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Abstract: In 1927 W. A. Hurwitz showed that a row finite matrix is totablggular if and only if it has at most a finite number of
diagonals with negative entries. He also proved that a aedddusdorff matrix is totally regular if and only if it had abnnegative
entries. In 1921 Hausdorff proved that the Holder and @estatrices are equivalent for eaah> —1. Basu, in 1949, compared these
matrices totally. In this paper we investigate these thesref Hurwitz, Hausdorff, and Basu for the E-J and H-J geierdIHausdorff
matrices.
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Let A be an infinite matrix. Then the convergence A Hausdorff matrixH = (hnk) is a lower triangular
domain of A, ca, is the set of all real or complex matrix with entries
sequences$x, } for which An(X) := S anXk converges. A n
matrix A is called conservative if its convergence domain Ak = ( )Ankllk,
contains ¢, the space of convergence sequences. k
Necessary and sufficient conditions for a ma#ito be

conservative are the well-known Silverman-Toeplitz where {{in} is any sequence and is the forward

difference operator defined b@p, = p — k1 and

Con(?lmons. Ay = A(AMuy). Every Hausdorff matrix has row
(@) [[Alleo = sup, Y [ank| < e, sums equal tqio.
(i) t:=Ilimn Y ankexists, They were defined by F. Hausdor8][ who showed,
(i) ay = limpan exists for eachk. among other things, that a Hausdorff matrix is

A matrix A is called regular if it preserves the limit conservative if and only ifi has the representation

of every convergence sequence. Necessary and sufficient 1

conditions for regularity are Un = /o x'dx (x), 1)
M) Al <o, . . .
(i) t=1 wherex (x) is a function of bounded variation ov§, 1].

(i) a= O for eachk The functiony is called the mass function associated with
R ‘ o the pun and {u,} is called the moment generating

Considering only real sequences, a makis said to  sequence for the corresponding Hausdorff matrix. The

be totally regular if it is regular and preserves the pointssame terminology is used for generalizations of Hausdorff

at +o0; i.e., if Xy — +00 thenAy(X) — 400 (andxpy — —o0 matrices.

implies thatAn(x) — —oo). If a Hausdorff matrix has finite norm, then it is
A matrix A is said to be row finite if each row & as  conservative and all of the column limits, except possibly

only a finite number of nonzero entries. In 1927 W. A. the first, are zero.

Hurwitz [8] proved that a row finite regular matriX is Hurwitz [8] also proved that a regular Hausdorff matrix

totally regular if and only if it has a finite number of istotally regularif and only if it has all nonnegative ep#i

columns containing negative elements; i.e., there exists a A lower triangular matrixA with eachan, # 0 is

ko > 0 such thah, > 0 for eachn and eactk > kg. called a triangle. Two regular triangldsandB are said to
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be totally equivalent if bottAB~1 and BAl~ are totally
regular. Basu 3] showed that two regular Hausdorff
triangles are totally equivalent if and only if they are
identical. Since it is known tha€? andH?, the Cesaro
and Holder matrices of order > —1, respectively, are

wherey € BV|0,1]. Jakimovski P] extended this class to
consider the cases in whichg > 0. Therefore it is
appropriate to call these generalized Hausdorff matrices
the H-J matrices.

The H-J generalization reduces to the E-J class by

equivalent, Basu’s result motivates the study of thechoosingh, = n+ a, and to ordinary Hausdorff matrices

following question. Given two equivalent regular
Hausdorff matrices, which is totally stronger? Bag&] [

by choosing\n, = n.
One of the important programs has been to extend

answered this question for the Holder and Cesarcknown properties for Hausdorff matrices to the E-J or H-J

matrices.

Theorem 1.(a) For —1 < a < 0, HY is totally stronger
(t.s.)thanC".
(b)ForO<a < 1,ist.s. H.
(cForl<oa<woHYists. C.

There are two well-known generalizations of
Hausdorff matrices. One of
independently by Endl4] and Jakimovski 9], and are

these was defined

generalizations. In this paper we continue that study by
extending some of the results of Hurwitz and Basu to E-J
and H-J matrices.

A sequence is called totally monotone if all of the
successive forward differences are nonnegative; i.e.,
A"y > 0 for all n andk. The corresponding statement for
H-J sequences is thgiy, ..., tun] > 0 for all n andk.

Ouir first result is to show that every totally regular H-J
matrix has all nonnegative entries. The method of proof is

called the E-J generalized Hausdorff matrices. For anydifferent from that of Hurwitz.

a > 0, the entries of an E-J matridy) = (hf]i)) are
defined by

h(a) _

" <n+ a)A”kulia), o<k<n.

n—k

The casea = 0 reduces to the ordinary Hausdorff
matrices.
For a conservative E-J matrix, tm@ satisfy the

condition L
/ X" dx (x),
0

wherex € BV[0,1]. Let {A,} be defined by

Y =

0=Ag <A1 < - <Ap< -+,

1
— — 00,
25
Hausdorff [7/] defined another class of generalized

Hausdorff matricesH(u;A) = h(u;A)nk with nonzero
entries

such that

h(ll;/\)nk:)\k+l"')\n“1ka---7lln]7 OSkSnv

where[] is the divided difference operator defined by

[k, 1 ]—;(u — Hk+1)
ks Mk+1 )\k+1_)\k k k+1)»

and

[ukv LR Un+1] = ([Uk7 sy Un] - [ukJrlv R “n+1])'

)\n+l_ )\k

An H-J matrix is conservative if and only if the, have
the representation

1
=[x () 7

Theorem 2.Let H be a regular H-J matrix. Then H is
totally regular if and only if H has all nonnegative entries.

ProofLet H be a totally regular H-J matrix. Then, from
Hurwitz [8], there exists an integég > 0 such thah,, >0
forallnand allk > kg. Assuming thakg is positive and the
smallest such integer, chooNdo be the smallest value of
n such thathy x,—1 < 0. Then, from the definition of the
entries of an H-J matrix,

ANGLko—1 — PN ko —1
=M AN [Mig—15 -+ BNt 2) — Ak - - AN [Hig—15 - - - IN]

=g ')\N{)\N+1([“ko—l7 s Nt = (M- 15 - - 7I1N]}

B AN+1[Hig—15 - - HN] — [Higs - - - UN+1]
—/\ko"')\N{ T
- “"lkoflw' '7“N]}
Mg M

= m{/\ko—l[ﬂl@—b ooy IN] = ANg2 Mg - - ~7HN+l]}~

Sincehy ;-1 <0, [Hig—1, - - -, Un] < 0. Sincehn1x, >
0, [[Jko, R UN+1] > 0. ThereforehNJrl,ko,l — hN,kofl <0
ie., hN+1,ko—1 < hN7|<0_1.

Assuming thatn;nk,—1 < 0 it can be shown, in the
same manner, thahnini1x,-1 < 0, and therefore
hninko—1 IS @ monotone decreasing negative sequence.
Hence

liMnhnnkg-1 < Pnkg-1 <0,

contradicting the fact that, siné¢is regular, every column
limit must be zero. Consequently colurkgm— 1 also has
all nonnegative terms. Continuing this process it follows
thatH has all nonnegative entries.

The converse is trivial.

Corollary 1.Let H@ be a regular E-J matrix. Then {4)
is totally regular if and only if H%) has all nonnegative
entries.
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Proofln Theorem 1 sed, =n+a.

Corollary 2.Let H be a regular Hausdorff matrix. Then
His totally regular if and only if H has all nonnegative
entries.

Proofln Corollary 2 setr = 0.

Corollary 2 is Theorem 6 ofg].
We shall now extend the result of Basg] fo H-J
matrices.

Theorem 3.Two H-J triangles are totally equivalent if and
only if one is a positive scalar multiple of the other.

ProofFor brevity of notation, leH, andHg denote two
totally equivalent H-J triangles with entries
. )\n[ak, ey

Pk = Akg1 - Qnl,

and

An[B - - Bl

N = Ao -

respectively.

From the definition of total equivalenclslo,Hﬁ‘1 and

Corollary 3.Let H, and H, be two totally regular H-J
triangles withAg = 0. Then they are totally equivalent if
and only if they are identical.

ProofSinceAg = 0, as shown by Hausdorff7], the row
sums ofHgzandHg areap and o, respectively. Since the
matrices are regulagy = Bp = 1, and the result follows
from equation (5).

Corollary4.Let H; and H be two totally regular
Hausdorff triangles. Then they are totally equivalent if
and only if they are identical.

Proofln Corollary 3 setA, = n for eachn.

Corollary 4 is Lemma 2 of Bas.g].

Corollary 5.Two E-J triangles are totally equivalentif and
only if one is a positive scalar multiple of the other.

Proofln Theorem 3 sed, =n+a.

It is well known that, for everya > 3 > —1,Cy is
totally stronger thafg, and that, for > 8 > 0,Hgt.s.Hg,

HgHg ! are both totally regular. By Theorem 1 they have whereCq andHg denote the Cesaro and Holder matrices,

all nonnegative entries. In particular, for eath N,

On-1 an}

(HaHg nn-1=An| 575

respectively. We shall now show that the same conclusion
holds for the H-J analogues.

Theorem4.(a) Let
C(A;a)t.s.C(A;B).

a > B > —-1. Then

An Qn-1 0On
=—(———=—1]2>0, b) Leta > B >0. ThenHA;a)t.sH(A;B).
o )2 (b) B HA @)t H(A;B)
which implies that ProofThe moment generating sequence@oA ; o) is
Q-1 On /1 A a-1 r(An+l)arl (a)
3 =/ t"a(l-a dt=——-—"—"-—--.
Bn—l Bn ®) Hn 0 ( ) rAin+a+1)
Similarly, Therefore  the  generating  sequence  for
. . —-1;
=] B2, B 5 C(Aa)(C(A:B)) s
p On 1’ an % T+ Dr(a+1) FA+B+1)
which implies that " T(nt+a+l) TA+Dr(B+1)
8 B B MNa+1) FAn+B+1)r (a—P)
a”—*i—a—“zo. (4) r(3+1) (1-B) T(Mta+1)
. o (a + 1 t’\nﬂ’ )a—B-1dt
Combining (3) and (4) gives (B +1r
On _ Op1 _ On 1
—> >, = [ tindx(t),
Bn Bn—l Bn /0 X( )
which implies that where
B(1—t)a—B-1
o _ Gns ax() = LT
Bn Boi . ' B+l (a—B) |
In particular, andx is increasing over [0, 1]. ThereforRe,} is totally
an o monotone. .
Bn = Bo’ (5) (b). Letey denote the moment generating sequence for
no 0 H(A;a). Then
Sinceag and 3y are positive H, is a positive scalar
multiple ofHg. Lo a-1 r(a)
The converse is trivial. €n :/0 t (Iog (f)) dt= (Ant 1)
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and the moment generating sequence for Case 2. I< 8. (Assume thaf3 > 1, since the two
HA;a)(H(A;B) Lis matrices are identical fg8 = 1.) Againd®¢/dw? < 0 and
dg/du(1) =0, so againp is totally monotone.
r(a) (An+1)P B [(a) Case 3. X 8 < 1. (Assume thaf3 > 0 since, for

Tn:

An+D% T(B) T (B)(An+1)0F

which is clearly totally monotone.

Basu (B]) compared totally the Cesaro and Holder
matrices of the same order for o > —1. We shall now
extend this result to E-J matrices.

Theorem5.Lleta > 0. () For —1 < B <0, Héa) t.s.
cyr.
(i) Foro<p <1, ts H.

(i) For1<p, Hy ts .G

The method of proof will make use of Theorem 1 of
[10Q], which reads as follows:

Lemma l.Let u = {un} be a real positive sequence(t f
a function of class € for t > 0 such that fk) = .k =

0,1,2,....9(t) = f(t)/f(t+1),h(t) = (=1)g'(t)/9(t). If
limi—e g(t) > 1,9(t) > 0, and ht) is totally monotone for
t > 0, thenyu is a totally monotone sequence.

Let u, denote the moment generating sequence fo
HE(CY)~%. Then

Uy — Fn+a+p+1)
" TB+1)(+a+1)Pr(n+a+1)
Let
t) = (t+a+2)F
g C (t+a+ 1B t+a+B+1)
Then
_ g _ _(B-1) 1
h(t) = (=1 gty — (t+a+1) + (t+a+B+1) t+or+(2')
6
The corresponding mass function is
uB+1 w2
o) = (B~ Du+ 5~ -
which satisfies
o 5 1. 8-
E_B 1+ uP — Bu,
and (o)
P) _puB-1_g—pfl_
G =B -B=p ).

Case l.—1 < B < 0. Thend?¢/di? < 0 anddg/du
is monotone decreasing in Sincedg/du(l) =0, @ is
totally monotone.

B = 0, both matrices reduce to the identity matrix.) In
analyzing ¥ un, the corresponding-function is equal to
—h. Therefore, from (6),

d(—¢)

—1_-B_UF
a0 1-B—uP+ Bu,

and
d*(—9)
du?

Thend(—¢)/du is monotone increasing in. Since
d(—¢/du)(0) =1— > 0, —¢(u) is totally monotone.

= BB =BL-uF Y >0

Theorem 6.For eacha, 3,0 > OCéa) and C%B) are totally
equivalent.

ProofFrom Theorem 1 of7] the matrices are equivalent.
They are also totally regular. WitlCs denoting the
ordinary Hausdorff Cesaro matrix of order, it was

shown in the proof of Theorem 1 th@é") andCs are
equivalent. That fact was proved by showing that
rCéa)(Cg)*l is a diagonal matrix with positive entries,
with the limit of the diagonal entries one. Therefore
C(;(C((;”))—1 is a diagonal matrix with positive entries with
diagonal limit one.

For anya,3 > 0, we may write

(C(a)5(C) 1) (Ca)(CF) ),

the associativity of multiplication being guaranteed sinc
the matrices are triangles. It then follows that

Céa)(cém)*l and its inverse are each diagonal matrices
with positive entries and limit one. Therefore the two
matrices are totally equivalent.
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