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Abstract: In this paper, analytical investigations of linear fractional order fuzzy differential equations are obtained using anewfound
operator method. Fuzzy fractional differential equations(FFDEs) subjected to initial conditions are dissected under the assumptions of
generalized Hukuhara differentiability in conjunction with Caputo-type fuzzy fractional derivative. Consequently, all the prospects of
fractional differentials of fuzzy-valued functions are deduced and discussed in detail under the notion of Caputo-type fuzzy fractional
differentiability (CFH-differentiability). Moreover, the novel method is illustrated on constructed systems of FFDEs and convex
combination ofr -level solutions for each system is measured, explicitly.
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1 Introduction

Fractional calculus, being a significant area of study, has captivated the attention of many researchers. It owed useful
applications in many physical and engineering processes [1,2,3,4]. Up till now, various forms of fractional operators have
been introduced, such as, Riemann-Liouville, Riesz, Cresson, Jummarie, Caputo fractional derivatives, etc [5,6,7,8,9].

Correspondingly, fuzzy differential equations (FDEs) andfuzzy fractional differential equations (FFDEs), having wide
applications in electronics and engineering, have been rapidly growing for last few decades. The primary introductionof
fuzzy derivative was given by Chang et al. [10] which was then proceeded by Dubois et al. [11]. Later on, Puri et al. [12]
generalized an embedding theorem and used it for fuzzy valued differential functions. Kandel [13] analyzed dynamical
problems using FDE model. Comprehensive study of FDEs and fuzzy initial value problem (Cauchy problem) are found in
papers of Kaleva [14,15] and Seikkala [16]. Agrawal et al. [17] elucidated the concept of FFDEs under Riemann-Liouville
differentiability, following the concept of [17], Arshad et al. [18] further discussed existence and uniqueness of solutions
of FFDEs.

Numerical and analytical approaches for solving FDEs as well as FFDEs are of identifiable attraction. For last few
years, remarkable investigations have been executed by a number of authors for numerical solutions of FDEs and FFDEs.
The extension principle approach and extremal solutions ofdeterministic initial value problem found in [16] have inspired
several scholars for the solution of these equations. Significant contribution on these numerical methods is presentedby
Ma et al. [19] who pioneered the Euler method for FDEs, Khan et al. [20] extended the Sumudu transform to fuzzy Sumudu
transform for analytical assessments of FDEs, Allahviranloo et al. [21] illustrated an operator method to obtain the integral
forms of FDEs besides applied fuzzy Laplace transform to solve FFDEs considered under Caputo differentiability in [22],
Ahmad et al. [23] proposed the fuzzification of the classical Euler method for FDE and also used Zadeh’s extension
principle in addition with an unconstrained optimization technique to solve FFDEs in [24], Salahshour et al. [25] studied
FFDEs under the concept of Riemann-Liouville H-differentiability and used the method of [22] to obtained analytical
solutions, Mazandarani et al. [26] explained modified fractional Euler method for the solutions of fuzzy fractional initial
value problem. Shahriyar et al. [27] discussed three systems of fuzzy fractional differentialequations and employed
eigenvalue-eigenvector approach to obtain the solutions.Ghaemi et al. [28] modelled a fuzzy fractional kinetic equation, a
model in chemical engineering for hemicelluloses hydrolysis reaction, and analyzed it using a spectral method to attain the
concentration value of xylose in fuzzy environment. Very recently, Khan et al. [29] developed improved Euler’s method
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for numerical simulation of linear and nonlinear fuzzy initial value problems of fractional order. In his paper, he worked
out on the efficiency of the improved fractional Eulers method (IFEM) and exactness of results by its comparison with
other methods.

Significantly, extending previously proposed operator method by Allahviranloo et al. [21], in this manuscript, under
the assumptions of Caputo-type fuzzy fractional Hukuhara differentiability, analytical findings of linear fractional order
fuzzy differential equations has been constructed. Initially, the concept of Hukuhara derivative of a fuzzy-valued function
was generalized and extended in [12]. Furthermore, here, all possible Caputo-type fuzzy fractional Hukuhara derivatives
of fuzzy-valued functions are established. Next, we particularize the algorithm for all systems of FFDEs formed by
utilizing CFH-differentiability. Subsequently, following the definition of fuzzy Riemann-Liouville fractional integration,
integral solutions of lower and upper functions of some FFDEs are determined. For the ongoing applications of FFDEs
in different fields of engineering, it has become an important task to innovate such methodologies that are rapidly
convergent towards the accurate solutions. Thus, the proposed method sounds to be proficient and efficacious for FFDEs
than the other familiar operator methods that already existin literature.

2 Preliminaries

After the preliminary work on fuzzy set theory and fuzzy calculus [10,11,12], the basic definitions and properties of
fuzzy numbers, fuzzy functions and its calculus have been mentioned repetitively by various authors in their research
papers. For instance see Refs.[17-29]. Here, we briefly go through some descriptions and theorems of fuzzy fractional
calculus that are essential for this paper. At this instant,let Ef , CF [α,β ] and LF [α,β ] designate the set of all fuzzy
numbers on real line, space of all continuous fuzzy-valued functions and space of all Lebesgue integrable fuzzy-valued
functions on the interval[α,β ], respectively.

2.1 Fuzzy Riemann-Liouville Fractional Integral

The fuzzy Riemann-Liouville fractional integral (FRLFI) of order υ ∈ ℜ, whereℜ is the set of real numbers, of a
fuzzy-valued functionϖ̃ (x) ∈ CF [α,β ]∩LF [α,β ] is described as:

[ℑυϖ (x)]r =
[

Iυ ϖ r (x) ,Iυ ϖ r (x)
]

, 0≤ r ≤ 1, (1)

whereϖ r (x) andϖ r (x) are itsr-level functions known as lower and upper functions, respectively. Also

Iυ ϖ r (x) =
1

Γ υ

∫ x

0

ϖ r (η)
(x−η)1−υ dη , x> 0, υ > 0, (2)

Iυ ϖ r (x) =
1

Γ υ

∫ x

0

ϖ r (η)
(x−η)1−υ dη , x> 0, υ > 0. (3)

An equivalent definition of fuzzy Riemann-Liouville fractional integral (FRLFI) is also found in Refs. [22,27].

2.2 Caputo-Type Fuzzy Fractional Hukuhara Differentiability

Let ϖ̃ (x) ∈ CF [α,β ]∩LF [α,β ] then Caputo-type fuzzy fractional derivative in relation with fuzzy Riemann-Liouville
fractional differential operator of orderν of ϖ̃ (x) is delineated as

cDν ϖ̃ (x) = RLDν

(

ϖ̃ (x)−
n−1

∑
k=0

xk

k!
ϖ̃ (k)

0

)

x> 0, ν ∈ (n−1,n), n∈ N, (4)
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whereRLDν is the fuzzy Riemann-Liouville fractional differential operator (see e.g. refs. [22,27,29], which may be
expressed as:

cDν ϖ̃ (x) =
1

Γ (n−ν)
dn

dxn

∫ x

0

ϖ̃ (ξ )
(x− ξ )1−n+ν dξ ν ∈ (n−1,n), n∈ N. (5)

Next, for Caputo-type fuzzy fractional Hukuhara differentiability (CFH-differentiability) of ϖ̃ (x) of order 0< ν < 1, at
x0 ∈ (0,β ) is described as follows:

Let ϕ (x) = 1
Γ (1−ν)

∫ x
0

ϖ̃(ξ )−
n−1
∑

k=0

ξk

k! ϖ̃ (k)
0

(x−ξ )ν dξ , then

(a)cDν ϖ̃ (x0) = lim
h→0

ϕ (x0+h)⊖ϕ (x0)

h
= lim

h→0

ϕ (x0)⊖ϕ (x0−h)
h

,

(b)cDν ϖ̃ (x0) = lim
h→0

ϕ (x0)⊖ϕ (x0+h)
-h

= lim
h→0

ϕ (x0−h)⊖ϕ (x0)

-h

for h > 0 sufficiently near zero. Distinguishably defining, for the case(a), ϖ̃ (x) is said to be(1)-CFH-differentiable,
denoted bycDν

1ϖ̃ (x) and for the case(b) it is (2)-CFH-differentiable represented bycDν
2ϖ̃ (x), By the same token, for

order 1< ν < 2, takeG̃ ∈ Ef into consideration, such that

G̃ = lim
h→0

ϕ (x0+h)⊖ϕ (x0)

h
= lim

h→0

ϕ (x0)⊖ϕ (x0−h)
h

.

Then, forh> 0 sufficiently near zero

(c)cDν ϖ̃ (x0) = lim
h→0

G̃(x0+h)⊖ G̃(x0)

h
= lim

h→0

G̃(x0)⊖ G̃(x0−h)
h

,

(d)cDν ϖ̃ (x0) = lim
h→0

G̃(x0)⊖ G̃(x0+h)
-h

= lim
h→0

G̃(x0−h)⊖ G̃(x0)

-h
,

(e)cDν ϖ̃ (x0) = lim
h→0

G̃(x0+h)⊖ G̃(x0)

h
= lim

h→0

G̃(x0−h)⊖ G̃(x0)

-h
,

( f ) cDν ϖ̃ (x0) = lim
h→0

G̃(x0)⊖ G̃(x0+h)
-h

= lim
h→0

G̃(x0)⊖ G̃(x0−h)
h

.

Numerous research works are found in which generalized Hukuhara differentiability cases for fractional order
differentiation are reviewed and illustrated (see e.g. refs. [17,18,22,25,27] and the references therein).

Theorem 2.2.1

Considerϖ̃ (x) ∈ CF [α,β ]∩ LF [α,β ] with its r-level representation[ϖ (x)]r =
[

ϖ r (x) ,ϖ r (x)
]

, for r ∈ [0,1], then
for x0 ∈ (0,β )

(a) If ϖ̃ (x) is (1)-CFH-differentiable function, then for 0< ν < 1
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[cDν
1ϖ (x)]r =

[cDνϖ r (x) ,cDνϖ r (x)
]

.

(b) If ϖ̃ (x) is (2)-CFH-differentiable function, then for 0< ν < 1

[cDν
2ϖ (x)]r =

[cDνϖ r (x) ,cDνϖ r (x)
]

.

(c) If ϖ̃ (x) andcDνϖ (x) are(1)-CFH-differentiable function, then for 1< ν < 2

[cDν
1,1ϖ (x)

]r
=
[cDνϖ r (x) ,cDνϖ r (x)

]

.

(d) If ϖ̃ (x) andcDνϖ (x) are(2)-CFH-differentiable function, then for 1< ν < 2

[cDν
2,2ϖ (x)

]r
=
[cDνϖ r (x) ,cDνϖ r (x)

]

.

(e) If ϖ̃ (x) is (1)-CFH-differentiable andcDν ϖ (x) is (2)-CFH-differentiable function, then for 1< ν < 2

[cDν
1,2ϖ (x)

]r
=
[cDνϖ r (x) ,cDνϖ r (x)

]

.

( f ) If ϖ̃ (x) is (2)-CFH-differentiable andcDνϖ (x) is (1)-CFH-differentiable function, then for 1< ν < 2.

[cDν
2,1ϖ (x)

]r
=
[cDνϖ r (x) ,cDνϖ r (x)

]

.

cDν being the Caputo fractional derivative of real valued function (for details see e.g. [2,9] and the references therein).
Therefore, at this instant,

cDν ϖ r (x0) =

{

1
Γ (n−ν)

∫ x
0

(ϖ r (ξ ))(n)

(x−ξ )1−n+ν dξ , ν ∈ (n−1,n), n∈ N,

dn

dxn ϖ r (x) , ν = n∈ N.

cDν ϖ r (x0) =











1
Γ (n−ν)

∫ x
0
(ϖ r (ξ ))

(n)

(x−ξ )1−n+ν dξ , ν ∈ (n−1,n), n∈ N,

dn

dxn ϖ r (x) , ν = n∈ N.
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2.3 Mittag-Leffler Function

The generalized form of Mittag-Leffler functionEϑ (x) has played a vital part in the fractional differential equations. It
was introduced by Mittag-Leffler [30] that can be stated as:

Eϑ (x) =
∞

∑
j=0

x j

Γ ( jϑ +1)
, ϑ > 0 (6)

and in generalized formEθ ,ϑ (x) is defined as:

Eθ ,ϑ (x) =
∞

∑
j=0

x j

Γ ( jϑ +θ )
, θ > 0, ϑ > 0. (7)

3 Linear Fractional Order Fuzzy Differential Equations

In this section, we specifically exemplify annth order FFDE, and render the proposed operator method through a
theorem in conjunction with the illustration of the algorithm for all the cases ofCFH -differentiability of FFDE, as
featured in Theorem 2.2.1, consecutively. Subsequently, let the linearnth order FFDE be of the form

Dnν
x ỹ(x)+g(x, ỹ (x) ,Dν

x ỹ(x) , . . .) = f̃(x) , (8)

ỹ(x0) = ỹ0, ỹ′ (x0) = ỹ′0, (9)

where ỹ(x) is the ascertaining fuzzy-valued function ofx, which can be written in form ofr-levels as

[y(x)]r =
[

yr (x) ,yr (x)
]

, f̃(x) andg(x, ỹ(x) ,Dν
x ỹ(x) , . . .) are acquainting continuous nonhomogeneous and linear terms

of the FFDE, accordingly.

Theorem 3.1

Suppose x0 ∈ [α,β ] and consider thatf̃ : [α,β ] × Ef × Ef → Ef is continuous. Moreover, assume that
ỹ(x) ,Dν

x ỹ(x) ,D
2ν
x ỹ(x) , . . . ∈ CF, then Eq.8 can be equated to anyone of the following FRLFI equations:

(1) If ỹ(x) ,Dν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are(1)-CFH-differentiable, then

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1+a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
+ℑnν

x f̃(x) .

(2) If ỹ(x) is (1)-CFH-differentiable andDν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are(2)-CFH-differentiable, then

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1+a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
⊖ (−1)ℑnν

x f̃(x) .
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(3) If ỹ(x) is (2)-CFH-differentiable andDν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are(1)-CFH-differentiable, then

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1⊖ (−1)

(

a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
+ℑnν

x f̃(x)

)

.

(4) If ỹ(x) ,Dν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are(2)-CFH-differentiable, then

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1⊖ (−1)

(

a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
⊖ (−1)ℑnν

x f̃(x)

)

.

wherea1 = ỹ(x0), a2 = Dν
x ỹ(x0) , . . . ,an = Dnν

x ỹ(x0).

Proof.

It has been explained by Bede et al. [31] that fuzzy-valued functions are integrable iff̃ ∈ CF [α,β ]∩LF [α,β ]. Now, the
corresponding FRLFI forms of Eq.8 can be assessed under each type ofCFH-differentiable as:

(1) Let ỹ(x) ,Dν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are (1)-CFH-differentiable, then FRLFI of Eq.8 under
(1)-CFH-differentiability ofDnν

x ỹ(x) can be measured as:

D(n−1)ν
x ỹ(x)+ℑ(1)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

= an+ℑ(1)ν
x f̃(x) ,

D(n−2)ν
x ỹ(x)+ℑ(2)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

= an−1+an
(x− x0)

ν

Γ (ν +1)
+ℑ(2)ν

x f̃(x)

. . . .

. . . .

. . . .

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1+a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
+ℑnν

x f̃(x) .

(2) Let ỹ(x) be (1)-CFH-differentiable andDν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are(2)-CFH-differentiable, then FRLFI

form of Eq.8 under(2)-CFH-differentiability ofD(n)ν
x ỹ(x) can be evaluated as below:

D(n−1)ν
x ỹ(x)+ℑ(1)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

= an⊖ (−1)ℑ(1)ν
x f̃(x) ,

D(n−2)ν
x ỹ(x)+ℑ(2)ν

x g

(

x, ỹ (x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

= an−1+an
(x− x0)

ν

Γ (ν +1)
⊖ (−1)ℑ(2)ν

x f̃(x)
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. . . .

. . . .

. . . .

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1+a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
⊖ (−1)ℑnν

x f̃(x) .

(3) Let ỹ(x) be (2)-CFH-differentiable andDν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are(1)-CFH-differentiable, then FRLFI

form of Eq.8 under(1)-CFH-differentiability ofD(n)ν
x ỹ(x) can be measured as:

D(n−1)ν
x ỹ(x)+ℑ(1)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

= an⊖ (−1)ℑ(1)ν
x f̃(x) ,

D(n−2)ν
x ỹ(x)+ℑ(2)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

an−1⊖ (−1)

(

an
(x− x0)

ν

Γ (ν +1)
+ℑ(2)ν

x f̃(x)

)

. . . .

. . . .

. . . .

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1⊖ (−1)

(

a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
+ℑnν

x f̃(x)

)

.

(4) Let ỹ(x) ,Dν
x ỹ(x) ,D

2ν
x ỹ(x) , . . . ,D(n−1)ν

x ỹ(x) are (2)-CFH-differentiable, then FRLFI of Eq.8 under

(2)-CFH-differentiability ofD(n)ν
x ỹ(x) can be determined as:

D(n−1)ν
x ỹ(x)+ℑ(1)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

= an⊖ (−1)ℑ(1)ν
x f̃(x) ,

D(n−2)ν
x ỹ(x)+ℑ(2)ν

x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

an−1⊖ (−1)an
(x− x0)

ν

Γ (ν +1)
⊖ (−1)ℑ(2)ν

x f̃(x)

. . . .

. . . .

. . . .

ỹ(x)+ℑnν
x g

(

x, ỹ(x) ,Dν
x ỹ(x) , . . . ,D

(n−1)ν
x ỹ(x)

)

=

a1⊖ (−1)

(

a2
(x− x0)

(n−1)ν

Γ ((n−1)ν +1)
+ . . .+an

(x− x0)
ν

Γ (ν +1)
⊖ (−1)ℑnν

x f̃(x)

)

.
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4 Test Examples

Here, the proposed method defined in previous section is applied on some examples of linear FFDEs for illustration of its
efficiency and capability.

Example 1:

Take the following FFDE into consideration subjected to initial conditions as:

Dν
x ỹ(x) = ỹ(x) , 0< ν < 1, (10)

ỹ(0) = ỹ0 ∈ Ef . (11)

Let ỹ(x) be (1)-CFH-differentiable then on taking FRLFI on both sides of Eq.10, equivalent FRLFI form of
(1)-CFH-differentiability is obtained

ỹ(x) = ỹ(0)+ℑν
x ỹ(x) , (12)

that can also be written as:

yr (x) = yr (0)+ Iν
xy

r (x) , yr (x) = yr (x)+ Iν
xy

r (x) , (13)

whereyr (x) andyr (x) are lower and upper functions of ˜y(x), which is further simplified to

(1− Iν
x)y

r (x) = yr (0) , (1− Iν
x)y

r (x) = yr (0) . (14)

Taking inverse of(1− Iν
x) on both sides of the equation

yr (x) = (1− Iν
x)

−1
yr (0) , yr (x) = (1− Iν

x)
−1

yr (0) (15)

and on substitution of

(1− Iν
x)

−1
= 1+ Iν

x + I2ν
x + I3ν

x + . . . (16)

in Eq.15with the assumption‖Iν
x‖< 1, for r ∈ (0,1], the expanded form of the solution is attained as:

yr (x) =
(

1+ Iν
x + I2ν

x + I3ν
x + . . .

)

yr (0) =

(

1+
xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)
+

x3ν

Γ (3ν +1)
+ . . .

)

yr (0) (17)

c© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.2, No. 1, 41-54 (2016) /www.naturalspublishing.com/Journals.asp 49

yr (x) =
(

1+ Iν
x + I2ν

x + I3ν
x + . . .

)

yr (0) =

(

1+
xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)
+

x3ν

Γ (3ν +1)
+ . . .

)

yr (0) (18)

and in closed form as:

yr (x) = Eν (x
ν)yr (0) , yr (x) = Eν (x

ν )yr (0) , (19)

which are the required solutions of Eq.10under(1)-CFH-differentiability.

Example 2:

Consider another example under(2)-CFH-differentiability of ỹ(x)

Dν
x ỹ(x) =−ỹ(x) , 0< ν < 1 (20)

with initial condition

ỹ(0) = ỹ0 ∈ Ef . (21)

Then its corresponding FRLFI form of Eq.20can be articulated as:

ỹ(x) = ỹ(0)⊖ℑν
x ỹ(x) (22)

that can be simplified and expressed as:

(1+ Iν
x)y

r (x) = yr (0) , (1+ Iν
x)y

r (x) = yr (0) (23)

or

yr (x) = (1+ Iν
x)

−1
yr (0) , yr (x) = (1+ Iν

x)
−1

yr (0) . (24)

Employing the Binomial expansion

(1+ Iν
x)

−1 = 1− Iν
x + I2ν

x − I3ν
x + . . . (25)

on Eq.24 following solutions are achieved:

yr (x) =
(

1− Iν
x + I2ν

x − I3ν
x + . . .

)

yr (0) =

(

1− xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)
− x3ν

Γ (3ν +1)
+ . . .

)

yr (0) (26)
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yr (x) =
(

1− Iν
x + I2ν

x − I3ν
x + . . .

)

yr (0) =

(

1− xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)
− x3ν

Γ (3ν +1)
+ . . .

)

yr (0) (27)

and in closed version it can be represented as:

yr (x) = Eν (−xν)yr (0) , yr (x) = Eν (−xν)yr (0) . (28)

Example 3:

Now, consider the following FFDE

Dν
x ỹ(x) =−ỹ(x)+ x+1, 0< ν < 1 (29)

with
ỹ(0) = ỹ0 ∈ Ef . (30)

Let ỹ(x) be(2)-CFH-differentiable, then we obtain:

yr (x) = (1+ Iν
x)

−1
yr (0)+ (1+ Iν

x)
−1
(

xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)

)

(31)

and

yr (x) = (1+ Iν
x)

−1
yr (0)+ (1+ Iν

x)
−1
(

xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)

)

. (32)

On exercising Eq.25 on Eqs.31 and 32 and further simplifying, following results are attained inthe compact form,
namely

yr (x) = Eν (−xν)yr (0)+
xν

Γ (ν +1)
, yr (x) = Eν (−xν)yr (0)+

xν

Γ (ν +1)
. (33)

Example 4:

Next consider the following fractional second order FDE subjected to the initial conditions:

D2ν
x ỹ(x) = ρ̃0, ρ̃0 = (r −1,1− r), r ∈ [0,1] , 1< ν < 2 (34)

[y(0)]r = (r −1,1− r), (35)
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[Dν
xy(0)]

r
= (r −1,1− r) , ν ∈ (0,1] . (36)

Taking into account all the cases ofCFH-differentiability, following cases are developed:

Case I:

Let ỹr (x) andDν
x ỹ(x) are(1)-CFH-differentiable, then on employing the scheme given in Theorem 3.1, we come down

with:

ỹ(x) = ỹ(0)+
xν

Γ (ν +1)
Dν

x ỹ(0)+ℑ2ν
x ρ̃0. (37)

After manipulation the solutions in itsr-level functions are attained efficiently as:

yr (x) = (r −1)

(

1+
xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)

)

, (38)

yr (x) = (1− r)

(

1+
xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)

)

. (39)

Case II:

Let ỹ(x) is (1)-CFH-differentiable andDν
x ỹ(x) are(2)-CFH-differentiable, then we get:

ỹ(x) = ỹ(0)+
xν

Γ (ν +1)
Dν

x ỹ(0)⊖ (−1)ℑ2ν
x ρ̃0 (40)

with its lower and upper expressions:

yr (x) = yr (0)+
xν

Γ (ν +1)
Dν

xy
r (0)+ I2ν

x ρ0, (41)

yr (x) = yr (0)+
xν

Γ (ν +1)
Dν

xy
r (0)+ I2ν

x ρ
0
. (42)

Consequently, after some simplifications the solutions ofr-level functions of Eq.34 in compact form∀χ ∈ (0,1] are
attained as:

yr (x) = (r −1)

(

1+
xν

Γ (ν +1)
− x2ν

Γ (2ν +1)

)

. (43)
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and

yr (x) = (1− r)

(

1+
xν

Γ (ν +1)
− x2ν

Γ (2ν +1)

)

. (44)

Case III:

Now assume that ˜y(x) is (2)-CFH-differentiable andDν
x ỹ(x) is (1)-CFH-differentiable, following the algorithm and

applying FRLFI on Eq.34, we procure:

ỹ(x) = ỹ(0)⊖ (−1)

(

xν

Γ (ν +1)
Dν

x ỹ(0)+ℑ2ν
x ρ̃0

)

. (45)

Expanding in itsr-level functions,yr (x) andyr (x), we obtain

yr (x) = yr (0)+
xν

Γ (ν +1)
Dν

xy
r (0)+ I2ν

x ρ0, (46)

yr (x) = yr (0)+
xν

Γ (ν +1)
Dν

xy
r (0)+ I2ν

x ρ
0
. (47)

After doing some exercises the solutions of Eq.34 with respect to its lower and upper functions are derived
∀x∈

(

0,
√

3−1
)

as:

yr (x) = (r −1)

(

1− xν

Γ (ν +1)
− x2ν

Γ (2ν +1)

)

(48)

and

yr (x) = (1− r)

(

1− xν

Γ (ν +1)
− x2ν

Γ (2ν +1)

)

. (49)

Case IV:

Lastly, letỹ(x) andDν
x ỹ(x) be(2)-CFH-differentiable. Then operating the algorithm, we achieve:

ỹ(x) = ỹ(0)⊖ (−1)

(

xν

Γ (ν +1)
Dν

x ỹ(0)⊖ (−1)ℑ2ν
x ρ̃0

)

. (50)

Expanding in terms of lower and upper functions:

yr (x) = yr (0)+
xν

Γ (ν +1)
Dν

xy
r (0)+ I2ν

x ρ
0
, (51)

yr (x) = yr (0)+
xν

Γ (ν +1)
Dν

xy
r (0)+ I2ν

x ρ0 (52)
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As a result, the solutions ofr-level functions of Eq.34in the compact form∀x∈ (0,1) are obtained as:

yr (x) = (r −1)

(

1− xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)

)

(53)

and

yr (x) = (1− r)

(

1− xν

Γ (ν +1)
+

x2ν

Γ (2ν +1)

)

. (54)

Observably, the obtained results are in good agreement withthe results in Khastan et al. [32] and Allahviranloo et al. [21]
for ν = 2.

5 Conclusions

In this manuscript, we generalized the operator method stated in [21] to amplify its application for the analytical solutions
of FFDEs. The concept of the Caputo-type fuzzy fractional Hukuhara differentiability was deliberated on FFDEs to
acquire its all feasible systems. We assessed the proposed approach on the systems of FFDEs. Prodigiously getting the
solutions of some illustrative examples of FFDEs on employing this approach, it can be established that the method is
reliable and efficiently capable of solving the fractional order fuzzy differential equations. Hence, it is concluded to be
a practically consistent method for integer and non-integer fuzzy differential equations that appear naturally in different
dynamical models.
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