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Abstract: In this paper, analytical investigations of linear frao@border fuzzy differential equations are obtained usimgwafound
operator method. Fuzzy fractional differential equati(fSDES) subjected to initial conditions are dissected utttassumptions of
generalized Hukuhara differentiability in conjunctiontvCaputo-type fuzzy fractional derivative. Consequergllythe prospects of
fractional differentials of fuzzy-valued functions areddeed and discussed in detail under the notion of Capute-flygry fractional
differentiability (CFy-differentiability). Moreover, the novel method is illuated on constructed systems of FFDEs and convex
combination ofr -level solutions for each system is measured, explicitly.
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1 Introduction

Fractional calculus, being a significant area of study, lasivated the attention of many researchers. It owed useful
applications in many physical and engineering procesis2s], 4]. Up till now, various forms of fractional operators have
been introduced, such as, Riemann-Liouville, Riesz, @resiummarie, Caputo fractional derivatives, &®6[7,8,9].

Correspondingly, fuzzy differential equations (FDESs) &mty fractional differential equations (FFDES), havinigles
applications in electronics and engineering, have beedlyagrowing for last few decades. The primary introductafn
fuzzy derivative was given by Chang et dl0] which was then proceeded by Dubois et all][ Later on, Puri et al.12]
generalized an embedding theorem and used it for fuzzy dalifeerential functions. Kandell3] analyzed dynamical
problems using FDE model. Comprehensive study of FDEs areyfitial value problem (Cauchy problem) are found in
papers of Kaleval4,15] and Seikkala]6]. Agrawal et al. [L7] elucidated the concept of FFDEs under Riemann-Liouville
differentiability, following the concept ofl[7], Arshad et al. 18] further discussed existence and uniqueness of solutions
of FFDEs.

Numerical and analytical approaches for solving FDEs a$ agFFDEs are of identifiable attraction. For last few
years, remarkable investigations have been executed byhaanof authors for numerical solutions of FDEs and FFDEs.
The extension principle approach and extremal solutionketdrministic initial value problem found id§] have inspired
several scholars for the solution of these equations. f&égni contribution on these numerical methods is presdmnyed
Ma et al. [L9 who pioneered the Euler method for FDEs, Khan et20] xtended the Sumudu transform to fuzzy Sumudu
transform for analytical assessments of FDEs, Allahvoeart al. P1] illustrated an operator method to obtain the integral
forms of FDEs besides applied fuzzy Laplace transform teesBFDEs considered under Caputo differentiability2d][
Ahmad et al. 3] proposed the fuzzification of the classical Euler methodRDE and also used Zadeh’s extension
principle in addition with an unconstrained optimizatieclinique to solve FFDEs i24], Salahshour et al2p)] studied
FFDEs under the concept of Riemann-Liouville H-differability and used the method 022] to obtained analytical
solutions, Mazandarani et aR] explained modified fractional Euler method for the solnsmf fuzzy fractional initial
value problem. Shahriyar et akT] discussed three systems of fuzzy fractional differergigiations and employed
eigenvalue-eigenvector approach to obtain the soluti®haemi et al.28] modelled a fuzzy fractional kinetic equation, a
model in chemical engineering for hemicelluloses hydiislysaction, and analyzed it using a spectral method tadtiai
concentration value of xylose in fuzzy environment. Vergeratly, Khan et al.29] developed improved Euler's method
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for numerical simulation of linear and nonlinear fuzzy ialitvalue problems of fractional order. In his paper, he veark
out on the efficiency of the improved fractional Eulers metliii-EM) and exactness of results by its comparison with
other methods.

Significantly, extending previously proposed operatorhrodtby Allahviranloo et al.Z1], in this manuscript, under
the assumptions of Caputo-type fuzzy fractional Hukuhdffaréntiability, analytical findings of linear fractioharder
fuzzy differential equations has been constructed. Ihifithe concept of Hukuhara derivative of a fuzzy-valueddtion
was generalized and extended 2], Furthermore, here, all possible Caputo-type fuzzy fomal Hukuhara derivatives
of fuzzy-valued functions are established. Next, we paldicze the algorithm for all systems of FFDEs formed by
utilizing CHy-differentiability. Subsequently, following the defirti of fuzzy Riemann-Liouville fractional integration,
integral solutions of lower and upper functions of some FEREe determined. For the ongoing applications of FFDEs
in different fields of engineering, it has become an impdrtask to innovate such methodologies that are rapidly
convergent towards the accurate solutions. Thus, the peagpmethod sounds to be proficient and efficacious for FFDEs
than the other familiar operator methods that already @xigerature.

2 Préiminaries

After the preliminary work on fuzzy set theory and fuzzy edilrs [10,11,12], the basic definitions and properties of
fuzzy numbers, fuzzy functions and its calculus have beentioeed repetitively by various authors in their research
papers. For instance see Refs.[17-29]. Here, we briefly gnutfih some descriptions and theorems of fuzzy fractional
calculus that are essential for this paper. At this inst@ttEs, C™ [a, 3] andL" [a,B] designate the set of all fuzzy
numbers on real line, space of all continuous fuzzy-valusttions and space of all Lebesgue integrable fuzzy-valued
functions on the intervdb, B], respectively.

2.1 Fuzzy Riemann-Liouville Fractional Integral

The fuzzy Riemann-Liouville fractional integral (FRLFIf order v € U, wherel is the set of real numbers, of a
fuzzy-valued functiorw (x) € CF [a, B]NLF [a, B] is described as:

(X)) =[I"a (x),1'T (x)], 0<r<1, (1)

wherew' (x) and@' (x) are itsr-level functions known as lower and upper functions, retipely. Also

1 > @(n)
I”wrx:—/ ——>—dn, x>0, v>0, 2

. 1 X @(n)
Ve :—/ ——% _dn, x>0, v>0. 3
w (X) 0 Jo (x—n)l_“ n, x U 3)

An equivalent definition of fuzzy Riemann-Liouville fragtial integral (FRLFI) is also found in RefZ,27].

2.2 Caputo-Type Fuzzy Fractional Hukuhara Differentiéil

Let @ (x) € C™ [a,B]NLF [a,B] then Caputo-type fuzzy fractional derivative in relatioithwfuzzy Riemann-Liouville
fractional differential operator of orderof w (x) is delineated as

n—-1.,k
°DV@ (x) = RDY (z%(x) -y %&J(()k)) x>0,ve(n-—1n), nen, (4)
=R
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whereRDY is the fuzzy Riemann-Liouville fractional differential emtor (see e.g. refs2,27,29], which may be
expressed as:

vy L At ()
D w(x)_l_(n_v)W A (x—E)l*”Jr"dE ve(n—1,n), neN. (5)

Next, for Caputo-type fuzzy fractional Hukuhara differiability (CF4-differentiability) of @ (x) of order 0< v < 1, at
Xo € (0,B) is described as follows:

BE) -3 &l
Letd () = iy S5 — 07— dé, then
- : h . —h
(a)CDVw(XO):L'L“o¢(XO+ 21@¢(X0):'h'ino¢()(0)@ﬁ(xo )
- : h —h

for h > 0 sufficiently near zero. Distinguishably defining, for these(a), w(x) is said to be(1)-CFHy-differentiable,
denoted by*Djw (x) and for the caséb) it is (2)-CRy-differentiable represented 159} @ (x), By the same token, for

order 1< v < 2, takeG € E; into consideration, such that

& jim 900N EB00) LB 0) S 0—h)
h—0 h h—0 h

Then, forh > 0 sufficiently near zero

(6)°D¥ 6 (%) :H%G(Xo+hr)]eG(Xo) - lm (XO)@hé(Xo—h)7
(4)0"6 ) — im G (%) ei (o+h) im G (Xo— ?1@(3%)’
(&)°D" 6 (%) :Lmé(xwhr)]eé(m) ~im G (XO—T‘]QG(X())7
(1)°D" 6 (%) :Liinoé(xo)@_i(XO—l—h) :Liinoé(XO)@hé(xo_h)

Numerous research works are found in which generalized hateu differentiability cases for fractional order
differentiation are reviewed and illustrated (see e.gs.1jf7,18,22,25,27] and the references therein).

Theorem 2.2.1

Consider@ (x) € C™ [a, B]NLF [a,B] with its r-level representatiofo (x)]" = [@" (x),@ (x)], for r € [0,1], then
for xo € (0,)

(a) If @(x) is (1)-CRy-differentiable function, then for& v < 1
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*Dyw (x)] = [D'@' (x),°D'@ (x)].

(b) If @(x) is (2)-CRy-differentiable function, then for& v < 1

[‘Diw(x) = [D'T (x),°D'd (x)].

(c) If @(x) and°DVw (x) are(1)-CHy-differentiable function, then for ¥ v < 2

(DY @ (x)]" = [‘DV@' (x),°D'T' (x)].

(d) If @ (x) and°D¥w (x) are(2)-Chy-differentiable function, then for £ v < 2

(DY, w(x)]" = [‘D'w (x),°D T (x)].

(e) If @w(x) is (1)-CRy-differentiable andD" w () is (2)-CFy-differentiable function, then for & v < 2

(DY, w(x)]" = [‘DVW (x),°D'w' (x)].

(f) If @(x) is (2)-CRy-differentiable andD¥ w (x) is (1)-CFy-differentiable function, then for v < 2.

(DY @ (x)]" = [DVT' (x),°DY@" (x)].

°DY being the Caputo fractional derivative of real valued fimc{(for details see e.g2[9] and the references therein).
Therefore, at this instant,

r (n)
DV (%) { e Jo (g;fl),)nw dé, ve(n-1n), nen,
- Lo (x), V=nen.

1 (@©)" dé. ve(n—1n), nexN
CDVﬁr (X()) _ r(n—v) fo (x— )1—n+v Ev S ( 5 )7 c N,
Fa0 (%), V=nen.
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2.3 Mittag-Leffler Function

The generalized form of Mittag-Leffler functiofy (x) has played a vital part in the fractional differential edos. It
was introduced by Mittag-Leffle0] that can be stated as:

[oe]

xJ

Ey(X)=Y =g, 9>0 (6)
s (% J.ZO r(j9+1)
and in generalized formdy s (X) is defined as:
o0 Xj
EposX)=>yY ——=——, 6>0 I>0. (7)

3 Linear Fractional Order Fuzzy Differential Equations

In this section, we specifically exemplify amth order FFDE, and render the proposed operator method ghrau
theorem in conjunction with the illustration of the algbrit for all the cases ofFRy-differentiability of FFDE, as
featured in Theorem.2.1, consecutively. Subsequently, let the linetir order FFDE be of the form

DQVS"(X)+g(X7§’(X)7D)\:§’(X)7"'):%(X)ﬂ (8)

7 (X0) =Fo, ¥ (o) = Fo, 9)

where y(x) is the ascertaining fuzzy-valued function of which can be written in form ofr-levels as
[y = |y (), (¥)], £ (x) andg (x, ¥ (x),DY¥ (x),...) are acquainting continuous nonhomogeneous and lineas term
of the FFDE, accordingly.

Theorem 3.1

Suppose xg € [a,B] and consider thatf : [a,B] x Ef x Ef — Ejis continuous. Moreover, assume that
¥ (x),DYF (x),D2F (x),... € CT, then Eq8 can be equated to anyone of the following FRLFI equations:

(1) If 5 (x), DY (x),D25(X).,..., D" 5 (x) are(1)-CFy-differentiable, then

700+ T (x5 (), D47 (). .DX 5 () =

(x—xg) "D (X —X0)"

B (e Ve R o (s

+OVE ().
(2) If §(x) is (1)-CFy-differentiable andY ¥ (x) , D2 (X) , .. .,D&"_l)"ﬁ(x) are(2)-Chy-differentiable, then

700+ T (%, (0, DY (). .DX 5 () =

(x—x0) "1 (x—X0)"
a1+azl_((n_1)v+1)+...+an
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(3) If 7(x) is (2)-CRy-differentiable and!§ (x), D25 (x),...,D{" V5 (x) are(1)-CFy-differentiable, then

700+ (x5 (0. D47 (). DX 5 () =

- (n—1)v - % .
a1e(-1) (az% +...+ an% + Ve (x)) :

(4) If 5 (x), DY (x),D25 (X).,..., D" 5 (x) are(2)-CRy-differentiable, then

700+ T (x5 (0, DYF (). DX 5 () =

— ) ("—Dv VY B
a1o(-1) <az% +... +an% o100Vt (x)) :

wherea; = j (X), 82 = D (Xo) ;- -, @ = D"y (Xo)-

Proof.

It has been explained by Bede et &1] that fuzzy-valued functions are integrablefit C™ [a, 3] NLF [a,B]. Now, the
corresponding FRLFI forms of E8can be assessed under each typef-differentiable as:

(1) Let §(x),DY%(x),D2%(x),....D\" V5 (x) are (1)-CRy-differentiable, then FRLFI of E. under
(1)-CRy-differentiability of D}y (x) can be measured as:

D5 (0 + 0 g (709,055 (9. DX 5 (0)) = an+ 0 E (),

2v

X=%0)" | vz

DI 2500 + 0 (x5 (0. DXF (9. D" 5 (9)) = a1+ oHD

700+ 00 (%509, D45 (x),....DE" 5 (x)) =

_ (n—=1)v y\V .
x—X) +...+anM+DQ"f(x).

R T vy rivsi

(2) Let §(x) be (1)-CRy-differentiable andD¥5 (x), D25 (x),...,D{" VY5 (x) are (2)-CRy-differentiable, then FRLFI
form of Eq8 under(2)-CFy-differentiability of DY (x) can be evaluated as below:

D Y500+ 0 (% 509,045 (9., D V'5(0)) =ane (-1 0E (),

(x—x0)"

D5 (09 + 078 (%.5.00,045 (0, D5 () = a1+ w2
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700+ T (%, (0, DY (). D 5 () =

(x=x0)" (x—%0)"
aj+ag —|—...+anl_(v+1)

r((n-1v+1) o () OVE(x).

(3) Let §(x) be (2)-CRy-differentiable andD¥§ (x), D25 (x),...,D{" 5 (x) are (1)-CRy-differentiable, then FRLFI
form of Eq8 under(1)-CFy-differentiability of D{""§ (x) can be measured as:

D" 5 () + 0% (709,045 (9., D V'5(0)) =ane (1) BVE (),

D25 (9 + 07g (. §6).DYF (9),....DF 5 (0)) =

an-19(—1) (an% +0P'% (x))

700+ 0 (%, (0, D7 (). DX 5 () =

_ (n—1)v _ v .
a6 (-1) <a2% +... +an% +OpVE (x)) .

(4) Let §(x),Dyy(x), D)Z("y(x), DI vy y(x) are (2)-Chy-differentiable, then FRLFI of E§. under
(2)-Chy-differentiability of D" V}”r( )can be determined as:

D)((n 1)V~( )+|:|( v ( (X),DX&(X),...7D)((n_1)vgl()()) :an@(—l) D)((l)Vf (X)a

D25 (50+ T (x. 59 .D4709,...DF 500 =

(x—Xo)"

(2Qvz
Fv+D o(-1) X £ (x)

19 (-l an—"—"~

700+ (%500, DY (). DX 5 (0) =

) (N1 RV B
a10(-1) <az% +... +an% o1Vt (x)) .
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4 Test Examples

Here, the proposed method defined in previous section iseap@h some examples of linear FFDEs for illustration of its
efficiency and capability.

Example 1:

Take the following FFDE into consideration subjected tdidhiconditions as:
DyF(x)=§(x), O0<v<l, (10)

¥ (0) = o € Es. (11)

Let §(x) be (1)-CRy-differentiable then on taking FRLFI on both sides of Hy.equivalent FRLFI form of
(1)-CRy-differentiability is obtained

§(X) =§(0) + 055 (%), (12)
that can also be written as:

Y=y 0)+Iy ¥, 77X =5X+LT (), (13)

wherey' (x) andy" (x) are lower and upper functions p{X), which is further simplified to

1=y 0=y (0), 1-1)7 (X)=7(0). (14)

Taking inverse of1—1}) on both sides of the equation

v (%) =1-1)7"1y(0), 70=1-1)7F(0) (15)

and on substitution of

G S e I [ [ (16)

in Eq.15with the assumptiofjl ;|| < 1, forr € (0, 1], the expanded form of the solution is attained as:

v 2V 3v
Y= (1112413 4 )y (0) = (“r(\)/(+1)+r(2xv+1)+r(;v+1)+"'>Xr(°) (17)
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=T (y) — vV |2v_ |3v —r _ XV X2V x3v o
V()= Q+1y+I1+13+..)7 (0) = <1+F(v+1)+l'(2v+1) +I'(3v+1)+"' 7 (0) (18)
and in closed form as:
¥y () =6 )y (0), 7 (x)=4&X)F (0), (19)
which are the required solutions of B@.under(1)-Chy-differentiability.
Example 2:
Consider another example und@j-CRy-differentiability of y (x)
Dyj () =-§(x), O<v<1 (20)
with initial condition
¥(0) =§o € E;. (21)
Then its corresponding FRLFI form of E2dcan be articulated as:
§F(x) =505 X (22)
that can be simplified and expressed as:
1+1)y ¥ =y (0), A+1)7 X =7 (0) (23)
or
v 0 =1+1)70), § (0 =(1+1)7F (0. (24)
Employing the Binomial expansion
A+ =14 (25)
on Eq24following solutions are achieved:
o=@y @ yo= (1= X Vg e
= e s rv+l) T(v+l) F@v+1) )2
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F)=(1-1y+12—1+..)7(0)=

XV X2v X3v o
@_rw+n+rpw4yﬁww+n+“>yw) 27)

and in closed version it can be represented as:

y' () =& (-x")3"(0), 7' (%)=& (-x")7 (0). (28)

Example 3:

Now, consider the following FFDE

Dyy(X) =—-F(X)+x+1, O<v<l (29)

with
¥(0) = o € Et. (30)

Lety(x) be (2)-Chy-differentiable, then we obtain:

v 2V
¥ 00 =@+ O+ @™ (Foss + Faeeg ) @)
and
% 2V
700 =@+ Y O+ @07 (ros + Faeey ) (@2)

On exercising E@5 on Egs.31 and 32 and further simplifying, following results are attainedtime compact form,
namely

XY XY
r ERVUA = _ ERVATS
Y 0= 8 (X)y O+ mry gy T =6 O+ 7, (33)
Example 4:
Next consider the following fractional second order FDEjeated to the initial conditions:
DY§ () =pho, Po=(r—11-r), ref0,1, 1<v<2 (34)
[y (O)]r = (r - 151_ r)a (35)
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DYy (0)" = (r—1,1—r), ve(0,1]. (36)

Taking into account all the cases@F4-differentiability, following cases are developed:
Casel:
Let ¥ (x) andDy ¥ (x) are(1)-CRy-differentiable, then on employing the scheme given in Teep31, we come down

with:

XV

700 =500+ 5

Ve~ 2v ~
g0+ B (37)

After manipulation the solutions in itslevel functions are attained efficiently as:

; XV X2v
X(X):(r_1)<1+r(v+1)+r(2v+1))’ (38)
—r - xV X2v
y (X)_(1_r)<1+r(v+1)+r(2v+1))' (39)

Casell:

Let ¥ (x) is (1)-CHRy-differentiable andy ¥ (x) are(2)-CRy-differentiable, then we get:

¥ (%) =§(0)+WD¥§(O)@(—1) 02 o (40)
with its lower and upper expressions:
r r X! v r A
y X)) =y (@‘FWDQ (0) +15"Po, (41)
—r —r X" V= 2v
y () =y ( )+meY 0)+1"py- (42)

Consequently, after some simplifications the solutions-t&vel functions of Eg4 in compact formvy € (0,1] are
attained as:

; XY X2v
X(X):(r_1)<1+r(v+1)_r(2v+1))' (43)

(@© 2016 NSP
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and

v 2V
700 =0 (1 ror ~ v (44)

Caselll:

Now assume thaj (X) is (2)-CHy-differentiable andD}y (x) is (1)-CFy-differentiable, following the algorithm and
applying FRLFI on Ed34, we procure;

~ ~ X . ~
500 =500 (-1 (oD 0+ B ). (@5)
Expanding in itg-level functionsy" (x) andy" (x), we obtain
r r x! V—r v~
y X =y (O)+meY (0) +15"Po; (46)
= = X! v.r 2v
¥y (X) =Y (O)+meZ (0) +15°Py- (47)

After doing some exercises the solutions of Egwith respect to its lower and upper functions are derived
vx e (0,v/3-1) as:

; XY X2v
X(X):('r_l)(l_r(wl)_r(2v+1)> (48)

and

o B XY X2V
y (X)_(l_r)<1_r(v+1)_r(2v+1)>' (49)

CaselV:

Lastly, lety (x) andDy ¥ (x) be (2)-CHy-differentiable. Then operating the algorithm, we achieve

700 =500 (-1 (5 P00 (D ER). (50)

<
_|_
[N
~—
X<

XV

y' () =y"(0)+ mDﬁr (0) + |>2<V20a (51)
7 0= (0)+ =y Ok (0 +12Po (52)
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As a result, the solutions oflevel functions of EB4in the compact fornvx € (0, 1) are obtained as:

; XV X2v
y (X):(r_1)<1_r(v+1)+r(2v+1)) (53)
and
L B XV X2v
y (X)_(1_r)<1_r(v+1)+r(2v+1))' (54)

Observably, the obtained results are in good agreementhétresults in Khastan et aB%] and Allahviranloo et al.21]
forv=2.

5 Conclusions

In this manuscript, we generalized the operator methoddiat21] to amplify its application for the analytical solutions

of FFDEs. The concept of the Caputo-type fuzzy fractionakithara differentiability was deliberated on FFDES to
acquire its all feasible systems. We assessed the propppedlazh on the systems of FFDEs. Prodigiously getting the
solutions of some illustrative examples of FFDEs on empigythis approach, it can be established that the method is
reliable and efficiently capable of solving the fractioned@r fuzzy differential equations. Hence, it is concludedée

a practically consistent method for integer and non-intégezy differential equations that appear naturally irfetiént
dynamical models.
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