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Abstract: In 1927 W. A. Hurwitz showed that a row finite matrix is totallyregular if and only if it has at most a finite number of
diagonals with negative entries. He also proved that a regular Hausdorff matrix is totally regular if and only if it has all nonnegative
entries. In 1921 Hausdorff proved that the Hölder and Cesáro matrices are equivalent for eachα >−1. Basu, in 1949, compared these
matrices totally. In this paper we investigate these theorems of Hurwitz, Hausdorff, and Basu for the E-J and H-J generalized Hausdorff
matrices.
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Let A be an infinite matrix. Then the convergence
domain of A, cA, is the set of all real or complex
sequences{xn} for which An(x) := ∑k ankxk converges. A
matrix A is called conservative if its convergence domain
contains c, the space of convergence sequences.
Necessary and sufficient conditions for a matrixA to be
conservative are the well-known Silverman-Toeplitz
conditions:

(i) ‖A‖∞ = supn ∑k |ank|< ∞,
(ii) t := limn ∑k ank exists,
(iii) ak := limnank exists for eachk.
A matrix A is called regular if it preserves the limit

of every convergence sequence. Necessary and sufficient
conditions for regularity are

(i) ‖A‖∞ < ∞,
(ii) t = 1,
(iii) ak = 0 for eachk.
Considering only real sequences, a matrixA is said to

be totally regular if it is regular and preserves the points
at±∞; i.e., if xn → +∞ thenAn(x) →+∞ (andxn →−∞
implies thatAn(x)→−∞).

A matrix A is said to be row finite if each row ofA as
only a finite number of nonzero entries. In 1927 W. A.
Hurwitz [8] proved that a row finite regular matrixA is
totally regular if and only if it has a finite number of
columns containing negative elements; i.e., there exists a
k0 ≥ 0 such thatank ≥ 0 for eachn and eachk≥ k0.

A Hausdorff matrixH = (hnk) is a lower triangular
matrix with entries

hnk =

(

n
k

)

∆n−kµk,

where {µn} is any sequence and∆ is the forward
difference operator defined by∆ µk = µk − µk+1 and
∆n+1µk = ∆(∆nµk). Every Hausdorff matrix has row
sums equal toµ0.

They were defined by F. Hausdorff [6], who showed,
among other things, that a Hausdorff matrix is
conservative if and only ifµn has the representation

µn =
∫ 1

0
xndχ(x), (1)

whereχ(x) is a function of bounded variation over[0,1].
The functionχ is called the mass function associated with
the µn and {µn} is called the moment generating
sequence for the corresponding Hausdorff matrix. The
same terminology is used for generalizations of Hausdorff
matrices.

If a Hausdorff matrix has finite norm, then it is
conservative and all of the column limits, except possibly
the first, are zero.

Hurwitz [8] also proved that a regular Hausdorff matrix
is totally regular if and only if it has all nonnegative entries.

A lower triangular matrixA with each ann 6= 0 is
called a triangle. Two regular trianglesA andB are said to
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be totally equivalent if bothAB−1 and BA1− are totally
regular. Basu [3] showed that two regular Hausdorff
triangles are totally equivalent if and only if they are
identical. Since it is known thatCα andHα , the Cesàro
and Hölder matrices of orderα > −1, respectively, are
equivalent, Basu’s result motivates the study of the
following question. Given two equivalent regular
Hausdorff matrices, which is totally stronger? Basu [3]
answered this question for the Hölder and Cesàro
matrices.

Theorem 1.(a) For −1 < α < 0, Hα is totally stronger
(t.s.)than Cα .

(b) For 0< α < 1, is t.s. Hα .
(c) For 1< α < ∞ Hα is t.s. Cα .

There are two well-known generalizations of
Hausdorff matrices. One of these was defined
independently by Endl [4] and Jakimovski [9], and are
called the E-J generalized Hausdorff matrices. For any

α ≥ 0, the entries of an E-J matrixH(α) = (h(α)
nk ) are

defined by

h(α)
nk =

(

n+α
n− k

)

∆n−kµ (α)
k , 0≤ k≤ n.

The caseα = 0 reduces to the ordinary Hausdorff
matrices.

For a conservative E-J matrix, theµ (α)
n satisfy the

condition

µ (α)
n =

∫ 1

0
xn+αdχ(x),

whereχ ∈ BV[0,1]. Let {λn} be defined by

0= λ0 < λ1 < · · ·< λn < · · · ,

such that

∑
k

1
λk

= ∞.

Hausdorff [7] defined another class of generalized
Hausdorff matricesH(µ ;λ ) = h(µ ;λ )nk with nonzero
entries

h(µ ;λ )nk = λk+1 · · ·λn[µk, . . . ,µn], 0≤ k≤ n,

where[·] is the divided difference operator defined by

[µk,µk+1] =
1

λk+1−λk
(µk− µk+1),

and

[µk, . . . ,µn+1] =
1

λn+1−λk
([µk, . . . ,µn]− [µk+1, . . . ,µn+1]).

An H-J matrix is conservative if and only if theµn have
the representation

µn =

∫ 1

0
xλndχ(x), (2)

whereχ ∈ BV[0,1]. Jakimovski [9] extended this class to
consider the cases in whichλ0 > 0. Therefore it is
appropriate to call these generalized Hausdorff matrices
the H-J matrices.

The H-J generalization reduces to the E-J class by
choosingλn = n+α, and to ordinary Hausdorff matrices
by choosingλn = n.

One of the important programs has been to extend
known properties for Hausdorff matrices to the E-J or H-J
generalizations. In this paper we continue that study by
extending some of the results of Hurwitz and Basu to E-J
and H-J matrices.

A sequence is called totally monotone if all of the
successive forward differences are nonnegative; i.e.,
∆nµk ≥ 0 for all n andk. The corresponding statement for
H-J sequences is that[µk, . . . ,µn]≥ 0 for all n andk.

Our first result is to show that every totally regular H-J
matrix has all nonnegative entries. The method of proof is
different from that of Hurwitz.

Theorem 2.Let H be a regular H-J matrix. Then H is
totally regular if and only if H has all nonnegative entries.

Proof.Let H be a totally regular H-J matrix. Then, from
Hurwitz [8], there exists an integerk0 ≥ 0 such thathnk≥ 0
for all n and allk≥ k0. Assuming thatk0 is positive and the
smallest such integer, chooseN to be the smallest value of
n such thathN,k0−1 < 0. Then, from the definition of the
entries of an H-J matrix,

hN+1,k0−1−hN,k0−1

= λk0 · · ·λN+1[µk0−1, . . . ,µN+1]−λk0 · · ·λN[µk0−1, . . . ,µN]

= λk0 · · ·λN

{

λN+1([µk0−1, . . . ,µN+1]− [µk0−1, . . . ,µN]
}

= λk0 · · ·λN

{λN+1[µk0−1, . . . ,µN]− [µk0, . . . ,µN+1]

λN+1−λk0−1

− [µk0−1, . . . ,µN]
}

=
λk0 · · ·λN

λN+1−λk0−1

{

λk0−1[µk0−1, . . . ,µN]−λN+1[µk0, . . . ,µN+1]
}

.

SincehN,k0−1 < 0, [µk0−1, . . . ,µN]< 0. SincehN+1,k0 >
0, [µk0, . . . ,µN+1] > 0. ThereforehN+1,k0−1− hN,k0−1 < 0
i.e.,hN+1,k0−1 < hN,k0−1.

Assuming thathN+n,k0−1 < 0 it can be shown, in the
same manner, thathN+n+1,k0−1 < 0, and therefore
hN+n,k0−1 is a monotone decreasing negative sequence.
Hence

limnhN+n,k0−1 ≤ hN,k0−1 < 0,

contradicting the fact that, sinceH is regular, every column
limit must be zero. Consequently columnk0− 1 also has
all nonnegative terms. Continuing this process it follows
thatH has all nonnegative entries.

The converse is trivial.

Corollary 1.Let H(α) be a regular E-J matrix. Then H(α)

is totally regular if and only if H(α) has all nonnegative
entries.
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Proof.In Theorem 1 setλn = n+α.

Corollary 2.Let H be a regular Hausdorff matrix. Then
His totally regular if and only if H has all nonnegative
entries.

Proof.In Corollary 2 setα = 0.

Corollary 2 is Theorem 6 of [8].
We shall now extend the result of Basu [3] to H-J

matrices.

Theorem 3.Two H-J triangles are totally equivalent if and
only if one is a positive scalar multiple of the other.

Proof.For brevity of notation, letHα andHβ denote two
totally equivalent H-J triangles with entries

hnk = λk+1 · · ·λn[αk, . . . ,αn],

and
h′nk = λk+1 · · ·λn[βk, . . . ,βn],

respectively.
From the definition of total equivalence,HαH−1

β and

Hβ H−1
α are both totally regular. By Theorem 1 they have

all nonnegative entries. In particular, for eachn∈ N,

(HαH−1
β )n,n−1 = λn

[αn−1

βn−1
,

αn

βn

]

=
λn

λn−λn−1

(αn−1

βn−1
−

αn

βn

)

≥ 0,

which implies that

αn−1

βn−1
≥

αn

βn
. (3)

Similarly,

(Hβ H−1
α )n,n−1 = λn

[βn−1

αn−1
,

βn

αn

]

≥ 0,

which implies that

βn−1

αn−1
−

βn

αn
≥ 0. (4)

Combining (3) and (4) gives

αn

βn
≥

αn−1

βn−1
≥

αn

βn
,

which implies that

αn

βn
=

αn−1

βn−1
.

In particular,
αn

βn
=

α0

β0
. (5)

Sinceα0 andβ0 are positive,Hα is a positive scalar
multiple ofHβ .

The converse is trivial.

Corollary 3.Let Hµ and Hγ be two totally regular H-J
triangles withλ0 = 0. Then they are totally equivalent if
and only if they are identical.

Proof.Sinceλ0 = 0, as shown by Hausdorff [7], the row
sums ofHαandHβ areα0 andβ0, respectively. Since the
matrices are regular,α0 = β0 = 1, and the result follows
from equation (5).

Corollary 4.Let H1 and H2 be two totally regular
Hausdorff triangles. Then they are totally equivalent if
and only if they are identical.

Proof.In Corollary 3 setλn = n for eachn.

Corollary 4 is Lemma 2 of Basu [3].

Corollary 5.Two E-J triangles are totally equivalent if and
only if one is a positive scalar multiple of the other.

Proof.In Theorem 3 setλn = n+α.

It is well known that, for everyα > β > −1, Cα is
totally stronger thanCβ , and that, forα > β ≥ 0,Hα t.s.Hβ ,
whereCα andHα denote the Cesàro and Holder matrices,
respectively. We shall now show that the same conclusion
holds for the H-J analogues.

Theorem 4.(a) Let α > β > −1. Then
C(λ ;α)t.s.C(λ ;β ).
(b) Letα > β > 0. Then H(λ ;α)t.s.H(λ ;β ).

Proof.The moment generating sequence forC(λ ;α) is

µn =
∫ 1

0
tλnα(1−α)α−1dt =

Γ (λn+1)αΓ (α)

Γ (λn+α +1)
.

Therefore the generating sequence for
C(λ ;α)(C(λ ;β ))−1 is

ρn =
Γ (λn+1)Γ (α +1)

Γ (λn+α +1)
Γ (λn+β +1)

Γ (λn+1)Γ (β +1)

=
Γ (α +1)

Γ (β +1)Γ (1−β )
Γ (λn+β +1)Γ (α −β )

Γ (λn+α +1)

=
Γ (α +1)

Γ (β +1)Γ (1−β )

∫ 1

0
tλn+β (1− t)α−β−1dt

=

∫ 1

0
tλndχ(t),

where

dχ(t) =
Γ (α +1)tβ (1− t)α−β−1

Γ (β +1)Γ (α −β )
,

andχ is increasing over [0, 1]. Therefore{ρn} is totally
monotone.

(b). Letεn denote the moment generating sequence for
H(λ ;α). Then

εn =

∫ 1

0
tλn

(

log
(1

t

))α−1
dt =

Γ (α)

(λn+1)α ,
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and the moment generating sequence for
H(λ ;α)(H(λ ;β )−1 is

τn =
Γ (α)

(λn+1)α
(λn+1)β

Γ (β )
=

Γ (α)

Γ (β )(λn+1)α−β ,

which is clearly totally monotone.

Basu ([3]) compared totally the Cesàro and Hölder
matrices of the same orderα for α > −1. We shall now
extend this result to E-J matrices.

Theorem 5.Let α ≥ 0. (i) For −1 < β < 0, H(α)
β t.s.

C(α)
β .

(ii) For 0≤ β < 1, C(α)
β t.s. H(α)

β .

(iii) For 1≤ β , H(α)
β t.s. C(α)

β .

The method of proof will make use of Theorem 1 of
[10], which reads as follows:

Lemma 1.Let µ = {µn} be a real positive sequence, f(t)
a function of class C∞ for t > 0 such that f(k) = µk,k =
0,1,2, . . . ,g(t) = f (t)/ f (t + 1),h(t) = (−1)g′(t)/g(t). If
limt→∞ g(t)≥ 1,g(t)> 0, and h(t) is totally monotone for
t > 0, thenµ is a totally monotone sequence.

Let µn denote the moment generating sequence for

H(α)
β (C(α)

β )−1. Then

µn =
Γ (n+α +β +1)

Γ (β +1)(n+α +1)βΓ (n+α +1)
.

Let

g(t) =
(t +α +2)β

(t +α +1)β−1(t +α +β +1)
.

Then

h(t) := (−1)g′(t)
g(t) = (β−1)

(t+α+1) +
1

(t+α+β+1) −
β

t+α+2.
(6)

The corresponding mass function is

φ(u) = (β −1)u+
uβ+1

β +1
−

βu2

2
.

which satisfies

dφ
du

= β −1+uβ −βu,

and
d2(φ)
du2 = βuβ−1−β = β (uβ−1−1).

Case I.−1 < β < 0. Thend2φ/du2 < 0 anddφ/du
is monotone decreasing inu. Sincedφ/du(1) = 0, φ is
totally monotone.

Case 2. 1≤ β . (Assume thatβ > 1, since the two
matrices are identical forβ = 1.) Againd2φ/du2 < 0 and
dφ/du(1) = 0, so againφ is totally monotone.

Case 3. 0≤ β < 1. (Assume thatβ > 0 since, for
β = 0, both matrices reduce to the identity matrix.) In
analyzing 1/µn, the correspondingh-function is equal to
−h. Therefore, from (6),

d(−φ)
du

= 1−β −uβ +βu,

and

d2(−φ)
du2 =−βuβ−1+β = β (1−uβ−1)> 0.

Then d(−φ)/du is monotone increasing inu. Since
d(−φ/du)(0) = 1−β > 0,−φ(u) is totally monotone.

Theorem 6.For eachα,β ,δ > 0 C(α)
δ and C(β )δ are totally

equivalent.

Proof.From Theorem 1 of [2] the matrices are equivalent.
They are also totally regular. WithCδ denoting the
ordinary Hausdorff Cesáro matrix of orderδ , it was

shown in the proof of Theorem 1 thatC(α)
δ andCδ are

equivalent. That fact was proved by showing that

C(α)
δ (Cδ )

−1 is a diagonal matrix with positive entries,
with the limit of the diagonal entries one. Therefore

Cδ (C
(α)
δ )−1 is a diagonal matrix with positive entries with

diagonal limit one.
For anyα,β > 0, we may write

C(α)
δ (C(β )

δ )−1 = (C(α)δ (Cδ ))
−1)(C(δ )(C

(β )
δ )−1),

the associativity of multiplication being guaranteed since
the matrices are triangles. It then follows that

C(α)
δ (C(β )

δ )−1 and its inverse are each diagonal matrices
with positive entries and limit one. Therefore the two
matrices are totally equivalent.
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