
Appl. Math. Inf. Sci.9, No. 4, 1677-1685 (2015) 1677

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/090403

Two-Strain Ecoepidemic Systems: The Obligated
Mutualism Case
Chiara Bosica, Alessandra De Rossi∗, Noemi Lucia Fatibene, Matteo Sciarra and Ezio Venturino

Department of Mathematics “G. Peano”, University of Torino, via Carlo Alberto 10, I-10123 Torino, Italy

Received: 4 Oct. 2014, Revised: 4 Jan. 2015, Accepted: 5 Jan.2015
Published online: 1 Jul. 2015

Abstract: We present a model for obligated mutualistic associations,in which two transmissible diseases are allowed to infect just
one population. As the general model proves too hard to be fully analytically investigated, some special cases are analysed. Among
our findings, the coexistence of the two strains does not appear possible, under the model assumptions. Furthermore, in particularly
unfavorable circumstances the ecosystem may disappear. Inthis respect, an accurate computation of the basin of attraction of the origin
is provided using novel techniques. For this obligated mutualistic system the presence of the diseases appears to be less relevant than
in many other circumstances in ecoepidemiology, includingalso the case of facultative symbiotic associations.
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1 Introduction

Symbiotic associations occur frequently in nature,
although in population theory mathematical models focus
generally more on competing situations or predator-prey
interactions: the classical examples are the
anemone-damselfish and the ant-plant interactions
leading to pollination, [4]. In the latter context, for
instance moths (of genus Tegeticula) pollinate yuccas,
[3]. Other known associations involve mycorrizhal fungi,
fungus-gardening ants, mixed feeding flocks of birds
dispersing seeds ofCasearia corymbosain Costa Rica,
[17]. Commensalism and symbiotic populations have
been considered within food chains where some of the
other populations are in competition with each other, [18,
19,20,32,12,14,24]. A recent contribution along these
lines is [6], considering symbiotic models at various
trophic levels in food chains.

Ecoepidemiology is a rather recent field of study,
investigating the effect that epidemics have on the
underlying demographic populations interactions. Many
papers by now have been devoted to the study of
ecoepidemic systems based on predator-prey or
competing demographics. For an account of some of the
early developments in this field, see Chapter 7 of [21]. In
fact, diseases cannot be ignored in ecosystems. A whole
wealth of possible ailments affecting populations in

acquatic, terrestrial or avian environments is contained in
[13].

Specific examples involving populations living in
symbiosis can also be found, e.g. several mushrooms
(Cantharellus cibarius, Boletusspp.,Amanitaspp.) with
chestnut trees (Castanea sativa). The disease in this case
is represented by chestnut cancer (Endothia parasitica).
Symbiotic associations are common among bacteria
alone, [33], bacteria together with other organisms [5,26],
plants [23] and plants and mushrooms [22] and these
symbiotic systems may affect the whole ecosystem in
which they thrive, [11]. Other instances are the soil
nematode Caenorhabditis elegans, that transfers the
rhizobium speciesSinorhizobium melotitito the roots of
the legume Medicago truncatula [2,16], the L-form
bacteria in non-pathogenic symbiosis with several plants
that allow the latter to resist other bacterial pathogens
[31]. These considerations were the underlying
motivations for studying a symbiotic situation
encompassing diseases, [30]. The investigation has been
extended in [15], assuming a Holling type II term for the
possible mutual rewards of the symbiotic populations.

Other developments in epidemiology have dealt with
the case of two pathogens affecting together a host.
Ecoepidemic situations of this type that have been
investigate previously consist of two diseases that are
assumed to spread in a predator-prey community,
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affecting the predators, [25], or the prey, [9,10]. In this
paper, our aim is to further extend the work [15], by
considering different strains that affect the symbiotic
environment. Specifically, we consider a general
symbiotic model and some particular cases. The
fundamental assumption that relates the two diseases is
that they do not interfere with each other. This means that
they cannot both affect at the same time the same
individual, i.e. there is no coinfection, nor superinfection,
i.e. once an individual gets a disease, he is prevented from
being affected also by the other one. The mutualistic
association is obligated, i.e. without the other one, each
population would not thrive alone. Possible extensions
that are not discussed here are represented instead by
facultative mutualism; also the assumption that diseased
individuals do not receive benefits from interactions with
the other population could be removed.

The paper is organized as follows. We briefly discuss
the demographic model as a further reference, then
introduce in Section 3 the general model. As a complete
analysis is not possible, in Sections 4 and 5 we investigate
two particular cases, restricting somewhat the infected
from taking part in the association. A final discussion
concludes the paper.

2 Preliminaries

Before introducing the ecoepidemic models, for
comparison purposes, we briefly discuss their underlying
demographic model, i.e. the model without the infected
individuals,

dS
dt

=−nS+aSP,
dP
dt

=−mP+eSP. (1)

All parameters here and in the next Sections are always
assumed to be nonnegative. System (1) has only two
equilibria, the originÊ0 = (0,0) and the coexistence point
Ê1 = (me−1,na−1). It is very simple to write down its
JacobianJd,

Jd =

[
−n+aP aS

Pe −m+eS

]

and from its evaluation at̂E0 to find the eigenvalues−n
and−m, while the evaluation at̂E1 gives the eigenvalues
±√

mn. It follows that the coexistence equilibrium is
unstable, namely a saddle, and the origin is always stable.
Thus the phase plane is partitioned into two domains, one
for which the origin is an attractor, and the other one in
which the trajectories ultimately drift to infinity.
Therefore to prevent the system’s extinction, in practical
situations it is important to assess the basin of attraction
of the origin. To this end, based on the very recent
algorithm presented in [1,7], we show in Figure1 the
separatrix of these domains, obtained for the following set
of parameter valuesm= 5.0, e= 1.0, n= 6.0, a= 1.0.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10
m = 5.0; e = 1.0; n = 6.0; a = 1.0

 
S

P  

Fig. 1 The blue colored region represents the basin of attraction
of the origin in theSPphase plane.

The result is partly unsatisfactory, since from the
biological point of view the ecosystem is bound to
disappear, if the population levels are low, or better said if
they fall in the domain of attraction of the origin,
otherwise they explode. From the ecological point of view
this latter phenomenon is impossible, since finite
resources cannot sustain an ever increasing population.
However, it is imbedded in the assumptions of the model,
which are kept at a minimal number, in order to better
analyse the ecoepidemic models that follow and compare
their results with those of the underlying purely
demographic model. In this way the disease influence on
the environment transpires more clearly.

3 The general model

As before, letS andP be the two symbiotic populations.
We assume that two recoverable diseases spread by
contact among theS population, giving rise to infected
individuals of typeH and Y. We assume that there is
neither coinfection nor superinfection, i.e. whenever one
individual is infected by one strain, it cannot catch the
other disease and become infected with both, nor can he
get the second disease and the latter replace the first one.
The model, in which all parameters are assumed to be
nonnegative, reads

dS
dt

=−nS−λHS−βY S+aSP+ξH +ϕY, (2)

dH
dt

= λHS−µH −ξH +qHP,

dY
dt

= βY S−νY−ϕY+ rYP,

dP
dt

=−mP+eSP+ f HP+gY P.
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The first equation models the dynamics of theS
population. It dies out at an exponential raten, and
reproduces only in presence of the other mutualistic
population P, at rate a. By causal encounters with
infected individuals of typeH andY, a susceptible can
then become infected, at ratesλ and β respectively.
Finally, individuals of the latter two classes that recover
from the disease reenter the susceptible class.

The second equation considers the infectedH; they
are recruited among the susceptibles at rateλ , as
mentioned, they recover at rateξ and are subject to
natural plus disease-related mortalityµ . The third
equation contains a similar dynamics for the infectedY.
Note that in this case the total mortality rate is namedν
and the recovery rate is expressed by the parameterϕ .

Finally, the fourth equation shows the behavior of the
mutualistic populationP, which in absence of individuals
of the mutualistic population dies out at an exponential
ratem, and reproduces, when the symbiotic population is
present, at ratee.

The system’s equilibria are the following points. The
origin E0 = (0,0,0,0), and the coexistence equilibrium
E4 = (S4,H4,Y4,P4) with population values

S4 =
νq+ϕq− rµ− rξ

βq− rλ
, (3)

P4 =
µβ + ξ β −λ ν −λ ϕ

βq− rλ
,

H4 =
(ng+βm+ϕe)S4−βeS2

4−agP4S4−ϕm
(β f −λg)S4+ ξ g−ϕ f

,

Y4 =
eλS2

4− (mλ +eξ + f n)S4+a f S4P4+mξ
(β f −λg)S4+ ξ g−ϕ f

.

and thenE1 =
(
me−1,0,0,na−1

)
,

E2± =

(
z2,±,

1
f
(m−ez2,±),0,

1
q
(µ + ξ −λz2,±)

)
,

E3± =

(
z3,±,0,

1
g
(m−ez3,±),

1
r
(ν +ϕ −βz3,±)

)
,

wherez2,± are the roots of

R2(Z) ≡ (aλ f −λqe)Z2 (4)

+(nq f+λqm+ ξ qe−aµ f −aξ f )Z− ξ qm= 0.

while z3,± solve

R1(Z) ≡ (aβg−β re)Z2 (5)

+(nrg+β rm+ϕre−aνg−aϕg)Z−ϕrm= 0,

E0 areE1 always feasible.
To investigate feasibility ofE2+, let ∆2 be the

discriminant of (4). Imposing z2,+ > 0 we have
nq f + λqm− aµ f −

√
∆2 < ξ (a f − eq), which together

with the nonnegativity conditions for the remaining
populations, that givee < mz−1

2,+ and λz2,+ − ξ < µ ,
provides bounds forξ . Namely, for

f > max

{
µeq−λmq+

√
∆2

nq
,

µe2q+e
√

∆2

mλa+nqe

}
(6)

we find

nq f+λqm−aµ f −
√

∆2

a f −eq
< ξ (7)

<
nq f−mλq−aµ f −

√
∆2

a f −eq
+

2mλa f
e(a f −eq)

,

which to be consistent, requiresa f > eq.
In case instead that

µe2q+e
√

∆2

mλa+nqe
< f ≤ µeq−λmq+

√
∆2

nq
, (8)

we find the interval

2µeq−aµ f −nq f−λqm+
√

∆2

a f −eq
< ξ (9)

<
nq f−mλq−aµ f −

√
∆2

a f −eq
+

2mλa f
e(a f −eq)

,

which implies

f >
µe2q+e

√
∆2

mλa+nqe
,

if we take a f > eq, or a contradiction with (8) in the
opposite case. In summaryE2+ is feasible if

a f > eq (10)

together with either (6) and (7), or together with (9) and
(8). The inequality (8) to be true impliesµeaq−mλaq−
nq2e+a

√
∆2 > 0.

For E2− we have similar results. We need again (10)
together with the same two alternative sets of conditions
(6) and (7), or respectively (9) and (8), in which however
the plus sign in front of the square root is replaced by a
minus.

Note that when these two points,E2± coalesce, the
same feasibility conditions still hold, in a simplified form:
it is enough to set∆2 = 0 in all the previous formulae.

For the pair of equilibriaE3± similar steps lead to the
following feasibility conclusions. If we denote by∆3 the
discriminant of (5), for E3− we need

ag> er (11)

and

g> max

{
νer−βmr−

√
∆3

rn
,

νe2r −e
√

∆3

mβa+nre

}
(12)

together with

nrg+β rm−aνg+
√

∆3

ag−er
< ϕ (13)

<
2mβag−mβer+enrg−eaνg+e

√
∆3

e(ag−er)

or (11) together with

νe2r −e
√

∆3

mβa+nre
< g≤ νer−βmr−

√
∆3

nr
, (14)
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which requires

νera−mβar−nr2e−a
√

∆3 > 0,

and

ν(2er−ag)− r(ng+βm)−
√

∆3

ag−er
< ϕ (15)

<
mβ (2ag−er)+eg(nr−aν)+e

√
∆3

e(ag−er)
.

For E3+ again to obtain feasibility conditions it is enough
to change the signs of the square root terms, or to set it to
zero in case the two points coalesce.

To assess stability analytically is too complex. From
our simulations, it seems that all these points are unstable,
the system tending either to the origin, or eventually the
trajectories becoming unbounded.

To better analyse the system, we now turn to the
analysis of some simplified cases.

4 No intermingling with infected allowed

We make here the simplifying assumption that the second
population P does not interact with the infected both
strains of the populationS, because they can be
recognized and therefore avoided, for instance. This
corresponds to settingf = q = g = r = 0 in (2).
Explicitly, we thus have

dS
dt

=−nS−λHS−βYS+aSP+ ξ H+ϕY, (16)

dH
dt

= λHS− µH− ξ H,

dY
dt

= βYS−νY−ϕY,

dP
dt

=−mP+eSP.

In this case, however, there are only the two feasible
equilibria Q0 ≡ E0 = (0,0,0,0) and
Q1 ≡ E1 =

(
me−1,0,0,na−1

)
, that are always feasible.

They clearly coincide with those of (1), except that have
two dimensions, i.e. two populations, more, the infected,
although the latter are at zero level. We note thus that
either one of nor both the two diseases cannot survive in
this system, they are eradicated. From the
epidemiological point of view this is a very important
result, subject of course to the rather peculiar assumptions
of the underlying demographic model, i.e. Malthusian
growth, or in terms of ecosystem, of the fact that that this
is an obligated mutualism. The mathematical reason for
which equilibria with diseases at positive level are not
sustainable, is that the pointsQ∗

2 with only nonzero
populationsS∗2 = (ν + ϕ)β−1, Y2 = −nν−1S∗2 and Q∗

3
with the nonzero population levelsS∗3 = (µ + ξ )λ−1,
H∗

3 =−nµ−1S∗3 have both a negative component.

The Jacobian of (16) is

J =



−n−λH−βY+aP −λS+ ξ

λH λS− µ − ξ
βY 0
Pe 0

−βS+ϕ aS
0 0

βS−ν −ϕ 0
0 −m+eS


 .

Its evaluation atQ0 gives the eigenvalues−ν − ϕ ,
−n, −µ − ξ , −m, which are all negative. Thus the origin
is once again unconditionally stable. Evaluation atQ1
leads instead to the eigenvalues±√

mn,
(βm− νe− ϕe)e−1, (λm− µe− eξ )e−1. Since the first
two are those inherited from the corresponding
equilibrium Ê1, and one of them is positive, we conclude
that alsoQ1 is unstable. Thus the disease in this context
does not really change the system’s behavior.

Due to the threat of a vanishing ecosystem, a small
region of attraction of the origin is desirable. Reliable
procedures for its determination have been devised, by
computation of the separatrix surface, [8]. In Figure2 we
show the picture of the basin of attraction of the origin,
which lies below the surface, for the hypothetical
parameter valuesλ = 3, µ = 2.5, ξ = 2.4, m= 6., ν = 0.,
β = 0., a= 1, φ = 0., e= 1.5, n= 3.
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Fig. 2 The region below the surface represents the basin of
attraction in theSHPphase subspaceY = 0. The star represents
the projection of theQ1 ≡ E1 = (4,0,0,3) saddle point.
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5 Infected do not get reward from symbiosis

In this case theP population gains from the interactions
also with the infected individuals of the first one, but the
latter do not feel the benefit of the mutualism. In other
words, we set onlyr = q= 0 in (2). Thus, explicitly,

dS
dt

=−nS−λHS−βYS+aSP+ ξ H+ϕY, (17)

dH
dt

= λHS− µH− ξ H,

dY
dt

= βYS−νY−ϕY,

dP
dt

=−mP+eSP+ f HP+gYP.

The equilibria are now

Ẽ0 = (0,0,0,0), Ẽ1 =
(m

e
,0,0,

n
a

)
, (18)

Ẽ2 =

(
µ + ξ

λ
,
mλ −eµ −eξ

f λ
,0,

mλ µ −eµ2−eξ µ + f nµ + f nξ
f a(µ + ξ )

)
,

Ẽ3 =

(
ν +ϕ

β
,0,

mβ −eν −eϕ
gβ

,

mβ ν −eν2−eϕν +gnν +gnϕ
ga(ν +ϕ)

)
.

Again, note that two more disease-unaffected-population-
free equilibria with endemic disease are not feasible, and
coincide with those of the former model (16), E∗

2 ≡ Q∗
2 and

E∗
3 ≡ Q∗

3.
While the origin andẼ1 are always feasible, the

remaining points are only if some conditions hold.
Specifically, feasibility conditions can now be explicitly
stated as follows: for̃E2 we have

e≤ mλ
µ + ξ

, n≥ µ(eµ −mλ +eξ )
f (µ + ξ )

, (19)

while for Ẽ3 we find

e≤ mβ
ν +ϕ

, n≥ ν(eν −mβ +eϕ)
g(ν +ϕ)

. (20)

The system’s (17) Jacobian is

J =




J11 −λS+ ξ −βS+ϕ aS
λH λS− µ − ξ 0 0
βY 0 βS−ν −ϕ 0
Pe P f Pg J44


 ,

with J11=−n−λH−βY+aP, J44=−m+eS+ f H+gY.
It is easy to verify thatE0 andE1 retain the stability

properties respectively ofQ0 andÊ0, as well asQ1 andÊ1.
The eigenvalues of the Jacobian evaluated atẼ2 are

β µ +β ξ −νλ −ϕλ
λ

and the roots of the cubic monic polynomial (c3 = 1),
p(t) = ∑3

i=0cit i , with

c0 =
1
f λ

(eµ2 f n−e2µ3−2e2µ2ξ + (21)

2mλeµ2+2eµ f nξ −m2λ 2µ −mλ f nµ
2mλeξ µ −e2ξ 2µ +eξ 2 f n+mλ f nξ ),

c1 =
µ2e2−λeµ2+ µmλ 2−λeξ µ

f λ
+

−µmλe− µe f n+ µe2ξ −e f nξ
f λ

,

c2 =
ξ (mλ −eµ −eξ )

f (µ + ξ )
.

The Routh-Hurwitz stability criterion requires strict
positivity for the following quantities:

D2,1 = |c2| , D2,2 =

∣∣∣∣
c2 c0
c3 c1

∣∣∣∣ , D2,3 =

∣∣∣∣∣∣

c2 c0 0
c3 c1 0
0 c2 c0

∣∣∣∣∣∣
.

Now D2,1 > 0 is a consequence of the strict feasibility
condition (19).

ForD2,2 > 0, we have

D2,2 =
1

λ (µ + ξ ) f 2 (mλ −eµ −eξ )× (22)

(e2µ2ξ +e2ξ 2µ − f µ3e−λeµ2ξ +

−2e fµ2ξ − f eµξ 2− f neµξ −eλ µξ 2+

−meλ µξ − f enξ 2+n f2µ2+m fλ µ2+

+mλ 2µξ +m fλ µξ +2n f2µξ + f 2nξ 2).

The denominator is positive as well as the first factor, when
the first (19) is satisfied as a strict inequality. The second
factor is a quadratic in the parametere, whose roots we
indicate bye1 ande2. The second factor is positive for the
values:e< e2 or e> e1 in the case of real roots, (e2 < e1);
for everye 6= e1 in case of a double real root; for every
value ofe when the roots are complex.

Finally, to haveD2,3 > 0 we need

D2,3 =
1

λ 2(µ + ξ ) f 3 × (23)

(mλ −eµ −eξ )2(e2µ2ξ +e2ξ 2µ − f µ3e+

−λeµ2ξ −2e fµ2ξ − f eµξ 2− f neµξ +

−eλ µξ 2−meλ µξ − f enξ 2+n f2µ2+

+m fλ µ2+mλ 2µξ +m fλ µξ +

+2n f2µξ + f 2nξ 2)×
(eµ2−mλ µ +eξ µ − f nµ − f nξ )> 0.

Here too the denominator is positive, the first factor is
when

e 6= mλ
µ + ξ

,
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the second one coincides with the second one ofD2,2, the
third one is positive for

e>
mλ µ + f nµ + f nξ

µ(µ + ξ )
.

By combining all these cases we findD2,3 > 0 for the
following different cases

1.for different real roots of the second factor, we need
one of the following two alternative situations

e>
mλ µ + f nµ + f nξ

µ(µ + ξ )
, e 6= mλ

µ + ξ
, e< e2;

e> e1, e>
mλ µ + f nµ + f nξ

µ(µ + ξ )
, e 6= mλ

µ + ξ
,

or all the following conditions

e 6= mλ
µ + ξ

, e2 < e< e1, e<
mλ µ + f nµ + f nξ

µ(µ + ξ )
;

2.when there are two double roots, we need all the
following conditions

e 6= mλ
µ + ξ

, e 6= e1 ≡ e2, e>
mλ µ + f nµ + f nξ

µ(µ + ξ )
;

3.for complex roots instead the required conditions are

e 6= mλ
µ + ξ

, e>
mλ µ + f nµ + f nξ

µ(µ + ξ )
.

But none of these conditions can hold, namely:

–the conditionse2 < e< e1 cannot hold in view of the
requestD2,2 > 0;

–the remaining three cases require

e>
mλ µ + f nµ + f nξ

µ(µ + ξ )
(24)

=
mλ µ

µ(µ + ξ )
+

f n(µ + ξ )
µ(µ + ξ )

=
mλ

µ + ξ
+

f n
µ

>
mλ

µ + ξ
,

which contradicts the feasibility condition (19).

In conclusion,D2,3 cannot be positive, so that̃E2 is
unconditionally unstable for all parameter choices.

Note that Hopf bifurcations also cannot arise. We
would needc1c2 − c0 = 0, but solving it in terms of the
parametern, the value it must have so that purely
imaginary eigenvalues arise is

n=
(mλ −eµ −eξ )(eξ − f µ −λ ξ − f ξ )µ

(µ + ξ )( f µ + f ξ −eξ ) f
.

However, the feasibility condition (19) for Ẽ2 in terms of
n requires

n≥ µ(eµ −mλ +eξ )
f (µ + ξ )

.

Combining the two above conditions, we find

eξ − f µ −λ ξ − f ξ
eξ − f µ − f ξ

≥ 1,

which implieseξ − f µ − λ ξ − f ξ ≥ eξ − f µ − f ξ and
finally −λ ξ ≥ 0, which is impossible.

For Ẽ3 the situation is similar, we have one eigenvalue
as follows

ϕλ −β µ −β ξ +νλ
β

and the roots of the cubicq(t) = ∑3
i=0hit i with coefficients

h3 = 1 and

h0 =
1

gβ
(2mβeν2−e2ν3−2e2ν2ϕ + (25)

eν2gn+2eνgnϕ−e2ϕ2ν −m2β 2ν
+2mβeϕν −mβgnν −mβgnϕ +eϕ2gn),

h1 =
1

gβ
(ν2e2−βeν2+νmβ 2−βeϕν

+νe2ϕ −νmβe−νegn−egnϕ),

h2 =
ϕ(mβ −eν −eϕ)

g(ν +ϕ)
.

Once again,D3,1 = c2 > 0 follows from the strict first
feasibility condition (20). We then need the positivity of

D3,2 =

∣∣∣∣
c2 c0
c3 c1

∣∣∣∣

which gives

D3,2 =
1

g2(ν +ϕ)β
(mβ −eν −eϕ)× (26)

(e2ν2ϕ +e2ϕ2ν −eν3g−2eν2gϕ +

−eν2β ϕ −eνgϕ2−eϕ2νβ +

−mβeϕν −eνgnϕ −eϕ2gn+mβgν2

+ν2g2n+ϕmβ νg+mβ 2νϕ +2νg2nϕ
+g2nϕ2)> 0.

The denominator is positive, the first factor is also when
the first feasibility condition (20) is strictly satisfied. The
second factor is a quadratic ine, whose roots are denoted
e3 ande4. It is positive fore< e4 o e> e3 whene3 > e4 are
the two real roots. When they coincide, we neede 6= e3 ≡
e4; finally, for complex roots,D3,2 > 0 unconditionally.

The third Routh-Hurwitz condition requires

D3,3 =
1

g3(ν +ϕ)β 2 (mβ −eν −eϕ)2× (27)

(eν2−mβ ν +eϕν −gnν −gnϕ)×
(e2ν2ϕ +e2ϕ2ν −eν3g−2eν2gϕ +

−eν2β ϕ −eνgϕ2−eϕ2νβ +

−mβeϕν −eνgnϕ −eϕ2gn+

mβgν2+ν2g2n+ϕmβ νg

+mβ 2νϕ +2νg2nϕ +g2nϕ2)> 0.
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If we take

e 6= mβ
ν +ϕ

the sign ofD3,3 depends only on the last two factors, and
the last one is the second factor ofD3,2 so that we find
once again the rootse3 ed e4. The third factor is positive
whenever

e>
mβ ν +gnν +gnϕ

ν(ν +ϕ)
.

In summary,D3,3 > 0 in the following situations

1.for two real distinct rootse3 ande4 we either need both
the following conditions

e>
mβ ν +gnν +gnϕ

ν(ν +ϕ)
, e 6= mβ

ν +ϕ
, e< e2;

e> e1, e>
mβ ν +gnν +gnϕ

ν(ν +ϕ)
, e 6= mβ

ν +ϕ
,

or, alternatively, we can also have

e 6= mβ
ν +ϕ

, e2 < e< e1 e<
mβ ν +gnν +gnϕ

ν(ν +ϕ)
;

2.for real identical roots,e3 ≡ e4 we need

e 6= mβ
ν +ϕ

, e 6= e1 ≡ e2, e>
mβ ν +gnν +gnϕ

ν(ν +ϕ)
;

3.for complex roots, instead the requirement is

e 6= mβ
ν +ϕ

, e>
mβ ν +gnν +gnϕ

ν(ν +ϕ)
.

Again, none of the above conditions can hold. In fact,

–whenevere2 < e< e1, we contradict the statement that
D3,2 > 0;

–in the remaining cases we want

e>
mβ ν +gnν +gnϕ

ν(ν +ϕ)
(28)

=
mβ ν

ν(ν +ϕ)
+

gn(ν +ϕ)
ν(ν +ϕ)

=
mβ

(ν +ϕ)
+

gn
ν

>
mβ

(ν +ϕ)
which clashes with the first feasibility condition (20)
for Ẽ3.

In summary,Ẽ3 is always unstable. Here too, Hopf
bifurcations are impossible, sinceh1h2 − h0 = 0 in term
of n gives

n=
(eν −mβ +eϕ)(eϕ −gν −gϕ −β ϕ)ν

(eϕ −gν −gϕ)g(ν +ϕ)
,

while feasibility (20) yields

n≥ ν(eν −mβ +eϕ)
(ν +ϕ)g

,

which together with the former one implies

eϕ −gν −gϕ −β ϕ
eϕ −gν −gϕ

≥ 1

from which eϕ − gν − gϕ − β ϕ ≥ eϕ − gν − gϕ and
ultimately−β ϕ ≥ 0, once again an impossible condition.
The system therefore does not allow limit cycles.

6 Conclusions

We have proposed a two-strain model for an obligated
mutualistic ecoepidemic system. Although in its
generality we were unable to analyse all the equilibria
stability, except by means of numerical simulations, in the
two particular cases examined we have shown that no
stable equilibria other than the origin exist. This at first
sight appears not to be a good result from the ecological
point of view, since is states that in fact the ecosystem can
vanish. One must keep in mind though that as for the
underlying demographic model, a saddle in the phase
space is present, given byE1 or its equivalent points.
Therefore the system trajectories, as also shown by the
simulations, may instead very well grow unbounded.
When the initial conditions do not fall into its basin of
attractions, trajectories are repelled away from the saddle
point E1 in case of model (16) as well as from the
remaining equilibriãE2 andẼ3, when we consider model
(17) and in both cases tend to grow without bounds. This
is to be ascribed to the intrinsic limitations of the
demographic assumptions of the model, which underlie
the construction of the ecoepidemic model, or, in other
more biological words, to the quadratic type (Holling type
I) mutualistic interactions in the ecosystem. These results
should be compared with [30], where logistic growth is
assumed instead of an exponential mortality, i.e. the
symbiosis is not obligated. In such case the disease does
affect the system’s behavior, in some cases even favoring
the increment of the coexisting populations levels, at the
expense of having part of them infected.

We have also shown that the two strains cannot
coexist together, and this result parallels what has been
found in [25,9,10]. Further, the diseases do not alter the
behavior of the underlying demographic model. Therefore
the disease influence on the obligated mutualistic
ecoepidemic systems is clearly less relevant than in
ecoepidemic models with other types of population
interactions, in which instead the introduction of the
epidemic changes the stability of some of the equilibria,
[27,28,29]. For facultative associations, it is instead
known that the results are in line with other ecoepidemic
systems of predatory interaction or competing nature,
[15]. Thus, our future research in two-strained symbiotic
systems will aim at removing the obligated mutualism
assumption and investigate its consequences.
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