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Abstract: Let t2(n) denote the number of representations ofn as a sum of two triangular numbers andt(a,b)(n) denote number of
representations ofn as a sum ofa times triangular number andb times triangular number. In this paper, we prove number of results in
which generating functions oft2(n) andt(1,3)(n) are infinite product. We also establish relations betweent(1,3)(n), t(1,12)(n), t(3,4)(n),
t2(n) andt(1,4)(n).
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Throughout the paper, we employ the standard
notation

(a;q)∞ :=
∞

∏
n=0

(1− aqn), |q|< 1.

Ramanujan’s general theta function is defined as

f (a,b) :=
∞

∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab|< 1.

For convience, we denotef (q,q) by ϕ(q), f (q,q3) by
ψ(q) and f (−q,−q2) by f (−q). The Jacobi triple
product identity [1] is defined by

f (a,b) = (−a;ab)∞(−b;ab)∞(ab;ab)∞.

By Jacobi triple product identity eachϕ(q), ψ(q) and
f (−q) is a product. Infact

ϕ(q) = (−q;q2)2
∞(q

2;q2)∞,

ψ(q) = (−q;q4)∞(−q3;q4)∞(q
4;q4)∞,

f (−q) = (q;q3)∞(q
2;q3)∞(q

3;q3)∞.

Let rk(n) denote the number of representations ofn as a
sum of k squares andtk(n) denote the number of
representations ofn as a sum ofk triangular numbers. Let
t(a,b)(n) denote the number of solutions in non negative
integer of the equation

a
x1(x1+1)

2
+ b

x2(x2+1)
2

= n.

There is a remarkable relation betweenrk(n) andtk(n) [2]:

rk(8n+ k) = 2k−1
{

2+

(

k
4

)}

tk(n), for 1≤ k ≤ 7.

A. Hurwitz [4] proved several results in which generating
function of r3(an + b) is a simple infinite product. For
example

∑
n≥0

r3(4n+1)qn = 6ϕ2(q)ψ(q2),

∑
n≥0

r3(4n+2)qn = 12ϕ(q)ψ2(q2),

∑
n≥0

r3(8n+1)qn = 6ϕ2(q)ψ(q).

These results have been proved by S. Cooper and M. D.
Hirschhorn [3] and they have also established eighty
infinite families of similar results.
The main purpose of this paper is to prove number of
results in which generating functions oft2(n) and
t(1,3)(n), when n is restricted to an arithmetic sequence
are infinite products.
Infact, we prove the following results.
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Theorem 1.We have

∞

∑
n=0

t2(8n+1)qn = 2ψ(q) f (q7,q9), (1)

∞

∑
n=0

t2(8n+3)qn = 2ψ(q) f (q5,q11), (2)

∞

∑
n=0

t2(8n+5)qn = 2qψ(q) f (q,q15), (3)

∞

∑
n=0

t2(8n+7)qn = 2ψ(q) f (q3,q13). (4)

Theorem 2.We have

∞

∑
n=0

t(1,3)(16n+2)qn = 2qψ(q3) f (q3,q13), (5)

∞

∑
n=0

t(1,3)(16n+3)qn = 2ψ(q) f (q21,q27), (6)

∞

∑
n=0

t(1,3)(16n+6)qn = 2ψ(q3) f (q7,q9), (7)

∞

∑
n=0

t(1,3)(16n+7)qn = 2q2ψ(q) f (q9,q39), (8)

∞

∑
n=0

t(1,3)(16n+10)qn = 2ψ(q3) f (q5,q11), (9)

∞

∑
n=0

t(1,3)(16n+11)qn = 2q4ψ(q) f (q3,q45), (10)

∞

∑
n=0

t(1,3)(16n+14)qn = 2qψ(q3) f (q,q15), (11)

∞

∑
n=0

t(1,3)(16n+15)qn = 2ψ(q) f (q15,q33). (12)

We also establish the following relations between
t(1,3)(n), t(1,12)(n), t(3,4)(n), t2(n) andt(1,4)(n).

Theorem 3.We have

t(1,3)(4n+2) = 2t(1,12)(n−1), n ≥ 1, (13)

t(1,3)(4n+3) = 2t(3,4)(n), n ≥ 0, (14)

t2(2n+1) = 2t(1,4)(n), n ≥ 0. (15)

1 Proof of Theorem 1

From [1, Entry 25(iv), p. 36], we have

∞

∑
n=0

t2(n)q
n = ψ2(q)

= ψ(q2)ϕ(q). (16)

Adding Entries 30(ii) and 30(iii) in [1, p. 43], we obtain

f (a,b) = f (a3b,ab3)+ a f (b/a,a5b3). (17)

Putting a=q and b=q in (17), we obtain

ϕ(q) = ϕ(q4)+2qψ(q8). (18)

Employing (18) in (16), we see that

∞

∑
n=0

t2(n)q
n = ψ(q2){ϕ(q4)+2qψ(q8)}. (19)

Immediately, it follows that

∞

∑
n=0

t2(2n+1)qn = 2ψ(q)ψ(q4). (20)

Putting a=q and b=q3 in (17), we obtain

ψ(q) = f (q6,q10)+ q f (q2,q14). (21)

Employing (21) in (20) and then extracting those terms in
which the power ofq is 0 (mod 2) and replacingq2 by q,
we find that

∞

∑
n=0

t2(4n+1)qn = 2ψ(q2) f (q3,q5). (22)

Putting a=q3 and b=q5 in (17), we get

f (q3,q5) = f (q14,q18)+ q3 f (q2,q30). (23)

Employing (23) in (22), it immediately follows that

∞

∑
n=0

t2(8n+1)qn = 2ψ(q) f (q7,q9)

and

∞

∑
n=0

t2(8n+5)qn = 2qψ(q) f (q,q15).

This completes the proofs of (1) and (3).
The proofs of (2) and (4) are similar.

2 Proof of Theorem 2

We have

∞

∑
n=0

t(1,3)(n)q
n = ψ(q)ψ(q3). (24)

From [1, p. 69, Eq. (36.8)], we have

ψ(q)ψ(q3) = ϕ(q6)ψ(q4)+ qϕ(q2)ψ(q12).

Employing the above identity in (24), we obtain

∞

∑
n=0

t(1,3)(n)q
n = ϕ(q6)ψ(q4)+ qϕ(q2)ψ(q12). (25)
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Extracting those terms in which the power ofq is 0
(mod 2) and replacingq2 by q, we obtain

∞

∑
n=0

t(1,3)(2n)qn = ϕ(q3)ψ(q2)

= ψ(q2){ϕ(q12)+2q3ψ(q24)}. (26)

Again, extracting those terms in which the power ofq is 1
(mod 2), divide byq and replacingq2 by q, we find that

∞

∑
n=0

t(1,3)(4n+2)qn = 2qψ(q)ψ(q12). (27)

Employing (21) in (27), we immediately see that

∞

∑
n=0

t(1,3)(8n+2)qn = 2qψ(q6) f (q,q7),

= 2qψ(q6){ f (q10,q22)+ q f (q6,q26)}.

Hence,

∞

∑
n=0

t(1,3)(16n+2)qn = 2qψ(q3) f (q3,q13),

∞

∑
n=0

t(1,3)(16n+10)qn = 2ψ(q3) f (q5,q11).

This completes the proofs of (5) and (9).
The proofs of remaining identities are similar to the proofs
of (5) and (9).

3 Proof of Theorem 3

By (27), we have

∞

∑
n=0

t(1,3)(4n+2)qn = 2qψ(q)ψ(q12)

= 2q
∞

∑
n=0

t(1,12)(n)q
n.

Now, comparing the coefficients ofqn in both sides of the
above identity, we get (13).
Proofs of (14) and (15) are similar to that of (13).
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