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Abstract: The aim of the present work is to study the periodic structureof the restricted three–body problem considering the effect of
the zonal harmonicsJ2 andJ4 for the more massive body. We show that the triangular pointsin the restricted three–body problem have
long or short periodic orbits in the range 0≤ µ < µc. We also present a graphical analysis for the variations of the angular frequencies
for the long and short periodic orbits computing explicitlythe expressions of the lengths of the semi–major and semi–minor axes and
determining the orientations of the principal axes for the ellipses that represent periodic orbits. Moreover, the secular solution when
µ = µc is stated and it is proved that the triangular points have periodic orbits in this case too. This model has special significance in
space missions either to place telescopes or for dispatching satellites and exploring vehicles.
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1 Introduction

There are many motivations for studying periodic orbits
in the framework of the restricted–three body problem,
some of them are the following: For this model it is
always possible to find a periodic solution for any
particular solution. Also asymptotic and periodic
solutions can be obtained from linearized solutions of the
motion in the proximity of the libration points. It is clear
that it is not possible to describe completely all the
solutions for this problem as a consequence of the
non–integrability. But, the study of the periodic orbits is
considered as a matter of great interest and a starting
point for attacking the problem of classifying solutions.
Furthermore, the study of periodic orbits provides us
interesting information on spin–orbits and orbital
resonances. Therefore many researchers have devoted
their efforts for studying the existence of libration points
and their stability as well as the periodic orbits in the
framework of the restricted problem under the effects of

oblateness, triaxiality, radiation pressure force, small
perturbations in centrifugal and Coriolis forces.

Some of these works will be stated in the sequel and
provide a photography of the “state of the art” for this
problem. Sharma [20] studied the stationary solutions of
the planar restricted three–body problem when the bigger
primary is radiating as well as the smaller primary is an
oblate spheroid with its equatorial plane coinciding with
the plane of motion. It was stated that the collinear points
have conditional retrograde elliptical periodic orbits inthe
linear sense, while the triangular points have long or short
periodic retrograde elliptical orbits when the parameter of
mass in the range 0≤ µ < µcrit .

Elipe and Lara [8] studied the periodic orbits when
both the primaries are radiating in the restricted problem.
Several families of periodic orbits in two and three
dimensions were found. In addition, Ishwar and Elipe
[10] found the secular solutions at the triangular points in
the generalized photogravitational restricted three–body
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problem. [10] generalizes the problem considering that
the bigger primary is a source of radiation and the smaller
primary is an oblate spheroid. It was observed that the
triangular points have long or short–period retrograde
elliptical orbits.

The motion around the collinear equilibrium points of
restricted three–body problem was studied when the
larger primary is a source of radiation and the second
primary is an oblate spheroid by Tsirogiannis et al. [24].
A third–fourth order Lindstedt–Poincaré local analysis
type and predictor–corrector algorithms are use for the
computation of the Liapunov families of two and three
dimensional periodic orbits. Also the stability of these
families is studied.

Mittal et. al. [14] studied periodic orbits generated by
Lagrangian solutions of the restricted three–body problem
when one of the primaries is an oblate spheroid. They
used mobile coordinates to determine the periodic orbits
for different values ofµ , h andA where these parameters
represent the mass ratio of the two primaries, the energy
constant and oblateness factor respectively. Using the
predictor–corrector method such orbits are represented
and, by taking some fixed values of three previous
parameters, the effect of the oblateness is studied.

Singh and Begha [22] studied the existence of
periodic orbits around the triangular points in the
restricted three–body problem when the bigger primary is
a triaxial, the smaller primary is considered as an oblate
spheroid, working in the range of linear stability with the
perturbed forces of Coriolis and centrifugal. It is deduced
that long and short periodic orbits exist around these
points and their periods, orientation and eccentricities are
affected by the non sphericity and the perturbation in
Coriolis and centrifugal forces.

Abouelmagd and El–Shaboury [4] studied periodic
orbits around the triangular points when the three
participating bodies are oblate spheroids and the
primaries are radiating. It was found that these orbits are
elliptical, the frequencies of long and short orbits of the
periodic motion are affected by the terms which involve
the parameters that characterize the oblateness and
radiation repulsive forces. It was proved that the period of
long periodic orbits adjusts with the change in its
frequency while the period of short periodic orbit
decreases. Furthermore, Abouelmagd and Sharaf [6]
studied and found the previous orbits around the libration
points when the more massive primary is radiating and
the smaller is an oblate spheroid. Their study included the
effects of oblateness up to 10−6 of the main term.

On the other hand, some contributions exploring the
families of asymmetric periodic orbits are Papadakis [15,
16,17], Henrard and Navarro [9], Papadakis and Rodi
[18] , Shibayama and Yagasaki [21]. Also, there are some
interesting papers recently published devoted to the study
of periodic orbits, see for instance Margheri et al. [13],
Perdiou et al. [19], Lü et al. [12], Lei and Xu [11].

Abouelmagd [1] studies the effects of the zonal
harmonicsJ2 andJ4 for the more massive primary in the
restricted three–body problem on the locations of the
triangular points and their linear stability. It is proved that
these locations are affected by the coefficients of
oblateness. Also is showed that the triangular points are
stable for 0< µ < µc and unstable whenµc ≤ µ ≤ 1/2 ,
whereµc is the critical mass parameter which depends on
the coefficientsJ2 and J4. Furthermore, Planets–Moons
systems are used to produce some numerical values for
the positions of the triangular points and mass ratioµ as
well as the values of the critical massµc . A numerical
study of the range of stability is presented. Also, some
examples non affected by the influence ofJ4 are studied
on the range of stability for some planetary systems as in
Earth–Moon, Saturn–Phoebe and Uranus–Caliban
systems.

In addition there are many contributions for studying
the effects of the non-spherecity and radiation pressure on
the existence locations of librations points and their
stability as well as the periodic orbits around these points,
see Abouelmagd et al. [2,3,5,7].” Inspired in [1] we
continue with the study of the periodic structure of the
restricted three–body problem considering the effect of
the zonal harmonicsJ2 andJ4 for the more massive body.
We prove that the triangular pointsL4,5 have periodic
orbits in the range 0< µ < µc , whereµc is the critical
mass ratio and belongs to the open interval(0,1/2). This
fact depends on expressions that include the factors of the
zonal harmonicsJ2 and J4. We show that the angular
frequency of the long periodic orbits is an increasing
function with respect to the mass ratioµ . While the
angular frequency of the short periodic orbits is a
decreasing function due to the same parameter for
specified values of oblateness factors. In addition, the
variations of the angular frequencies for the long and
short periodic orbits, s1 and s2, are graphically
investigated for distinct values of the oblateness
parameters. It is also proved that the trajectories of the
infinitesimal body are represented by ellipses. The
orientation of principal axes is determined, the
expressions that represent the lengths of semi–major and
semi–minor axes, the eccentricities as well as the
eccentricity of the curves for zero velocity are also found.
On the other hand the secular solution is constructed.
Moreover we prove that the secular solution can be
reduced to a periodic solution when the initial conditions
are selected properly.

We emphasize that our study is significantly different
from the others previously stated in the literature, in factit
is more general, because of the consideration of the
oblateness effect up to 10−6. Note that the inclusion of
this fact is worthy from the applications point of view.
This model has special importance in astrodynamics in
order to send satellites or explorations vehicles to stable
regions to move in gravitational fields for some planetary
systems. Note that the literature on astrodynamics has
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been enhanced by a greet numbers of papers dealing with
some aspects of the classical restricted problem,
constructed on the basis that the celestial systems are
composed by bodies that are actually considered not point
like. The mass of planet or a satellite is distributed in a
way which we cannot reduce it to a material point. In fact,
these objects are extended bodies which in most cases are
far from being considered as spheres. So, the replacement
of these bodies by a triaxial bodies or oblate bodies which
are symmetric is considered an appropriate approximation
for studying them. Actually, the coefficients of zonal
harmonic are considered one of the most important
perturbed forces which arise from the lack of the
sphericity. Consequently our study included the effects of
zonal harmonic coefficients.

The structure of the work is as follows: In section1 a
complete review of previous works around related studies
on periodic orbits of the three–body problem is presented.
In section2, we recall the equations of motion for the
infinitesimal body in a synodic coordinates reference
system that were originally stated in [1]. In section3, the
characteristic equation and their roots are computed.
Thereafter, graphically explorations due to the variations
of the angular frequencies for the long and short periodic
orbits are presented. In section4 the periodic solution and
periodic orbits are deduced as well as are characterized
the elliptical trajectories of the infinitesimal body around
the triangular points. In section5, we find the secular
solution and show that the triangular points have also
periodic orbits in this case. Finally, in section 6 we
summarize and recall all the results presented in this
work.

2 Equations of motion

Let m1, m2 andm be the masses of the more massive, the
smaller primary and the infinitesimal body respectively.
Furthermore,m1 andm2 respectively have a circular orbit
around their common center of mass andm moves in their
plane under their mutual gravitational fields without
affecting their motion. We consider, as in [1], that
m1 + m2 = 1 and the distance between them does not
change and also is consider as one. The unit of time is
chosen to make the constant of gravitation and the
unperturbed mean motion equal to the unity. Let the
origin of the sidereal and the synodic coordinates be the
common center of mass of the primaries and the synodic
coordinates rotate with angular velocityn in positive
direction. Hence, we can writem1 = 1 − µ and
m2 = µ ≤ 1/2 and the coordinates ofm1, m2 andm in a
synodic frame are (µ ,0), (−1 + µ ,0) and (x,y)
respectively whereµ is the mass ratio.

We assume that the coordinates of these masses in an
inertial reference frame are(X1,Y1), (X2,Y2) and (X,Y)
respectively.

Fig. 1: Configuration of inertial and rotating frames for the
restricted three–body problem

The inertial and rotating frames are related in the form
(

X
Y

)

=

(

cosnt −sinnt
sinnt cosnt

)(

x
y

)

. (1)

We assume that the orbital plane ofm1 andm2 occur
in XY plane. The equations of the motion of the
infinitesimal bodym in the inertial frame by using the
Lagrangian functionL are

d
dt

(

∂L

∂ Ẋ

)

− ∂L
∂X

= 0,

d
dt

(

∂L

∂Ẏ

)

− ∂L
∂Y

= 0,

(2)

where L = T −V is the Lagrangian function,T is the
kinetic energy of the infinitesimal mass andV is the
potential experienced by the massm due tom1 and m2.
The values of these quantities are

T = 1
2m(Ẋ2+ Ẏ2),

V =−Gmm1

(

1
r1

+
A1

2r3
1

− 3A2

8r5
1

)

− Gmm2

r2
,

L =
1
2

m(Ẋ2+ Ẏ2)+Gmm1

(

1
r1

+
A1

2r3
1

− 3A2

8r5
1

)

+
Gmm2

r2
,

(3)
whereAi = J2iR2i

1 for i = 1,2, R1 is the mean radius of the
more massive body andJi for i = 1,2 are the dimensionless
coefficients of the zonal harmonic. Note thatr1 andr2 are
the magnitudes of the position vectors of the infinitesimal
body with respect tom1 andm2 respectively given by

r2
1 = (X−X1)

2+(Y−Y1)
2,

r2
2 = (X−X2)

2+(Y−Y2)
2,
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see Figure1.
Making two times derivatives in (1) we get

(

Ẍ
Ÿ

)

=

(

cosnt −sinnt
sinnt cosnt

)(

ẍ−2nẏ−n2x
ÿ+2nẋ−n2y

)

. (4)

Substituting equations (3) into (2) and inserting the
outcome in (4) we obtain that the equations of motion for
this problem for the infinitesimal body in a synodic frame
xy are

ẍ−2nẏ= Ωx,

ÿ+2nẋ= Ωy,
(5)

where

Ω =
1
2

n2[(1−µ)r2
1+µr2

2]+(1−µ)[
1
r1
+

A1

2r3
1

− 3A2

8r5
1

]+
µ
r2
,

(6)
Here the magnitudes of the position vectorsr1 andr2

are given by
r2
1 = (x− µ)2+ y2,

r2
2 = (x− µ +1)2+ y2.

The perturbed mean of motion of the primaries is
governed by

n2 = [1+
3
2

A1−
15
8

A2]. (7)

Furthermore, equations (5) admit a Jacobi integral in
the form

ẋ2+ ẏ2−2Ω + c= 0,

wherec is the integration constant.

3 Characteristic equation and their roots

We assume that the infinitesimal body is displaced a little
from one of the triangular points(x0,y0) to the point(x0+
ξ ,y0+η) whereξ andη are the variation. The values of
x0 andy0 are given by

x0 =−1
2

[

1−2µ +[A1−
5
4
(A2+A2

1)]

]

,

y0 =±
√

3
2

[

1− 1
3
[A1−

5
4
(A2+

7
15

A2
1)]

]

.

(8)

Therefore the equation of motion and its characteristic
equation corresponding to our linear model are given by

ξ̈ −2nη̇ = Ω0
xxξ +Ω0

xyη ,

η̈ +2nξ̇ = Ω0
xyξ +Ω0

yyη ,
(9)

and

σ4+(4n2−Ω0
xx−Ω0

yy)σ
2+Ω0

xxΩ
0
yy− (Ω0

xy)
2 = 0. (10)

Where the subscriptsx,y indicates the second partial
derivatives ofΩ , while the superscript 0 indicates that
these derivatives are to be evaluated at one of the
triangular points.

Furthermore, the expansion of the potential function
Ω around the triangular pointsL4,5 up to second order of
(ξ ,η) is given by

Ω = Ω0+
1
2

Ω0
xxξ

2+Ω0
xyξ η +

1
2

Ω0
yyη

2, (11)

taking account that the third or higher powers ofξ andη
are ignored and the values ofΩ0

xx, Ω0
xy, Ω0

yy andΩ0 are
given by the following expressions:

Ω0 =
3
2

{

1+
5
6
(1− 2

5
µ)A1−

7
8
(1− 2

7
µ)A2−

1
4

µA2
1

}

,

Ω0
xx =

3
4

{

1+
9
2
(1− 8

9
µ)A1−

55
8
(1− 10

11
µ)A2

+
7
2
(1− 15

14
µ)A2

1

}

,

Ω0
xy =±3

√
3

4

{

1−2µ +
19
6
(1− 26

19
µ)A1

−125
24

(1− 32
25

µ)A2+
5
18

(1+
1
10

µ)A2
1

}

,

Ω0
yy =

9
4

{

1+
11
6

A1−
85
24

(1− 6
17

µ)A2−
7
6
(1− 15

14
µ)A2

1

}

.

(12)
Furthermore we have two roots forσ2 that we shall

call σ2
1,2 such that

σ2
1,2 =−1

2

[

C±
√

D
]

,

C= 4n2−Ω0
xx−Ω0

yy,

D =
(

4n2−Ω0
xx−Ω0

yy

)2−4
(

Ω0
xxΩ0

yy− (Ω0
xy)

2
)

.

(13)

The roots of the characteristic equation in the region
0< µ < µc could be written as

σ2
1,2 =−s2

1,2, (14)

where

s1 =
1
2

(

C−
√

D
)

,

and

s2 =
1
2

(

C+
√

D
)

.
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If we restrict ourselves to the terms
µ ,µ2,A1,A2

1,A2,µA1,µA2
1 and µA2 the appropriate

approximation for the values of angular frequencies for
the long and the short periodic orbits will be respectively
determined by

s1 =
3
2

√
3µ
{

1+
23
8

µ(1− 23
16

µ)+
35
12

(1− 23
8

µ)A1

−295
48

(1− 23
8

µ)A2+
221
288

(1− 16629
884

µ)A2
1

}

,

s2 =

{

1− 27
8

µ(1+
119
16

µ)− 3
4
(1+

221
8

µ)A1

+
45
16

(1+
403
24

µ)A2−
9
32

(1+
579
2

µ)A2
1

}

.

(15)
Moreover the variations ofs1 ands2 due to the change

in mass ratio will be investigated graphically through the
following diagrams, when the parameters of oblateness
take distinct values. In these diagrams the solid lines
indicate the effect ofJ2 uniquely considered. The dotted
lines take account the effects ofJ2 and J4, while the
dashed lines refer to the classical case (i.e., the effects of
the zonal harmonics coefficients are ignored).

Fig. 2: s1 and s2 versus µ when (A1 = 0,A2 = 0), (A1 =
0.02,A2 = 0) and(A1 = 0.02,A2 =−0.01)

We observe that the angular frequency of the long
periodic orbitss1 is an increasing function, while the
frequency of the short periodic orbitss2 is a decreasing
function, see Figures2–7 . Furthermore, the growth of the
variation fors2 due to the influence of the zonal harmonic

Fig. 3: s1 and s2 versus µ when (A1 = 0,A2 = 0), (A1 =
0.02,A2 = 0) and(A1 = 0.02,A2 =−0.002)

Fig. 4: s1 and s2 versus µ when (A1 = 0,A2 = 0), (A1 =
0.01,A2 = 0) and(A1 = 0.01,A2 =−0.002)

coefficients is bigger than the corresponding tos1, see
Figures2 and3. While in cases ofA1 = 0.01,A2 = 0 and
A1 = 0.01, A2 = 0.002 the curvess1 and s2 may be
coincident and the changes in the curves are very small
compared with the classical case, see Figures4 and 5.
The most important remark is thats1 (s2) might have the
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Fig. 5: s1 and s2 versus µ when (A1 = 0,A2 = 0), (A1 =
0.01,A2 = 0) and(A1 = 0.01,A2 =−0.001)

Fig. 6: s1 and s2 versus µ when (A1 = 0,A2 = 0), (A1 =
0.005,A2 = 0) and(A1 = 0.005,A2 =−0.001)

same behavior if the parameters of oblateness
A1 ∈ (1 × 10−6,1 × 10−3) and
A2 ∈ (−1× 10−6,−1× 10−3), see Figures6 and 7, i.e.,
neithers1 nors2 are affected byA1 andA2 in such range.

Fig. 7: s1 and s2 versus µ when (A1 = 0,A2 = 0), (A1 =
0.0001,A2 = 0) and(A1 = 0.0001,A2 =−0.00001)

4 Periodic solutions of linearized equations

4.1 Harmonic motion

By (14), it is clear that the characteristic equation has four
pure imaginary roots. Consequently the motion around
the triangular points is bounded and composed by two
harmonic motions represented by the following equations

ξ =C1coss1t +D1sins1t +C2coss2t +D2sins2t,

η =C1coss1t +D1sins1t +C2coss2t +D2 sins2t.
(16)

where the coefficientsC1,D1,C1 andD1 are associated to
the long periodic terms while the coefficientsC2,D2,C2
andD2 are the associated ones to the short periodic terms.
We note that this is the linear approximation of the
solutions around the triangular points.

From equations (16), we observe that if the initial
conditions are properly chosen then the short or the long
periodic terms can be eliminated from the solution. We
assume that the coefficients of the short periodic terms are
zero. Therefore, the periodic solutions of the linearized
equations (9) can be written as

ξ =C1coss1t +D1sins1t,

η =C1coss1t +D1sins1t.
(17)
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4.2 The trajectory of the infinitesimal body

4.2.1 Elliptic orbits

Since the Hessian determinantH = |a1 a2
a2 a3 | where the terms

a1 =
1
2

Ω0
xx, a2 =

1
2

Ω0
yy, anda3 =

1
2

Ω0
xy for the quadratic

expression in (11) is

H =
27
16

µ(1− µ)
{

1+
13
3

A1−
2
3
(10A2)

}

> 0,

it indicates that the periodic orbits around the triangular
pointsL4,5 are ellipses.

On the other hand, (11) includes an expression that
comes out as a result of the translation of the origin of the
coordinates system(x,y) to another one composed by the
triangular points. This point will be considered the center
of the ellipse. Furthermore, we observe that this equation
contains a bilinear termξ η which is the responsible for
the rotation of the principal axes of the ellipse regarding
to the coordinates system reference frame(ξ ,η) by an
angle Θ , see Figure8. This remark suggests us the
introduction of a normal reference frame of coordinates
system(ξ ,η) such that makes zero the bilinear term. The
relations between the normal and the previous ones
coordinates systems is given by by the following
transformation

ξ = ξ cosΘ +η sinΘ ,

η =−ξ sinΘ +η cosΘ ,
(18)

where the angleΘ is given by (30).

Fig. 8: Orientation of the principal axes for the periodic orbits.

Under this transformation, the equations of motion (9)
can be written as

ξ̈ −2nη̇ = λ1ξ ,

η̈ +2nξ̇ = λ2η .
(19)

Therefore, the new potential function can be written in the
following form

Ω = Ω0+
1
2

λ 1ξ
2
+

1
2

λ 2η2,

where

λ 1 =
9
4

µ
{

(1− 1
4

µ)+
11
6

A1−
55
24

A2−
223
24

A2
1

}

,

λ 2 = 3

{

1− 3
4

µ(1− 1
4

µ)+
15
2
(1− 19

20
µ)A1

−105
8

(1− 27
28

µ)A2+
669
32

µA2
1

}

.

On the other hand, the periodic solutions of the
linearized equations that are represented by (17) could be
written in the new coordinates in the following form

ξ = K1coss1t +M1sins1t,

η = K1coss1t +M1sins1t.
(20)

Substituting equations (20) into (19) the relations
between the coefficientsK1, M1, K1 and M1 are
controlled by

K1 = αM1,M1 =−αK1 (21)

where

α =
1
2

(

s1+
λ 1

s1

)

=
2s1

s2
1+ s2

2

. (22)

Now, if we considerξ 0, η0, ξ̇ 0 and η̇0 the initial
conditions at the initial timet = 0, substituting these
quantities into (20) and after some calculations using (21)
and (22) we obtain

ξ̇ 0 =
η0s1

α
, η̇0 =−ξ 0αs1 (23)

and equations (20) become

ξ = ξ 0coss1t +
η0

α
sins1t,

η = η0coss1t −αξ 0sins1t.

(24)

(23) shows that the initial velocities components
depend on the initial positions of the infinitesimal body.
In addition, (20) represents a particular solution with only
two arbitrary constants. Hence, these components cannot
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be freely chosen. If we eliminate cosine and sine from
(24), the elliptic orbits can be written as

ξ
2

ξ
2
0+η2

0α2
1

+
η2

ξ
2
0α2

1+η2
0

= 1. (25)

4.2.2 Elements of the ellipses

From (25) the lengths of the semi–major (a) and semi–
minor (b) axes are given by

a2 = ξ
2
0+η2

0α2
1,

b2 = ξ
2
0α2

1+η2
0.

(26)

While the eccentricities are given by

e2 = 1−α2, (27)

where

α =
1
2

(

s1+
λ 1

s1

)

=
2s1

s2
1+λ2

. (28)

Furthermore the eccentricity of the curves of zero
velocity is given by

e2 = 1− λ 1

λ 2
, (29)

see [6].
Thus, we consider that the origin of coordinates of the

system is one of the triangular points. Consequently
(ξ0,η0) = (−x0,−y0) where the values ofx0 andy0 are
given by equation (8).

4.2.3 The orientation of principal axes

Substituting (18) into (11) and chosen the angleΘ such
that the bilinear termξ η vanishes, the direction of the
semi–major axis is governed by the relation:
tan2Θ = 2Ω0

xy/(Ω0
xx−Ω0

yy), therefore

tan2Θ =±
√

3

{

1−2µ +1+
8
3
(1−2µ)A1

−10
3
(1− 5

4
µ)A2+

22
9
(1− 241

44
µ)A2

1

}

.

(30)

Note that the positive sign refers to the periodic motion
aroundL4 while negative one gives the motion aroundL5.
Remark 1. We summarize that in this section, the
elliptical orbits that represent the trajectory of the
infinitesimal body in the vicinity of the triangular points
have been determined by (25), while equations (26) give
the lengths of semi–major and semi–minor axes. The
eccentricities for all cases are governed by expressions
(27), (28) and (29). After that the directions of the
principal axes have been stated by equation (30).

5 Secular solutions of linearized equations

When µ = µc (critical mass), the discriminantD of the
quadratic terms in equation (10) is equal to zero and the
value of the critical mass will be given by

µc=























1
2

(

1−
√

69
9

)

− 1
9

(

1− 13√
69

)

A1

+
5
18

(

1+
25

2
√

69

)

A2+
13
27

(

1+
13671

1196
√

69

)

A2
1























.

Consequently, equation (14) can be written asσ2
1,2 =

−ω2 and its roots areσ1 =σ3 = iω , σ2 = σ4 =−iω where

ω =

√

1
2

C whereC is given by (13). Now, substituting

equations (7) and the expressions ofΩ0
xx andΩ0

xy given by
(12) into the expression ofC given by (13) we obtain that

C= 1− 3
2
(1−2µ)A1+

45
8
(1− 4

3
µ)A2.

Therefore, the value ofω can be written as

ω =
1√
2
[1− 3

4
(1−2µ)A1+

45
16

(1− 4
3

µ)A2−
9
32

(1−4µ)A2
1].

Thus, the solution of (19) has secular terms. Since
σ1 = σ3 andσ2 = σ4, the triangular points are unstable.
In this case the equation of motion (19) can be written as

ξ̈ −2nη̇ = λ 1cξ ,

η̈ +2nξ̇ = λ 2cη ,
(31)

where the subscriptc means thatλ 1 and λ 2 will be
evaluated whenµ = µc. The general solution of these
equations has the form

ξ = (α1+α2t)cosωt +(α3+α4t)sinωt,

η = (β1+β2t)cosωt +(β3+β4t)sinωt.
(32)

Now, substituting (32) into (31) and identifying the
coefficients of sine and cosine respectively we obtain that
the relations between the coefficients at the solution are
the following

β1 = γ1α2+ γ2α3,

β2 = γ2α4,

β3 = γ1α4+ γ2α1,

β4 =−γ2α2

where

γ1 =
ω2−λ1c

2nω2 ,

γ1 =
ω2−λ2c

2nω2 .
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Let ξ 0c, η0c, ξ̇ 0c andη̇0c be the initial conditions at the
initial time (t = 0). Substituting such quantities in (32) and
after some simplifications, the coefficientsαi , i = 1,2,3,4
can be written as

α1 = ξ 0c,

α2 =
ω

γ1ω − γ2
η0c−

γ2

γ1ω − γ2
ξ̇ 0c

α3 =− 1
γ1ω − γ2

η0c+
γ1

γ1ω − γ2
ξ̇ 0c,

α4 =
γ2ω

γ1ω + γ2
ξ 0c+

1
γ1ω + γ2

η̇0c

(33)

Equtions (33) suggest us that for special values of the

initial velocities ξ̇ 0c and η̇0c the secular terms can be

eliminated. Therefore, if we choosėξ 0c = ωη0c/γ2 and
η̇0c = −ωξ 0cγ2, then (33) is reduced toα1 = ξ 0c,

α2 = α4 = 0 andα3 =− 1
γ2

η0c.

Hence, the solution can be written as

ξ = ξ 0ccosωt +
η0c

γ2
sinωt,

η = η0ccosωt − γ2ξ 0csinωt.

(34)

Equations (34) prove that it is possible to find periodic
orbits around the triangular points. However, these points
are unstable when the solution contain secular terms.

6 Conclusions

As a summary we recall that we have proved that the
triangular pointsL4,5 have periodic orbits in the range
0 < µ < µc, where µc is the critical mass ratio and
belongs to the open interval(0,1/2). This fact depends on
expressions that include the factors of zonal harmonicsJ2
and J4. It is observed that the angular frequency of the
long periodic orbits are increasing functions with respect
to the mass ratioµ . While the angular frequency of the
short periodic ones are decreasing functions due to the
same parameter for specified values of the oblateness
factors. In addition the variations ofs1 and s2 are
graphically investigated for distinct values of the
oblateness parameters.

It was also proved that the trajectories of the
infinitesimal body are represented by ellipses. The
orientation of the principal axes, the expressions that
represent the lengths of semi–major and semi–minor
axes, the eccentricities as well as the eccentricity of the
curves for zero velocity are determined. Moreover, the
secular solution is constructed. In addition, it is showed
that the triangular points have also periodic orbits at this
solution whenµ = µc . The results that we have obtained

include the effect of zonal harmonicsJ2 and J4 with
respect to the more massive body.

We emphasize that our study is significantly different
from the previous ones stated in the literature, since our
results are more general because of the consideration of
the oblateness effect that we consider up to 10−6. Finally,
we remark that this model has special importance in
astrodynamics to send satellites or explorations vehicles
to stable regions to move in gravitational fields for some
planetary systems.
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