (8)

natural plus disease-related mortality. The third mMa+nge nq

equation contains a similar dynamics for the infected \ye find the interval

Note that in this case the total mortality rate is nanved oued—auf —naf— A V7>

and the recovery rate is expressed by the parameter Heq—aut —nq am+ vae <& 9)
Finally, the fourth equation shows the behavior of the af—eq

mutualistic populatiorP, which in absence of individuals ngf—mig—auf—+A4A, 2miaf

of the mutualistic population dies out at an exponential < af—eq eaf—eq’

ratem, and reproduces, when the symbiotic populationis . =

present, at rate. which implies
The system’s equilibria are the following points. The fs pefq+eva,

origin Eg = (0,0,0,0), and the coexistence equilibrium mAa+nge ’

Es = (&4, Ha4,Ya,Py) with population values

if we take af > eq or a contradiction with & in the

S = vag+¢g—ru—ré 3) opposite case. In summalg, is feasible if
R Pa-rr f (10)
Y af >eq
P4:uB+EB Av )\¢7 - _
Ba—rA together with either®) and (7), or together with §) and
(ng+ Bm+ pe)Sy— Beg —aghS— ¢m (8). The inequality 8) to be true impliegueag— mAaq—
T YIS S T A nefe +ay2; > 0.
0 For E;— we have similar results. We need agal®)(
v, = 25— (M +ed + fn)S+afSP+mé together with the same two alternative sets of conditions
(Bf=2A0)u+Eg—of ' (6) and (7), or respectively9) and @), in which however
and therE; — (mgl 0.0 nafl) the plus sign in front of the square root is replaced by a
B ’ minus.
£ — 1 0 1 A Note that when these two point&p. coalesce, the
2t = | 2+, 7(M—€2.2),0, a(“ +E—Aza) ), same feasibility conditions still hold, in a simplified form
L L it is enough to sef\, = 0 in all the previous formulae.
_ Lo 4 B For the pair of equilibrigez+ similar steps lead to the

Eas = <Z37i’0’ g(m ®%.+), r v+ BZH)) ’ following feasibility conclusions. If we denote 45 the

wherez, . are the roots of discriminant of B), for E3_ we need
Ry(Z) = (aA f — Aqe)Z2 (4) ag> er (11)
+(nqf+Agm+Ege—auf—aéf)z—&Egm=0. and
while zz 1 solve VB v —eVE
ver— mr— Ver —
Ri(2) = (aBg -~ Pre)Z? ® g>ma| AR VI SEL )
+(nrg+ Brm+ ¢re—avg—agpg)Z— ¢rm =20, i
. together with

Eo areE; always feasible.

To investigate feasibility ofE,,, let A, be the nrg+ Brm—avg+ Az 13
discriminant of #). Imposing z, > 0 we have ag—er <9 (13)
ngf+Agm-auf — A, < &(af — eq), which together 2 _ _ A
with the nonnegativity conditions for the remaining < mpag— mper+ enrg—ea/g+ evas
populations, that givee < ngi and Az, — & <, e(ag—er)
provides bounds fof. Namely, for or (11) together with
£ > max ueq—/\mq+\/A_2’ue2q+e\/A_2 ©) ve2r—e\/A_3< Sver—ﬁmr—\/A_g’ (14)

nq mAa+nge mBa-+nre nr
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which requires The Jacobian ofl() is
vera—mpBar —nr’e—a\/Az > 0, “N-AH-BY+aP —AS+&
AH AS—u—¢§
and J= BY 0
2er— — — VA Pe 0
v(2er—ag) ~r(ng+pm) - V35 _ 5
ag—er
- mB(Zag—er)+eg(nr—av)+e\/A_3. _BS+é  aS
e(ag—er) 0 0

For E3. again to obtain feasibility conditions it is enough BS—v—¢ 0
to change the signs of the square root terms, or to set it to 0 —m-+eS

zero in case the two points coalesce.

To assess stability analytically is too complex. From Its evaluation atQy gives the eigenvaluesv — ¢,
our simulations, it seems that all these points are unstable—n, —y — &, —m, which are all negative. Thus the origin

the system tending either to the origin, or eventually thejs once again unconditionally stable. EvaluationGat

trajectories becoming unbounded. leads instead to the  eigenvalues+./mn
To better analyse the system, we now turn to the(Bm—ve— ¢e)e !, (Am— pe—e&)e L. Since the first
analysis of some simplified cases. two are those inherited from the corresponding

equilibriumEjy, and one of them is positive, we conclude

that alsoQ; is unstable. Thus the disease in this context
4 No intermingling with infected allowed does not really change the system’s behavior.

Due to the threat of a vanishing ecosystem, a small

We make here the simplifying assumption that the secondegion of attraction of the origin is desirable. Reliable
population P does not interact with the infected both procedures for its determination have been devised, by
strains of the populationS, because they can be computation of the separatrix surfac).[In Figure2 we
recognized and therefore avoided, for instance. Thisshow the picture of the basin of attraction of the origin,
corresponds to setting = q=9g=r =0 in (2. which lies below the surface, for the hypothetical

Explicitly, we thus have parameter value =3,u=25,§ =24,m=6.,v =0,
ds B=0,a=1,¢=0,e=15n=3.
a =-—-nNS—AHS—BYS+aSP+&H + ¢V, (16)
dd—H =AHS— uH —¢&H,
d$ A=3;u=25;£=24,m=6.;v=0.;8=0,;a=1;9=0.;e=15n=3
P BY S—vY — ¢Y,
dP
~_ —_mP P 40
at mP+-eS
In this case, however, there are only the two feasible
equilibria Q = E = (0,000 and

Qi = E1 = (me1,0,0,na 1), that are always feasible.
They clearly coincide with those ot), except that have
two dimensions, i.e. two populations, more, the infected,
although the latter are at zero level. We note thus thal
either one of nor both the two diseases cannot survive ir
this system, they are eradicated. From the
epidemiological point of view this is a very important
result, subject of course to the rather peculiar assumgption
of the underlying demographic model, i.e. Malthusian
growth, or in terms of ecosystem, of the fact that that this
is an obligated mutualism. The mathematical reason for
which equilibria with diseases at positive level are notgig 2 The region below the surface represents the basin of
sustainable, is that the poin®; with only nonzero aitraction in theSHPphase subspadé= 0. The star represents
populationsS; = (v + ¢)B7L, Y2 = —nv-1S; and Q4 the projection of th&; = E; = (4,0,0,3) saddle point.

with the nonzero population levelS; = (u + &)A 71,

H; = —nu~1S; have both a negative component.
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5 Infected do not get reward from symbiosis  and the roots of the cubic monic polynomiak (= 1),
p(t) = 32 ocit!, with
In this case theé® population gains from the interactions

also with the infected individuals of the first one, but the . _ 1 eu2fn— efud — 26212 21
latter do not feel the benefit of the mutualism. In otherCO fA (eu H HE (21)
words, we set only = q=0in (2). Thus, explicitly, 2mA ep? + 2ep fné — mPA 2 —mA fnp

%f:—nS—)\HS—BYS+aSP+EH+¢Y, (17) 2 €& — &% +eg?fn+ma fng),

dH _ pPe—Aeu®+ pumaZ—reéu

G =AHS—HH - £H, a= i *

dy —umie— pefn4 pe?é —efné

EZBYS—VY—‘PY, o ,

dp $(MA —ep —ef)

—— = —mP+eSP+ fHP+gYP C =

at ’ SRR
The equilibria are now The Routh-Hurwitz stability criterion requires strict
Eo= (0,0,0,0), E; = (%‘707 0, g) , (18)  positivity for the following quantities:
~ U-+& mA —eu—eé C2C O
E = 3 707 C 2

? ( A fA Da1=Ico[, D22= Cigi , Daz=|c3c1 0.

m)\u—euz—eéu+fnu+fn§> 0 ¢ Co
fa(u+¢) Now D, 1 > 0 is a consequence of the strict feasibility
E— (Y 9 o MB—ev—ed condition (L9).
B 9B ’ ForD, > 0, we have
mﬁv—evz—e¢v+gnv+gn¢) 1
gav+9) | D22 = sy (™M —eH—e) (22)
Again, note that two more disease-unaffected-population- (ezuzé 1820 — fule— Aeu?s +
free equilibria with endemic disease are not feasible, and 2 2 9
coincide with those of the former modédlf), E; = Q; and —2efu”s — feud”— fneud —eAud”+
E; = Q3. N —me\ué — fenf2+nf2u? +mfAp?+
While the origin andE; are always feasible, the +MA2UE +mfApE + 2nf2ué + £2n&?).

remaining points are only if some conditions hold. . . - _
Specifically, feasibility conditions can now be explicitly The denominator is positive as well as the first factor, when

stated as follows: foE, we have the first L9) is satisfied as a strict inequality. The second
factor is a quadratic in the parame®rwhose roots we

ey —mi +ek) indicate bye; ande,. The second factor is positive for the

es U+é&’ = f(u+¢&) ’ (19) valuese < & ore> e in the case of real rootsg{ < e1);
_ for everye # e; in case of a double real root; for every
while for Ez we find value ofe when the roots are complex.
o mB - v(ev —mB +ed) 20) Finally, to haveD, 3 > 0 we need
TvHel T gv+e) Dog = : % (23)
, - SRV EITRRSTE
The system’s17) Jacobian is 5 5 5 3
L s < < (MA — e —e&)?(Pu%E + &% — fle+
/\lHl /\_S— ;_EE P O+ ¢ ao —Aeu?s —2efu?s — feu&? — fneué +
J=1gy 0 ‘Bs—v-¢ 0| —eApE2—me\pE — feng? 4 nfu?+
Pe Pf Pg +mfAp?+mA2ué +mfApé +
with Ji1 = —n—AH— BY +aP,Jua= —m+eSt fH+gY. +2nf2pE + £7n&?) x
It is easy to verify thaEg and E; retain the stability (e —mAp+eEp— fnu— fné) > 0.

properties respectively @ andE, as well axQ; andE;.

The eigenvalues of the Jacobian evaluategbaire Here too the denominator is positive, the first factor is

when -
Bu-+BE—VA—pA
A e7éu+€’
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the second one coincides with the second onegf, the
third one is positive for
MAp+ fnu+ fné
H(p+E)

By combining all these cases we filg 3 > 0 for the
following different cases

1.for different real roots of the second factor, we need

one of the following two alternative situations
mAp+ fnu+ fné

) e PR e<e21
p(p+&) pu+é
mAu+ fnu+ fné mA
e>e, e> , € )
p(p+&) 7éu+f

or all the following conditions

mMA 4+ fnu+ fné

AT (TES S

e e <e<e,

p+é&’

2.when there are two double roots, we need all the

following conditions

MAp+ fnp+ fné
e£——, efe =6, e> ;
7Awrf ? p(p+¢§)
3.for complex roots instead the required conditions are
et mA mMA -+ fnu+ fné
pu+é’ p(p+§)

But none of these conditions can hold, namely:

—the conditions, < e < e; cannot hold in view of the
requesD; 5 > 0;
—the remaining three cases require
MAU+ fnu+ fné
p(p+§)
__mip fn(u+&)
H(H+E)  p(p+§)
mA fn mA
=——+—>—:7,
p+é  p o p+é
which contradicts the feasibility conditiod9).

(24)

In conclusion, D3 cannot be positive, so thef, is
unconditionally unstable for all parameter choices.

Note that Hopf bifurcations also cannot arise. We
would needc;c, — cg = 0, but solving it in terms of the
parametern, the value it must have so that purely
imaginary eigenvalues arise is

_ (M —ep—ef)(ef — fu—AE—fE)u
(L+E)(fu+fé—ed)f '

However, the feasibility conditiorg) for E; in terms of
nrequires

piep —m +ef)
f(u+¢&)

Combining the two above conditions, we find
e —fu—A&—1¢& > 1,

e —fu—-f& —
which impliese§ — fu —A& —f& >ef — fu—f& and
finally —~)\E > 0, which is impossible.

For E3 the situation is similar, we have one eigenvalue

as follows

$A —Bu—BE+VA

B

and the roots of the cubig(t) = 3, hit' with coefficients
hs=1and

(2mBev? — Ve — 2e?v2¢ +

ho= = (25)

9B
ev2gn+ 2evgng — e¢2v — nPBv

+2mBepv —mBgnv —mBgng + ep>gn),

hy = %(vze2 — Bev?+vmpB2— Bepv
+ve?p — vmBe— vegn—egnp),
¢(mB —ev—ed)

h =

’ o(v+9)
Once againD3 1 = ¢ > 0 follows from the strict first
feasibility condition 20). We then need the positivity of

_|C2Co
D32 = C3 C1
which gives
1
D3o= 5——— —ev— 26
32 92(v+¢)B(mB ev—ep) x (26)

(V29 +p%v — evig—2ev2gd +

—ev?Bo —evgp? —ep?vp +

—mBegpv — evgnd — ep2gn+ mBgv?

+v2g?n+ ¢mBvg+ mB2v ¢ + 2vg®ne

+g°n¢?) > 0.
The denominator is positive, the first factor is also when
the first feasibility conditionZ0) is strictly satisfied. The
second factor is a quadratic @whose roots are denoted
ez andey. Itis positive fore < e4 0 e > e3 whene; > e, are
the two real roots. When they coincide, we nesé e3 =

e, finally, for complex rootsD3 » > 0 unconditionally.
The third Routh-Hurwitz condition requires

gg(T]W(mB —ev—e¢)2 X

(ev? —mBv +epv —gnv —gng) x
(V2 + 9%y — ev3g— 2ev2gd +
—ev?Bo —evgp? —ep?vB +
—mBedv — evgnd — ep?gn—+
mBgv?+ v?g?n+ ¢mBvg
+mB2ve + 2vg®ng +g’ng?) > 0.

D33 = (27)

(@© 2015 NSP
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If we take which together with the former one implies
e;,é m—B
vt ep—gv—9p—Bo _,
the sign ofD3 3 depends only on the last two factors, and ep—gv—gp

the last one is the second factor B¢, so that we find
once again the rootsy ed e4. The third factor is positive  from whichep —gv —g¢ — B¢ > ep —gv — g¢ and
whenever ultimately —3¢ > 0, once again an impossible condition.
. mBv 1; gnv(;g gng The system therefore does not allow limit cycles.
V(V+

In summaryDs3 3 > 0 in the following situations

1.for two real distinct roote; ande; we either need both 6 Conclusions
the following conditions

mBv +gnv 4 gng mB . We have proposed a two-strain model for an obligated
e> , #* , e<ey . . . M
v(v+9) V+¢ mutualistic ecoepidemic system. Although in its
mBVv + gnv + gng mp3 generality we were unable to analyse all the equilibria
€>6, €> VV+9) , e# Vi stability, except by means of numerical simulations, in the
. two particular cases examined we have shown that no
or, alternatively, we can also have stable equilibria other than the origin exist. This at first
sight appears not to be a good result from the ecological
£ m_B7 o<e<e e< mﬁv+gnv+gn¢; point of view, since is states that in fact the ecosystem can
V+ o v(v+9) vanish. One must keep in mind though that as for the

underlying demographic model, a saddle in the phase

2 for real identical rootss = e, we need space is present, given W or its equivalent points.

mg mBV + gnv + gng Therefore the system trajectories, as also shown by the
e Vig’ efe =€, e> Vv 9) ; simulations, may instead very well grow unbounded.
When the initial conditions do not fall into its basin of
3.for complex roots, instead the requirement is attractions, trajectories are repelled away from the saddl
point E; in case of model 6) as well as from the
y mB mBv + gnv +gng remaining equilibriE; andEs, when we consider model
v+¢’ v(v+¢) ' (17) and in both cases tend to grow without bounds. This

] » is to be ascribed to the intrinsic limitations of the

—whenever, < e < e, we contradict the statement that the construction of the ecoepidemic model, or, in other

D3z > 0; more biological words, to the quadratic type (Holling type
_in the remaining cases we want I) mutualistic interactions in the ecosystem. These result
should be compared witt3()], where logistic growth is
o~ MBV+gnv+gng (28)  assumed instead of an exponential mortality, i.e. the
v(v+9) symbiosis is not obligated. In such case the disease does
mBv gn(v+¢) affect the system’s behavior, in some cases even favoring
T vvre)  v(v+oe) the increment of the coexisting populations levels, at the
expense of having part of them infected.
mB3 gn mg .
= +=> We have also shown that the two strains cannot
(v+¢) v (v+9) coexist together, and this result parallels what has been
which clashes with the first feasibility conditio20Q) found in [25,9,10]. Further, the diseases do not alter the
for Es. behavior of the underlying demographic model. Therefore

the disease influence on the obligated mutualistic
ecoepidemic systems is clearly less relevant than in
ecoepidemic models with other types of population

In summary,Es is always unstable. Here too, Hopf
bifurcations are impossible, sindgh, —hg = 0 in term

of n gives interactions, in which instead the introduction of the
_ Cay—ad epidemic changes the stability of some of the equilibria,
ev—mB+ % Y : >0 e st

n:( B e¢\)}(e¢ g » 90 —B9) ; [27,28,29]. For facultative associations, it is instead
(e —gv—gd)g(v+¢) known that the results are in line with other ecoepidemic
while feasibility 0) yields systems of predatory interaction or competing nature,
[15). Thus, our future research in two-strained symbiotic
viev—mB+ep) systems will aim at removing the obligated mutualism

= (V+@)g ’ assumption and investigate its consequences.
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