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Abstract: In order to quantify the life characteristics of a product, partially accelerated life tests are used when the data obtained from
accelerated conditions cannot be extrapolated to normal use conditions. This study considers constant-stress partially accelerated life
tests for censored lifetime data, where the lifetime distribution is assumed to follow log-logistic distribution. Themaximum likelihood
estimates are obtained for the distribution parameters andacceleration factor. Simulation studies are conducted to illustrate the statistical
properties of the estimates and evaluate the performance ofconfidence intervals.
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1 Introduction

Traditional lifetime data analyses are used to obtain information on the life characteristics of a product, system or
component at normal use conditions. Nowadays, products andequipments are, however, well designed and giving good
satisfaction with very long lifetimes to customers. As a result of great reliability of today’s products, obtaining such
lifetime data (or times-to-failure data) is becoming more and more difficult under normal use conditions. To obtain
failures quickly, reliability practitioners have attempted to force the products to fail more quickly than they would under
normal use conditions. That is, a sample of the items is tested at accelerated conditions than normal ones. These
conditions are often referred to as stresses which may be in the form of temperature, pressure, vibrations, and so on. The
phrase accelerated life testing (ALT) has been used to describe all such practices, and the lifetime data from accelerated
conditions are extrapolated to estimate the life distribution at normal operating conditions. The types of stress loadings in
ALT are generally classified as constant-stress, step-stress or random-stress. The constant-stress loading is a
time-independent test setting where the stress remains unchanged until an item fails. The constant-stress loading has
several advantages over time-dependent stress loadings because most of real products are operated at a constant-stress
condition. For more details about ALTs, see [1], [2], and [3] among others.

In ALT the main assumption is that a life-stress relationship is known or can be assumed so that the data obtained
from accelerated conditions can be extrapolated to normal use conditions. In some cases, such relationship can not be
known or assumed. So, partially accelerated life tests (PALT) are often used in such cases. In a constant-stress PALT,
each test item is run at a constant-stress under either normal use condition or accelerated condition only until the test
is terminated, and the analysis of PALT has been extensivelystudied in recent years. Bai and Chung [4] studied the
problem of estimation and optimal constant-stress PALT design for an exponential lifetime distribution. Baiet al. [5] also
considered PALT design for items having lognormal distribution. Abdel-Ghani [6] considered the estimation problem
in constant-stress PALT for the Weibull distribution, Abdel-Ghaly et al. [7] discussed parameter estimation for Pareto
distribution under PALT, and Abd-Elfattahet al. [8] considered estimation in step-stress partially accelerated life tests for
the Burr Type XII distribution. Zarrinet al. [9] studied the maximum likelihood method for estimating the acceleration
factor and the parameters of Rayleigh distribution for constant-stress PALT. Kamalet al. [10] dealt with constant stress
partially accelerated life test assuming that the lifetimes of test item follow Inverted Weibull distribution.
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As indicated by Bennett [11], the log-logistic distribution is found to be a good reliability model as it fits well in many
practical situations of reliability data analyses. For example, Chiodo and Mazzanti [12] used the log-logistic distribution
for describing the degradation rate for highly reliable products, Kantamet al. [13] used the log-logistic distribution for
the basic probability model of the life of the product, and Akhtar and Khan [14] utilized log-logistic distribution as a
reliability model using a Bayesian method. Another important feature with the log-logistic distribution is that its reliability
and hazard functions can be written in closed forms. Thus thelog-logistic distribution is convenient in handling censored
data. In this paper we consider constant-stress partially accelerated life tests for log-logistic lifetime distribution with
Type-I and Type-II censored data.

The rest of this paper is organized as follows. Section 2.1 introduces the notations and model assumptions. Section 2.2
presents the maximum likelihood estimators of underlying parameters with Type-I censored data, and Type-II censored
data are considered in Section 2.3. Section 3 contains the simulation results that demonstrate and evaluate the performance
of the estimators based on the proposed censoring schemes. Section 4 concludes the paper and suggests some future ideas
in this area.

2 Model description and maximum likelihood estimates

2.1 Model assumptions

In a constant-stress PALT, all of then items are divided into two groups.nπ items are randomly chosen from then
items and are allocated to accelerated conditions whereπ is the proportion of the sample items allocated to accelerated
conditions, while the remainingn− nπ items are placed to normal use conditions. Some assumptionsare made in a
constant-stress PALT.

–Each test item is run until the censoring timeτ.
–The test condition is not changed.
–The lifetimesXi, i = 1, . . . ,n(1−π) andYj, j = 1, . . . ,nπ of items allocated at normal use conditions and accelerated
conditions, respectively, are i.i.d. random variables.

–The lifetimesXi andYj are mutually independent.

In this study the lifetimes of test items are assumed to follow a log-logistic distribution. The probability density
function of an item at use conditions is given by

f (x) =
αxα−1λ

(1+λ xα)2 , x ≥ 0,α > 0,λ > 0,

whereα is a shape parameter andλ is a scale parameter. Its cumulative distribution functionis

F(x) = Pr(X ≤ x) =
∫ x

0

αuα−1λ
(1+λ uα)2 du =

∫ 1+λ xα

1

1
t2 dt =

λ xα

1+λ xα ,

the reliability function is

S(x) = Pr(X > x) =
1

1+λ xα ,

and its hazard function is obtained by

h(x) = f (x)/S(x) =
αxα−1λ
1+λ xα .

In a constant-stress PALT whereY = β−1X with β being the acceleration factor which is the ratio of mean lifetime at use
conditions to that at accelerated conditions, the probability density function for an item tested at acceleration conditions
is given by

f (y) =
β α(β y)α−1λ
{1+λ (β y)α}2 , y ≥ 0,α > 0,λ > 0.

In many cases when lifetime data are collected, all items in the sample may not fail. Because of time or cost
considerations, the practitioners will terminate the testing and report the results before all items realize their failures.
First, we will consider Type-I censoring where the failure is observed only if it occurs prior to some prespecified time. In
this instance, all censored items have times equal to the length of the study periodτ. Type-I censored data are usually
obtained when censoring time is fixed, and then the number of failures in that fixed time is a random variable.

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.4, No. 2, 193-201 (2015) /www.naturalspublishing.com/Journals.asp 195

2.2 Type-I censored data

In a constant-stress PALT with Type-I censoring, the data consist of a random sample ofn(1 − π) lifetimes
x1,x2, . . . ,xn(1−π) under normal use conditions and a random sample ofnπ lifetimes y1,y2, . . . ,ynπ at accelerated
conditions respectively. Letδui andδa j denote the failure indicators such that

δui =

{
1 xi ≤ τ
0 otherwise

for i = 1, . . . ,n(1−π) and

δa j =

{
1 y j ≤ τ
0 otherwise

for j = 1, . . . ,nπ . We consider the maximum likelihood procedure to estimate the parametersα, λ andβ of the model.
The likelihood function for{(xi,δui) : i = 1, . . . ,n(1−π)} at normal use conditions is given by

Lu(xi,δui|α,λ ) =
n(1−π)

∏
i=1



{

αxα−1
i λ

(1+λ xα
i )

2

}δui{
1

1+λ τα

}1−δui




and the likelihood function for{(y j,δa j) : j = 1, . . . ,nπ} at accelerated conditions is given by

La(y j,δa j|α,λ ,β ) =
nπ

∏
j=1

[{
β α(β y j)

α−1λ
(1+λ (β y j)α )2

}δa j { 1
1+λ (β τ)α

}1−δa j
]
.

Thus, the total likelihood function for{(xi,δui),(y j,δa j) : i = 1, . . . ,n(1−π), j = 1, . . . ,nπ} is

L(α,λ ,β ) =
n(1−π)

∏
i=1



{

αxα−1
i λ

(1+λ xα
i )

2

}δui{
1

1+λ τα

}1−δui




×
nπ

∏
j=1

[{
β α(β y j)

α−1λ
(1+λ (β y j)α)2

}δa j { 1
1+λ (β τ)α

}1−δa j
]
.

Let nu andna be the number of items failed at normal and accelerated conditions respectively. Similarly, letcu and
ca be the number of items censored at normal and accelerated conditions respectively. That is,cu = n(1− π)− nu and
ca = nπ − na. To obtain the maximum likelihood estimates, the natural logarithm of the likelihood function is usually
considered. Then, the log likelihood function is

lnL =
n(1−π)

∑
i=1

δui {lnα +(α −1) lnxi + lnλ −2ln(1+λ xα
i )}− cu ln(1+λ τα)

+
nπ

∑
j=1

δa j
{

lnα + lnβ +(α −1) ln(β y j)+ lnλ −2ln(1+λ (β y j)
α)
}
− ca ln{1+λ (β τ)α}

The maximum likelihood estimates (MLE) of the parametersα, λ andβ are solutions to the system of likelihood equations
obtained by

∂ lnL
∂α

=
nu

α
+

n(1−π)

∑
i=1

δui lnxi

(
1−2

λ xα
i

1+λ xα
i

)
− cu

λ τα

1+λ τα lnτ

+
na

α
+

nπ

∑
j=1

δa j ln(β y j)

(
1−2

λ (β y j)
α

1+λ (β y j)α

)
− ca

λ (β τ)α

1+λ (β τ)α ln(β τ) = 0

∂ lnL
∂λ

=
nu

λ
−2

n(1−π)

∑
i=1

δui
xα

i

1+λ xα
i
− cu

τα

1+λ τα

+
na

λ
−2

nπ

∑
j=1

δa j
(β y j)

α

1+λ (β y j)α − ca
(β τ)α

1+λ (β τ)α = 0
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∂ lnL
∂β

= na
α
β
−2

nπ

∑
j=1

δa j
λ α(β y j)

α y j

1+λ (β y j)α − ca
λ α(β τ)α τ
1+λ (β τ)α = 0

Here, it is difficult to obtain a closed form solution to nonlinear score equations, so an iterative method such as the
Newton-Raphson method is used to solve the equations to obtain MLEs. Since the MLEs of parameters are not in closed
forms, it is not possible to obtain the Fisher information matrix and construct exact confidence intervals. So asymptotic
confidence intervals based on the asymptotic normal distribution of MLEs are obtained here. Hence the asymptotic
variance of the maximum likelihood estimates can be obtained by the inverse of observed Fisher information matrix
which is evaluated at the MLE

Σ̂ =




− ∂ 2 lnL
∂α2 − ∂ 2 lnL

∂α∂λ − ∂ 2 lnL
∂α∂β

− ∂ 2 lnL
∂λ ∂α − ∂ 2 lnL

∂λ 2 − ∂ 2 lnL
∂λ ∂β

− ∂ 2 lnL
∂β ∂α − ∂ 2 lnL

∂β ∂λ − ∂ 2 lnL
∂β 2




−1

.

The elements of the observed Fisher information matrix are as follows:

∂ 2 lnL
∂α2 =−

nu

α2 −2
n(1−π)

∑
i=1

δui
λ xα

i

(1+λ xα
i )

2 (lnxi)
2− cu

λ τα

(1+λ τα)2 (lnτ)2

−
na

α2 −2
nπ

∑
j=1

δa j
λ (β y j)

α

{1+λ (β y j)α}2{ln(β y j)}
2− ca

λ (β τ)α

{1+λ (β τ)α}2{ln(β τ)}2

∂ 2 lnL
∂α∂λ

=
∂ 2 lnL
∂λ ∂α

=−2
n(1−π)

∑
i=1

δui
xα

i

(1+λ xα
i )

2 lnxi − cu
τα

(1+λ τα)2 lnτ

−2
nπ

∑
j=1

δa j
(β y j)

α

{1+λ (β y j)α}2 ln(β y j)− ca
(β τ)α

{1+λ (β τ)α}2 ln(β τ)

∂ 2 lnL
∂α∂β

=
∂ 2 lnL
∂β ∂α

=
na

β
−2

nπ

∑
j=1

δa j

[
λ α(β y j)

α−1y j

{1+λ (β y j)α}2 ln(β y j)+
λ (β y j)

α

1+λ (β y j)α
1
β

]

− ca

[
λ α(β τ)α−1τ
{1+λ (β τ)α}2 ln(β τ)+

λ (β τ)α

1+λ (β τ)α
1
β

]

∂ 2 lnL
∂λ 2 =−

nu

λ 2 +2
n(1−π)

∑
i=1

δui

(
xα

i

1+λ xα
i

)2

+ cu

(
τα

1+λ τα

)2

−
na

λ 2 +2
nπ

∑
j=1

δa j

(
(β y j)

α

1+λ (β y j)α

)2

+ ca

(
(β τ)α

1+λ (β τ)α

)2

∂ 2 lnL
∂λ ∂β

=
∂ 2 lnL
∂β ∂λ

=−2
nπ

∑
j=1

δa j
α(β y j)

α−1y j

{1+λ (β y j)α}2 − ca
α(β τ)α−1τ

{1+λ (β τ)α}2

∂ 2 lnL
∂β 2 =− na

α
β 2 −2

nπ

∑
j=1

δa j
λ α(β y j)

α−2y2
j{α −1−λ (β y j)

α}

{1+λ (β y j)α}2

− ca
λ α(β τ)α−2τ2{α −1−λ (β τ)α}

{1+λ (β τ)α}2

Thus, an asymptotic(1− c)×100% confidence intervals forα, λ , andβ are given by following

α̂ ± zc/2

√
Σ̂11, λ̂ ± zc/2

√
Σ̂22, andβ̂ ± zc/2

√
Σ̂33,

wherezc is the 100c upper percentage point of the standard normal distributionandΣ̂kk is the(k,k) component of̂Σ .
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2.3 Type-II censored data

Another censoring often used in testing of equipments is Type-II censoring where all items are put on test at the same
time, and the test is terminated when the predeterminedr of the items have failed. Such an experiment may save time and
money because it could take a very long time for all items to fail. It is also true that the statistical treatment of Type-II
censored data is simpler because the data consists of ther smallest lifetimes in a random sample of lifetimes, so that the
theory of order statistics is directly applicable to determining the likelihood and any inferential technique employed.

For a constant-stress PALT with Type-II censoring, the failure times consist ofrth smallest lifetimesx(1) ≤ x(2) ≤ . . .≤
x(r) out of a random sample ofn(1−π) lifetimesX1, . . . ,Xn(1−π) under normal use conditions andy(1) ≤ y(2) ≤ . . .≤ y(r)
out of a random sample ofnπ lifetimesY1, . . . ,Ynπ at accelerated conditions respectively. Letδui andδa j denote the failure
indicators such that

δui =

{
1 xi ≤ x(r)
0 otherwise

for i = 1, . . . ,n(1−π) and

δa j =

{
1 y j ≤ y(r)
0 otherwise

for j = 1, . . . ,nπ . The likelihood function for{(xi,δui) : i = 1, . . . ,n(1−π)} at normal use conditions is given by

Lu(xi,δui|α,λ ) =
(n− nπ)!

(n− nπ− r)!

[
r

∏
i=1

αx(i)
α−1λ

(1+λ x(i)α)2

]{
1

1+λ x(r)α

}n−nπ−r

and the likelihood function for{(y j,δa j) : j = 1, . . . ,nπ} at accelerated conditions is given by

La(y j,δa j|α,λ ,β ) =
(nπ)!

(nπ − r)!

[
r

∏
j=1

β α(β y( j))
α−1λ

{1+λ (β y( j))
α}2

]{
1

1+λ (β y(r))α

}nπ−r

.

Let cu andca be the number of items censored at normal and accelerated conditions respectively. That is,cu = n(1−
π)− r andca = nπ − r. Then, the log likelihood function for{(xi,δui),(y j ,δa j) : i = 1, . . . ,n(1− π), j = 1, . . . ,nπ} is
written as

lnL = ln(n− nπ)! − lncu! + ln(nπ)! − lnca!

+
r

∑
i=1

{
lnα +(α −1) lnx(i)+ lnλ −2ln(1+λ x(i)

α)
}
− cu ln(1+λ x(r)

α)

+
r

∑
j=1

{
lnα + lnβ +(α −1) ln(β y( j))+ lnλ −2ln(1+λ (β y( j))

α)
}
− ca ln{1+λ (β y(r))

α}.

The maximum likelihood estimates of the parametersα, λ andβ are solutions to the system of likelihood equations
obtained by

∂ lnL
∂α

=
2r
α

+
r

∑
i=1

lnx(i)

(
1−2

λ x(i)
α

1+λ x(i)α

)
− cu

λ x(r)
α

1+λ x(r)α
lnx(r)

+
r

∑
j=1

ln(β y( j))

(
1−2

λ (β y( j))
α

1+λ (β y( j))
α

)
− ca

λ (β y(r))
α

1+λ (β y(r))α ln(β y(r)) = 0

∂ lnL
∂λ

=
2r
λ

−2
r

∑
i=1

x(i)
α

1+λ x(i)α
− cu

x(r)
α

1+λ x(r)α

−2
r

∑
j=1

(β y( j))
α

1+λ (β y( j))α − ca
(β y(r))

α

1+λ (β y(r))α = 0

∂ lnL
∂β

= r
α
β
−2

r

∑
j=1

λ α(β y( j))
α y( j)

1+λ (β y( j))
α − ca

λ α(β y(r))
α y(r)

1+λ (β y(r))α = 0
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Similarly, an iterative method such as the Newton-Raphson method is used to solve the equations to obtain MLEs
and asymptotic confidence intervals based on the asymptoticnormal distribution of MLEs are obtained here. Hence the
asymptotic variance of the maximum likelihood estimates can be obtained by the inverse of observed Fisher information
matrix which is evaluated at the MLE

Ω̂ =




− ∂ 2 lnL
∂α2 − ∂ 2 lnL

∂α∂λ − ∂ 2 lnL
∂α∂β

− ∂ 2 lnL
∂λ ∂α − ∂ 2 lnL

∂λ 2 − ∂ 2 lnL
∂λ ∂β

− ∂ 2 lnL
∂β ∂α − ∂ 2 lnL

∂β ∂λ − ∂ 2 lnL
∂β 2




−1

.

The elements of the observed Fisher information matrix are as follows:

∂ 2 lnL
∂α2 =−

2r
α2 −2

r

∑
i=1

λ x(i)
α

(1+λ x(i)α)2 (lnx(i))
2− cu

λ x(r)
α

(1+λ x(r)α)2 (lnx(r))
2

−2
r

∑
j=1

λ (β y( j))
α

{1+λ (β y( j))α}2{ln(β y( j))}
2− ca

λ (β y(r))
α

{1+λ (β y(r))α}2{ln(β y(r))}
2

∂ 2 lnL
∂α∂λ

=
∂ 2 lnL
∂λ ∂α

=−2
r

∑
i=1

x(i)
α

(1+λ x(i)α)2 lnx(i)− cu
x(r)

α

(1+λ x(r)α)2 lnx(r)

−2
r

∑
j=1

(β y( j))
α

{1+λ (β y( j))α}2 ln(β y( j))− ca
(β y(r))

α

{1+λ (β y(r))α}2 ln(β y(r))

∂ 2 lnL
∂α∂β

=
∂ 2 lnL
∂β ∂α

=
r
β
−2

r

∑
j=1

[
λ α(β y( j))

α−1y( j)

{1+λ (β y( j))
α}2 ln(β y( j))+

λ (β y( j))
α

1+λ (β y( j))
α

1
β

]

− ca

[
λ α(β y(r))

α−1y(r)
{1+λ (β y(r))α}2 ln(β y(r))+

λ (β y(r))
α

1+λ (β y(r))α
1
β

]

∂ 2 lnL
∂λ 2 =−

2r
λ 2 +2

r

∑
i=1

(
x(i)

α

1+λ x(i)α

)2

+ cu

(
x(r)

α

1+λ x(r)α

)2

+2
r

∑
j=1

(
(β y( j))

α

1+λ (β y( j))
α

)2

+ ca

(
(β y(r))

α

1+λ (β y(r))α

)2

∂ 2 lnL
∂λ ∂β

=
∂ 2 lnL
∂β ∂λ

=−2
r

∑
j=1

α(β y( j))
α−1y( j)

{1+λ (β y( j))
α}2 − ca

α(β y(r))
α−1y(r)

{1+λ (β y(r))α}2

∂ 2 lnL
∂β 2 =− r

α
β 2 −2

r

∑
j=1

λ α(β y( j))
α−2y( j)

2{α −1−λ (β y( j))
α}

{1+λ (β y( j))
α}2

− ca
λ α(β y(r))

α−2y(r)
2{α −1−λ (β y(r))

α}

{1+λ (β y(r))α}2

Thus, an asymptotic(1− c)×100% confidence intervals forα, λ , andβ are given by following

α̂ ± zc/2

√
Ω̂11, λ̂ ± zc/2

√
Ω̂22, andβ̂ ± zc/2

√
Ω̂33,

wherezc is the 100c upper percentage point of the standard normal distributionandΩ̂kk is the(k,k) component of̂Σ .

3 Simulations

To evaluate the statistical properties of the estimates andthe performance of confidence intervals, simulation studies are
conducted. For Type-I censored data, a random sample ofx1,x2, . . . ,xn(1−π) under normal use conditions is generated
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Table 1: Summary statistics forα = 1, λ = 2.5, β = 1.5, andπ = 25%. MLE is the mean of the estimates, SE is the standard error
of the estimates, SEE is the mean of the standard error estimates, and CP is the coverage probability of the proposed 95% confidence
interval.

Sample size Parameter MLE SE SEE CP
α̂ 1.0113 0.0829 0.0816 94.2

150 λ̂ 2.5879 0.4922 0.4885 95.4
β̂ 1.6020 0.5263 0.5287 94.4
α̂ 1.0090 0.0702 0.0703 95.6

200 λ̂ 2.5841 0.4328 0.4208 96.2
β̂ 1.5488 0.4354 0.4394 94.4
α̂ 1.0061 0.0581 0.0573 95.0

300 λ̂ 2.5496 0.3501 0.3380 94.2
β̂ 1.5476 0.3743 0.3590 94.0
α̂ 1.0035 0.0454 0.0443 94.5

500 λ̂ 2.5282 0.2747 0.2590 94.1
β̂ 1.5210 0.2813 0.2738 94.0

Table 2: Summary statistics forα = 1, λ = 2.5, β = 1.5, andπ = 50%. MLE is the mean of the estimates, SE is the standard error
of the estimates, SEE is the mean of the standard error estimates, and CP is the coverage probability of the proposed 95% confidence
interval.

Sample size Parameter MLE SE SEE CP
α̂ 1.0114 0.0784 0.0801 95.7

150 λ̂ 2.6119 0.5973 0.5793 94.6

β̂ 1.5698 0.4652 0.4473 93.2
α̂ 1.0090 0.0694 0.0692 95.3

200 λ̂ 2.5908 0.5285 0.4964 93.8
β̂ 1.5534 0.3851 0.3832 95.0
α̂ 1.0058 0.0569 0.0564 94.9

300 λ̂ 2.5586 0.3984 0.3992 95.0
β̂ 1.5269 0.3023 0.3075 93.6
α̂ 1.0035 0.0447 0.0436 94.3

500 λ̂ 2.5244 0.3174 0.3044 93.8

β̂ 1.5268 0.2396 0.2384 95.1

from the log-logistic distribution with the parametersα = 1 andλ = 2.5. For accelerated lifetimesy1,y2, . . . ,ynπ we
consider the log-logistic distribution with accelerationfactorβ = 1.5. The lifetimes from both conditions are censored at
τ = 1. With acceleration factorβ = 1.5, about 29% and 21% of lifetimes are censored under normal use condition and
acceleration condition, respectively. We consider three different proportionπ of the sample items allocated to accelerated
conditions,π = 25%, 50% and 75%. For Type-II censored data, the experiment continues until 40% of lifetimes at normal
use condition occur with different sample sizesn = 150, 200, 300, and 500. The results give the mean of the estimates
(MLE), standard error of the estimates (SE), mean of the standard error estimates (SEE), and coverage probability (CP)
of the proposed 95% confidence interval based on 1000 replications.

The results from Tables 1–3 for Type-I censored data and Tables 4–5 for Type-II censored data indicate that the
parameter estimates perform well. The bias of the maximum likelihood estimate decreases as the sample size increases
and the asymptotic variances of the estimators are decreasing as the sample size increases. The standard error estimates
are based on̂Σ andΩ̂ respectively and the estimates provides a fairly accurate of true variance of the estimates, and the
corresponding confidence intervals have reasonable coverage probabilities. Simulation studies were also conducted with
acceleration factorβ = 2 and the results, not provided here, showed the same pattern.
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Table 3: Summary statistics forα = 1, λ = 2.5, β = 1.5, andπ = 75%. MLE is the mean of the estimates, SE is the standard error
of the estimates, SEE is the mean of the standard error estimates, and CP is the coverage probability of the proposed 95% confidence
interval.

Sample size Parameter MLE SE SEE CP
α̂ 1.0114 0.0805 0.0792 94.7

150 λ̂ 2.7005 0.8814 0.8194 93.8
β̂ 1.5792 0.5714 0.5246 92.4
α̂ 1.0091 0.0688 0.0682 94.7

200 λ̂ 2.6267 0.7551 0.6835 94.6
β̂ 1.5731 0.4474 0.4500 94.7
α̂ 1.0058 0.0557 0.0556 95.3

300 λ̂ 2.5825 0.5574 0.5473 95.1
β̂ 1.5429 0.3642 0.3602 94.3
α̂ 1.0034 0.0440 0.0430 94.0

500 λ̂ 2.5502 0.4331 0.4182 94.2
β̂ 1.5217 0.2744 0.2752 95.0

Table 4: Summary statistics forα = 1, λ = 2.5, β = 1.5, π = 30% andr = 40%. MLE is the mean of the estimates, SE is the
standard error of the estimates, SEE is the mean of the standard error estimates, and CP is the coverage probability of theproposed
95% confidence interval.

Sample size Parameter MLE SE SEE CP
α̂ 1.0248 0.0976 0.0969 95.0

150 λ̂ 2.7633 0.7863 0.7104 96.7
β̂ 1.5352 0.5146 0.5012 91.5
α̂ 1.0202 0.0853 0.0835 95.3

200 λ̂ 2.7021 0.6324 0.5952 95.9
β̂ 1.5280 0.4356 0.4316 92.9
α̂ 1.0141 0.0708 0.0678 94.1

300 λ̂ 2.6313 0.5121 0.4691 95.8
β̂ 1.5345 0.3670 0.3549 92.8
α̂ 1.0069 0.0541 0.0521 93.7

500 λ̂ 2.5663 0.3842 0.3514 94.2
β̂ 1.5163 0.2800 0.2728 94.6

Table 5: Summary statistics forα = 1, λ = 2.5, β = 1.5, π = 50% andr = 40%. MLE is the mean of the estimates, SE is the
standard error of the estimates, SEE is the mean of the standard error estimates, and CP is the coverage probability of theproposed
95% confidence interval.

Sample size Parameter MLE SE SEE CP
α̂ 1.0422 0.1181 0.1219 95.7

150 λ̂ 2.8958 1.0131 0.9151 96.1

β̂ 1.5764 0.5291 0.4897 92.1
α̂ 1.0301 0.1059 0.1043 95.1

200 λ̂ 2.7865 0.8390 0.7507 96.3
β̂ 1.5605 0.4333 0.4238 93.6
α̂ 1.0202 0.0858 0.0843 95.3

300 λ̂ 2.6869 0.6200 0.5822 96.4
β̂ 1.5310 0.3398 0.3414 93.6
α̂ 1.0124 0.0681 0.0648 93.5

500 λ̂ 2.6000 0.4659 0.4312 94.3

β̂ 1.5315 0.2720 0.2660 94.5
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4 Conclusions

In this study we have considered a constant-stress PALT for log-logistic lifetime distribution with Type-I or Type-II
censored data. The maximum likelihood estimates of the model parameters and acceleration factor are obtained using the
Newton-Raphson iterative method and their performances are discussed. The asymptotic confidence intervals of model
parameters and acceleration factor are also obtained. Fromthe simulation results it is easy to find that the maximum
likelihood estimates have good statistical properties. Although the lifetime distribution is assumed to follow log-logistic
distribution with Type-I or Type-II censoring, most of the methods can be applied to other distributions and other censoring
schemes. This work is in progress and will be reported elsewhere.
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