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Abstract: This paper deals with a scalar response conditioned by a functional random variable. The main goal is to estimate
nonparametrically Kernel type estimator for the conditional hazard function. Finally, asymptotic properties of thisestimator are stated
bias the exact expression involved in the leading terms of the quadratic error and we investigate the asymptotic normality of the kernel
conditional hazard function estimator.
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1 Introduction

The estimated hazard rate, because of the variety of its possible applications, is an important issue in statistics. This topic
can (and should) be approached from several angles depending on the complexity of the problem: presence of censoring
in the observed sample (for example, common phenomenon in medical applications), presence of dependence between
the observed variables (for example, common phenomenon in applications such as seismic or econometric) or presence
of explanatory variables. Many techniques have been studied in the literature to deal with these situations but all dealonly
with random explanatory variables real and multidimensional.

Technical advances in collection and data storage can have more often statistical functional: curves, images, tables,...
The data are modeled as realizations of a random variable taking values in an abstract space of infinite dimension, and the
scientific community was naturally interested in recent years the development of statistical tools capable of handlingthis
type of sample.

Thus, estimating a hazard rate in the presence of functionalexplanatory variable is a topical issue. In this context,
the first results were obtained by Ferratyet al. [9]. They studied the almost complete convergence of a kernel estimator
of the conditional hazard function assuming i.i.d observations and the case of observations mixing for complete data and
censored.

In the case where the data is incomplete, Lemdani and Ould-Saı̈d [14], they give the asymptotic mean integrated
squared error and the mean squared error for the kernel estimator of the hazard rate from truncated and censored data.

Recently, Djebbouriet al. [5] studied the mean squared convergence rate and are proved the asymptotic normality for
functional mixing data case of this estimate.

The estimators that we define are based on the techniques of convolution kernel. The study of functions (the hazard
function and the conditional hazard function) is of obviousinterest in many scientific fields (biology, medicine,
reliability, seismology, econometrics, ...), and many authors have studied the construction of nonparametric estimators of
hazard function. One of the most common techniques for constructing estimators of the hazard function (respectively the
hazard function conditional) is to study a quotient of the density estimator (respectively the conditional density) and an
estimator ofS (respectively the conditional survival function). The article by Patilet al. [17] presented an overview of
estimation techniques. The non-parametric methods based on the ideas of convolution kernel, which are known for their
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good behavior problems in density estimation (conditionalor not), and are widely used in nonparametric estimation of
hazard function.

A wide range of literature in this area is provided by the literature reviews of Singpurwalla and Wong [20], Hassaniet
al. [12], Izenman [13], Gefeller and Michels [11] and Pascu and Vaduva [16].

Advances in data collection processes have the immediate consequence of the opportunity for statisticians to have
more and more observations of functional variables. The works of Ramsay and Silverman [18] and Ferraty and Vieu
[8] offer a wide range of statistical methodologies, parametric or not, recently developed to treat various problems of
estimation are carried out in functional random variables (ie with values in an infinite dimensional space) and/or random
variables real. In this context Arfi [1] is study the almost sure convergence of the kernel type estimator of the hazard
function is shown under̃ρ-mixing condition with censored data over a sequence of compact sets which increases toRd .

The objective of this paper is to study a model in which the conditional random explanatory variableX is not
necessarily real or multi-dimensional but only supposed tobe with values in an abstract spaceF semi-normed.

As with any problem of nonparametric estimation, the dimension of the spaceF plays an important role in the
properties of concentration of the variableX . Thus, when this dimension is not necessarily finite, the probability functions
defined by small balls

φx(h) = P(X ∈ B(x,h)) = P
(
X ∈ {x′ ∈ F ,‖x− x′‖< h}

)
, (1)

intervene directly in the asymptotic behavior of any estimator nonparametric functional (see Ferratyet al. [7]). The
asymptotic results that we present later in this article on convergence in mean square of the conditional hazard function
will not escape this rule.

2 General notations and conditions

We consider a random pair(X ,Y ) whereY is valued inR andX is valued in some semi-normed vector space(F ,‖ · ‖)
which can be of infinite dimension. We will say thatX is a functional random variable and we will use the abbreviation
frv. From a sample of independant pairs(Xi,Yi), each having the same distribution as(X ,Y ), our aim is to study the
mean square convergence of the estimator of the conditionalhazard function of a real random variable conditional on one
variable functional. The nonparametric estimate of function related with the conditional probability distribution (cond-cdf)
of Y givenX . For x ∈ F , we assume that the regular version of the conditional probability of Y givenX exists denoted
by FX

Y and has a bounded density with respect to Lebesgue measure overR, denoted byf X
Y . In the following(x,y) will

be a fixed point inR×F andNx ×SR will denote a fixed neighborhood of(x,y), SR will be a fixed compact subset of
R, and we will use the notationB(x,h) = {x′ ∈ F/‖x′− x‖< h}. Our nonparametric models will be quite general in the
sense that we will just need the following simple assumptionfor the marginal distribution ofX :

C2
B(F ×R) =





ϕ : F ×R−→ R

(x,y)−→ ϕ(x,y) such as :

∀z ∈ Nx,ϕ(z, ·) ∈C2(Ny) and

(
ϕ(·,y), ∂ 2ϕ(·,y)

∂y2

)
∈C1

B(x)×C1
B(x),





(2)

whereC1
B(x) is the set of continuously differentiable functions to sensof Gâteaux onNx (see Troutman [21] for this type of

differentiability), which the derivative operator of order 1 at pointx is bounded on the unit ballB(0,1) the functional space
F . Given i.i.d. observations(X1,Y1), . . . ,(Xn,Yn) of (X ,Y ), the kernel estimate of the conditional distributionFX

Y (x,y)
denotedF̂X

Y (x,y), is defined by:

F̂X
Y (x,y) =

n

∑
i=1

K(h−1
K ‖x−Xi‖)H(h−1

H (y−Yi))

n

∑
i=1

K(h−1
K ‖x−Xi‖)

,

withe the convention00 = 0. The functionsK is kernel,H is ac f d andhK = hK,n (resp.hH = hH,n) is a sequence of positive

real numbers. Note that from this estimator, we derive an estimator for the density conditional, denoted̂f X
Y (x,y) defined

by

f̂ X
Y (x,y) =

h−1
H

n

∑
i=1

K(h−1
K ‖x−Xi‖)H ′(h−1

H (y−Yi))

n

∑
i=1

K(h−1
K ‖x−Xi‖)

,
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whereH ′ is kernel (is the derivative ofH). We then construct the conditional hazard function ofY knowing X = x as
follows:

∀x ∈ F , ∀y ∈R hX
Y (x,y) =

f X
Y (x,y)

1−FX
Y (x,y)

=
f X
Y (x,y)

SX
Y (x,y)

. (3)

The main objective is to study the the nonparametric estimate ĥX
Y (x,y) of hX

Y (x,y).
Furthermore, the estimatorĥX

Y (x,y) can we written as

ĥX
Y (x,y) =

f̂ X
Y (x,y)

1− F̂X
Y (x,y)

=
f̂N(x,y)

f̂D(x)− ĝN(x,y)
, (4)

where

f̂D(x) :=
1

nE[K1(x)]

n

∑
i=1

K(h−1
K ‖x−Xi‖), K1(x) = K(h−1

K ‖x−Xi‖),

ĝN(x,y) :=
1

nE[K1(x)]

n

∑
i=1

K(h−1
K ‖x−Xi‖)H(h−1

H (y−Yi)),

f̂N(x,y) := ĝ(1)N (x,y) :=
1

nhHE[K1(x)]

n

∑
i=1

K(h−1
K ‖x−Xi‖)H ′(h−1

H (y−Yi)),

whereH ′ is the derivative ofH, when the explanatory variableX is valued in a space of eventually infinite dimension. We
give precise asymptotic evaluations of the quadratic errorof this estimator.

3 asymptotic properties

To establish the convergence in mean square of the estimatorĥX
Y (x,y) to hX

Y (x,y) and the asymptotic normality of the kernel
conditional hazard function estimator, we introduce the following assumptions, letb1 andb2 be two positive numbers;
such that:

(H1) For all r > 0, the random variableZ = r−1(x−X) is absolutely continuous relative in the measureµ . His density
w(r,x,v) is strictly positive onB(0,1) and can be written as:

w(r,x,v) = φ(r)g(x,v)+ o(φ(r)) for all v ∈ B(0,1), (5)

where
(i) φ is an increasing function with values inR+.

(ii) g is defined onF ×F , with values inR+ where 0<
∫

B(0,1)
g(x,v)dµ(v)< ∞.

(H2) The kernelK from R into R
+ is a differentiable function supported on[0,1]. Its derivativeK′ exists and is such that

there exist two constantsC andC′ with −∞ <C < K′(t)<C′ < 0 for 0≤ t ≤ 1.
(H3) H ′ is a kernel bounded, integrable, positive, symmetric such that:

∫
H ′(t)dt = 1,

∫
t2H ′(t)dt < ∞, and

∫

R

|t|b2 H ′(t)dt < ∞,

whereH(x) =
∫ x

−∞
H ′(t)dt (see Ferraty and Vieu [8])

(H4) The bandwidthhK satisfies:

hK ↓ 0, ∀t ∈ [0,1] lim
hK→0

φx(thK)

φx(hK)
= β x

hK
(t) and nhHφx(hK)→ ∞ asn → ∞.

(H5)

{
∃τ < ∞, f X

Y (x,y)≤ τ,∀(x,y) ∈ F ×SR, and;
∀(x1,x2) ∈ N2

x , ∀(y1,y2) ∈ S 2
R
, | f X

Y (x1,y1)− f X
Y (x2,y2)| ≤Cx

(
‖x1− x2‖b1 + |y1− y2|b2

)
.

(H6)

{
∃β > 0,FX

Y (x,y)≤ 1−β ,∀(x,y) ∈ F ×SR, and;
∀(x1,x2) ∈ N2

x , ∀(y1,y2) ∈ S 2
R
, |FX

Y (x1,y1)−FX
Y (x2,y2)| ≤Cx

(
‖x1− x2‖b1 + |y1− y2|b2

)
.
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3.1 Remarks on the assumptions

Remark 3.1. Assumption (1) plays an important role in our methodology. It is known as (for smallh) the ”concentration
hypothesis acting on the distribution ofX” in infinite-dimensional spaces. This assumption is not at all restrictive and
overcomes the problem of the non-existence of the probability density function. In many examples, around zero the
small ball probabilityφx(h) can be written approximately as the product of two independent functionsψ(z) andϕ(h) as
φz(h) = ψ(z)ϕ(h)+ o(ϕ(h)).

This idea was adopted by Masry [15] who reformulated the Gasseret al. [10] one. The increasing property ofφx(.)
implies thatζ x

h (.) is bounded and then integrable (all the more soζ x
0(.) is integrable).

Without the differentiability ofφx(.), this assumption has been used by many authors whereψ(.) is interpreted as a
probability density, whileϕ(.) may be interpreted as a volume parameter. In the case of finite-dimensional spaces, that is
S = R

d , it can be seen thatφx(h) = C(d)hdψ(x)+ ohd), whereC(d) is the volume of the unit ball inRd . Furthermore,
in infinite dimensions, there exist many examples fulfillingthe decomposition mentioned above. We quote the following
(which can be found in Ferratyet al. [6]):

1. φx(h)≈ ψ(h)hγ for somγ > 0.
2. φx(h)≈ ψ(h)hγ exp{C/hp} for somγ > 0 andp > 0.
3. φx(h)≈ ψ(h)/| lnh|.

The functionβ x
h (.) which intervenes in Assumption (H4) is increasing for all fixedh. Its pointwise limitβ x

0(.) also
plays a determinant role. It intervenes in all asymptotic properties, in particular in the asymptotic variance term. With
simple algebra, it is possible to specify this function (with β0(u) := β x

0(u) in the above examples by:

1. β0(u) = uγ ,
2. β0(u) = δ1(u) whereδ1(.) is Dirac function,
3. β0(u) = 1]0,1](u).

The result concerns theL2-consistency of̂hX
Y (x,y).

Theorem 3.1. Under the hypothesis (H1)-(H6) and ifFX
Y (x,y) (resp.f X

Y (x,y)) ∈C2
B(F ×R) then

MSEĥX
Y (x,y) ≡ E

[
(ĥX

Y (x,y)− hX
Y (x,y))

]2

≡ Bn(x,y)+
σ2

h (x,y)

nhHφx(hK)
+ o(h2

H)+ o(hK)+ o

(
1

nhHφx(hK)

)
,

where

Bn(x,y) =
(B f

H(x,y)− hX
Y (x,y)B

F
H(x,y))h

2
H +(B f

K(x,y)− hX
Y (x,y)B

F
K(x,y))hK

1−FX
Y (x,y)

,

with

B f
H(x,y) =

1
2

∂ 2 f x(y)
∂y2

∫
t2H ′(t)dt,

B f
K(x,y) =

∫
B(0,1)K(‖v‖)Dx f X

Y (x,y)[v]g(x,v)dµ(v)
∫

B(0,1) K(‖v‖)g(x,v)dµ(v)
,

BF
H(x,y) =

1
2

∂ 2FX
Y (x,y)
∂y2

∫
t2H(t)dt,

BF
K(x,y) =

∫
B(0,1)K(‖v‖)DxFX

Y (x,y)[v]g(x,v)dµ(v)
∫

B(0,1)K(‖v‖)g(x,v)dµ(v)
,

and

σ2
h (x,y) =

β2hX
Y (x,y)(

β 2
1 (1−FX

Y (x,y)
) (with β j =

∫

B(0,1)
K j(‖v‖)g(x,v)dµ(v), for, j = 1, 2).
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Proof. This proof is based on the decomposition

ĥX
Y (x,y)− hX

Y (x,y) =
f̂ X
Y (x,y)

1− F̂X
Y (x,y)

− f X
Y (x,y)

1−FX
Y (x,y)

=
1

1− F̂X
Y (x,y)

[
( f̂ X

Y (x,y)− f X
Y (x,y))+

f X
Y (x,y)

1−FX
Y (x,y)

(F̂X
Y (x,y)−FX

Y (x,y))
]

=
1

f̂ X
D (x)− ĝN(x,y)

(
f̂N(x,y)−E f̂N(x,y)

)
+ hX

Y (x,y)
(
EĝN(x,y)−FX

Y (x,y)
)

+
1

f̂ X
D (x)− ĝN(x,y)

[(
E f̂N(x,y)− f X

Y (x,y)
)
+ hX

Y (x,y)
(

1−EĝN(x,y)−
(

f̂D(x)− ĝN(x,y)
))]

, (6)

whereDx means the derivative with respect tox.
Hence

∣∣∣ĥX
Y (x,y)− hX

Y (x,y)
∣∣∣ ≤ 1∣∣∣1− F̂X

Y (x,y)
∣∣∣

{∣∣∣ f̂ X
Y (x,y)− f X

Y (x,y)
∣∣∣+
∣∣∣hX

Y (x,y)
(

F̂X
Y (x,y)−FX

Y (x,y)
)∣∣∣
}
,

which leads to a constantC < ∞:

∣∣∣ĥX
Y (x,y)− hX

Y (x,y)
∣∣∣ ≤ C

∣∣∣ f̂ X
Y (x,y)− f X

Y (x,y)
∣∣∣+
∣∣∣F̂X

Y (x,y)−FX
Y (x,y)

∣∣∣
∣∣∣1− F̂X

Y (x,y)
∣∣∣

.

Then, Theorem 3.1 can be deduced from both lemmas above Lemma3.1 and Lemma 3.2.�.

Lemma 3.1. Under the hypothesis (H1)-(H6) and iff X
Y (x,y) ∈C2

B(F ×R) then:

E

[
f̂ X
Y (x,y)− f X

Y (x,y)
]2

= B f
H(x,y)h

2
H +B f

K(x,y)hK +
σ2

f (x,y)

nhHφ(hK)
+ o(h2

H)+ o(hK)+ o

(
1

nhHφ(hK)

)
,

where

σ2
f (x,y) =

(
f X
Y (x,y)

)(∫
B(0,1)K2(‖v‖)g(x,v)dµ(v)

)∫
H ′2(t)dt

(∫
B(0,1)K(‖v‖)g(x,v)dµ(v)

)2 .

Lemma 3.2 Under the hypothesis (H1)-(H6) and ifFX
Y (x,y) ∈C2

B(F ×R) then:

E

[
(F̂X

Y (x,y)−FX
Y (x,y))

]2
= BF

H(x,y)h
2
H +BF

K(x,y)hK +
σ2

F(x,y)
nφ(hK)

+ o(h2
H)+ o(hK)+ o

(
1

nφ(hK)

)
,

with

σ2
F(x,y) =

FX
Y (x,y)

(
1−FX

Y (x,y)
)(∫

B(0,1)K2(‖v‖)g(x,v)dµ(v)
)

(∫
B(0,1)K(‖v‖)g(x,v)dµ(v)

)2 .

Remark 3.2. Observe that, the result of this lemmas Lemma 3.1 and Lemma 3.2 permits to write
[
EĝN(x,y)−FX

Y (x,y)
]
= O(h2

H)+O(hK),

and [
E f̂N(x,y)− f X

Y (x,y)
]
= O(h2

H)+O(hK).

Proof of Lemma 3.1. According to the previous decomposition is demonstrated bya separate calculation of both parties,
party bias and variance for part two quantities, as the squared error can be expressed as

E

[
( f̂ X

Y (x,y)− f X
Y (x,y))2

]
=
[
E

(
f̂ X
Y (x,y)

)
− f X

Y (x,y)
]2

+Var
[

f̂ X
Y (x,y)

]
.

We define the quantitiesKi(x) = K(h−1
K ‖x−Xi‖), H ′

i (y) = H ′(h−1
H (y−Yi)) for all i = 1, . . . ,n.
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We will calculate both sides of this equation (party bias andvariance part) to arrive at the calculation of

E

[
f̂ X
Y (x,y))− f X

Y (x,y)
]2

.

We come at the following to writing:

f̂ X
Y (x,y) =

f̂N(x,y)

E f̂D(x)

[
1− f̂D(x)−E f̂D(x)

E f̂D(x)

]
+

(
f̂D(x)−E f̂D(x)

)2

(
E f̂D(x)

)2 f̂ X
Y (x,y),

from which we draw:

E f̂ X
Y (x,y) =

E f̂N(x,y)

E f̂D(x)
− A1

(E f̂D(x))2
+

A2

(E f̂D(x))2
,

as

A1 = E f̂N(x,y)
(

f̂D(x)−E f̂D(x)
)
=Cov( f̂N(x,y), f̂D(x)) and A2 = E

(
f̂D(x)−E f̂D(x)

)2
f̂ X
Y (x,y).

Can be written as

f̂ X
Y (x,y)− f X

Y (x,y) =

(
f̂N(x,y)

E f̂D(x)
− f X

Y (x,y)

)
−

(
f̂N(x,y)−E f̂N(x,y)

)(
f̂D(x)−E f̂D(x)

)

(
E f̂D(x)

)2

−

(
E f̂N(x,y)

)(
f̂D(x)−E f̂D(x)

)

(
E f̂D(x)

)2 +

(
f̂D(x)−E f̂D(x)

)2

(
E f̂D(x)

)2 f̂ X
Y (x,y), (7)

which implies

E

[
f̂ X
Y (x,y)

]
− f X

Y (x,y) =
(
(E f̂D(x))

−1
E( f̂N(x,y))− f X

Y (x,y)
)
−
(
(E f̂D(x))

−2Cov( f̂N(x,y), f̂D(x))
)

+
(
E f̂D(x)

)−2
E

(
f̂D(x)−E f̂D(x)

)2
f̂ X
Y (x,y)

=
(
(E f̂D(x))

−1
E( f̂N(x,y))− f X

Y (x,y)
)
−
(
(E f̂D(x)

)−2
A1+

(
(E f̂D(x)

)−2
A2.

Now you need to write each of these terms and calculate three integrals corresponding to them by a change of variable
of typez = (x− u)/h.

Regarding the termA2 as the kernelH ′ is bounded and sinceK is positive, we can bounded̂f X
Y (x,y) by a constant

C > 0, as f̂ X
Y (x,y)≤C/hH , hence

E

[
f̂ X
Y (x,y)

]
− f X

Y (x,y) =
(
(E f̂D(x))

−1
E( f̂N(x,y))− f X

Y (x,y)
)
−
(
(E f̂D(x))

−2Cov( f̂N(x,y)), f̂D(x)
)

+
(
E f̂D(x)

)−2
Var

(
f̂D(x)

)
O(h−1

H ).

For the par dispersion we inspire techniques Sarda and Vieu [19]and Bosq Lecoutre [2] and by under expression (7),
we find that

Var
[

f̂ X
Y (x,y)

]
=

Var
[

f̂N(x,y)
]

(
(E f̂D(x)

)2 −2

[
E f̂N(x,y)

]
Cov

[
f̂N(x,y), f̂D(x)

]

(
(E f̂D(x)

)3 +Var
(

f̂D(x)
) (E f̂N(x,y))2

(
E f̂D(x)

)4 + o

(
1

nhHφ(hK)

)
.

Finally, Lemma 3.1 is a consequence of Corollaries below.�.
Corollary 3.1. Under the conditions of Lemma 3.1 we have

E f̂N(x,y)

E f̂D(x)
− f X

Y (x,y) = B f
H(x,y)h

2
H +B f

K(x,y)hK + o(h2
H)+ o(hK).

Corollary 3.2. Under the conditions of Lemma 3.1 we have

Var
[

f̂N(x,y)
]
=

1
nhHφ(hK)

∫
B(0,1)K2(‖v‖)g(x,v)dµ(v)

(∫
B(0,1)K(‖v‖)g(x,v)dµ(v)

)2

(
f X
Y (x,y)

∫
H ′2(t)dt

)
+ o

(
1

nhHφ(hK)

)
.
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Corollary 3.3. Under the conditions of Lemma 3.1 we have

Cov
[

f̂N(x,y), f̂D(x)
]
=

1
nφ(hK)

(
f X
Y (x,y)

)∫

B(0,1)
K2(‖v‖)g(x,v)dµ(v)+ o

(
1

nφ(hK)

)
.

Corollary 3.4. Under the conditions of Lemma 3.1 we have

Var
[

f̂D(x)
]
=

∫
B(0,1)K2(‖v‖)g(x,v)dµ(v)

nφ(hK)
+ o

(
1

nφ(hK)

)
.

Proof of Corollary 3.1. By definition of f̂N(x,y) we have

E f̂N(x,y) =
1

nhHφ(hK)

∞

∑
n=1

E(Ki(x))H
′
i (y)

=
1

hHφ(hK)

[
EK1(x)H

′
1

(
y−Yi

hH

)]

=
1

hHφ(hK)
E
(
K1(x)

[
E
(
H ′

1(h
−1
H (y−Yi)/X)

)])
, (8)

for the calculation ofE
(
H ′

1(h
−1
H (y−Yi)/X)

)
considering the change of variablet = h−1

H ((y− z), we have

E
(
H ′

1(h
−1
H (y−Yi)/X)

)
=

1
hH

∫
H ′
(

y− z
hH

)
f x(z)dz =

∫
H ′(t) f x(y− hHt)dt.

Just develop the functionf X
Y (x,y− hHt) in the neighborhood ofy, which is possible sincef X

Y (x, .) being a function of
classC2 in y, then, we can use the Taylor expansion of the functionf X

Y :

f X
Y (x,y− hHt) = f X

Y (x,y)− hHt
∂ f X

Y (x,y)
∂y

+
h2

Ht2

2
∂ 2 f X

Y (x,y)
∂y2 + o(h2

H),

which gives, under the assumption (H3)

E(H ′
1/X) = f X

Y (x,y)+
h2

Ht2

2
∂ 2 f X

Y (x,y)
∂y2

∫
t2H ′(t)dt + o(h2

H).

We replace in equation (8) found

E f̂N(x,y) =
1

hHφ(hK)

[
E
(
K1(x) f X

Y (x,y)
)
+

h2
Ht2

2

∫
t2H ′(t)dt E

(
K1(x)

∂ 2 f X
Y (x,y)
∂y2

)]
+ o(h2

H). (9)

To simplify the writing of this equation we setψl(.,y) =
∂ l f X

Y (x,y)
∂yl , l ∈ {0,2}.

The functionψl(·,y) defined on the functional spaceF denotes the one or other of the two functionsψ0(·,y)= f X
Y (x,y)

andψ2(·,y) =
∂ 2 f X

Y (x,y)
∂y2 .

The kernelK is assumed compact support, then, for alll ∈ {0,2} we have

E(K1ψl(X ,y)) = EK(h−1
K ‖x−X‖) ψl(x− hK(h

−1
K (x−X)),y) =

∫

B(0,1)
K(‖v‖)ψl(x− hKv,y)w(hK ,x,v)dµ(v).

The functionψl(·,y) is of classC1 in the neighborhood ofx, then

ψl(x− hKv,y) = ψl(x,y)− hK
∂ψl(x,y)[v]

∂x
+ o(hK),

and we find that

E(K1ψl(X ,y)) = ψl(x,y)
∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v)− hK

∫

B(0,1)
K(‖v‖)∂ψl(x,y)[v]

∂x
w(hK ,x,v)dµ(v)

+o(hK)

∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v).
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Therefore we have

E f̂N(x,y) =
1

hHφ(hK)

[
ψ0(x,y)

∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v)− hK

∫

B(0,1)
K(‖v‖)∂ψ0(x,y)[v]

∂x
w(hK ,x,v)dµ(v)

+
h2

H

2

∫
t2H ′(t)dt

(
ψ2(x,y)

∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v)

−hK

∫

B(0,1)
K(‖v‖)∂ψ2(x,y)[v]

∂x
w(hK ,x,v)dµ(v)

)]
+ o(h2

H)+ o(hK),

multiplying by g(x,v), adding and subtracting the two terms

E f̂N(x,y) =
1

hHφ(hK)
ψ0(x,y)

∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v)− hK

∫

B(0,1)
K(‖v‖)∂ψ0(x,y)[v]

∂x
g(x,v)dµ(v)

−hK

∫

B(0,1)
K(‖v‖)∂ψ0(x,y)[v]

∂x

(
w(hK ,x,v)
hHφ(hK)

− g(x,v)

)
dµ(v)

+
h2

H

2

∫
t2H ′(t)dt

[ 1
φ(hK)

ψ2(x,y)
∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v)− hK

∫

B(0,1)
K(‖v‖)∂ψ2(x,y)[v]

∂x
g(x,v)dµ(v)

−hK

∫

B(0,1)
K(‖v‖)∂ψ2(x,y)[v]

∂x

(
w(hK ,x,v)
hHφ(hK)

− g(x,v)

)
dµ(v)

]
+ o(h2

H + hK).

Thus

E f̂N(x,y) =
1

hHφ(hK)
ψ0(x,y)

∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v)− hK

∫

B(0,1)
K(‖v‖)∂ψ0(x,y)[v]

∂x
g(x,v)dµ(v)

+
h2

H

2

∫
t2H ′(t)dt

[
1

hHφ(hK)
ψ2(x,y)

∫

B(0,1)
K(‖v‖)w(hK,x,v)dµ(v)

]
+ o(h2

H + hK).

On the other hand we have

E f̂D(x) =
EK1

φ(hK)
=

1
φ(hK)

∫

B(0,1)
K(‖v‖)w(hK ,x,v)dµ(v), (10)

by substituting in the formula forE fN(x,y) it follows that

E fN(x,y) = ψ0(x,y)(E f̂D(x)) − hK

∫

B(0,1)
K(‖v‖)∂ψ0(x,y)[v]

∂x
g(x,v)dµ(v)

+
h2

H

2

∫
t2H ′(t)dt

[
(E f̂D(x))ψ2(x,y)

]
+ o(h2

H)+ o(hK).

Using the hypothesis (H1), equation (10) can be expressed as

E f̂D(x) =
∫

B(0,1)
K(‖v‖)g(x,v)dµ(v)+ o(1). (11)

Finally we arrive at

(E f̂D(x))
−1
E

[
f̂N(x,y)

]
− f X

Y (x,y) = −hK

∫

B(0,1)
K(‖v‖) ∂ f x(y)[v]

∂x
g(x,v)dµ(v)

∫

B(0,1)
K(‖v‖)h(x,v)dµ(v)

+
hH

2
∂ 2 f x(y)[v]

∂y2

∫
t2H ′(t)dt + o(h2

H)+ o(h2
K). (12)

�.
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Proof of Corollary 3.2. By definition of f̂N(x,y) we have

Var
(

f̂N(x,y)
)
=

1
(n(hHφ(hK))2

n

∑
i=1

Var(Ki(x)H
′
i (y))

=
1

n(hHφ(hK))2Var(K1(x)H
′
1(x))

=
1

n(hHφ(hK))2

(
E(K1(x)H

′
1(y))

2− (E(K1(x)H
′
1(y)))

2)

=
1

n(hHφ(hK))2E(K1(x)H
′
1(y))

2− n−1
(
(EK1(x)H ′

1(y))
hHφ(hK)

)2

.

By Corollary 3.1 and equation (11) we have
(EK1(x)H ′

1(y))
hHφ(hK)

= E f̂N(x,y) = O(1), and the fact that

Var
(

f̂N(x,y)
)
=

1
n(hHφ(hK))2E(K1(x)H

′
1(y))

2+ o

(
1

nhHφ(hK)

)
.

Just now evaluate the quantityE(K1(x)H ′
1(y))

2. Indeed, the proof is similar to the one used for previous lemma, by
conditioningx and considering the usual change of variables(y− z)/h−1

H = t we obtain

E(K1(x)H
′
1(y))

2 = E
(
K1(x)

2E(H ′2
1 (y)/X)

)

=
1

h2
H

E

(
K1(x)

2
∫

H ′2
(

y− z
hH

)
f x(z)dz

)

=
1

hH
E

(
K2

1(x)
∫

H ′2(t) f x(y− hHt)dt

)
,

by a Taylor expansion of the order 1 fromy we show that forn large enough

f X
Y (x,y− hHt) = f X

Y (x,y)+O(hH) = f X
Y (x,y)+ o(1).

Hence

E(K1(x)H
′
1(y))

2 =
1

hH

∫
H ′2(t)dtE

(
K2

1(x) f X
Y (x,y)

)
+ o

(
1

hH

)
.

The same way and with the same techniques used in the above proof of Corollary 3.1, we show that it suffices now to
estimate the amountE(K1(x)H ′

1(y))
2. Indeed, for a demonstration similar to the proof lemma, in conditioning byX and

considering the usual change of variable(y− z)/h−1
H = t we find that:

E(K2
1(x) f X

Y (x,y)) = EK2(h−1
K ‖x−X‖) f (x− hK(h

−1
K (x−X)),y)

=
∫

B(0,1)
K2(‖v‖) f X

Y (x− hKv,y)w(hK ,x,v)dµ(v)

= φ(hK) f X
Y (x,y)

∫

B(0,1)
K2(‖v‖)g(x,v)dµ(v)+ o(φ(hK)),

such that‖v‖= h−1
K ‖x−X‖, this allows us to conclude

E(K1(x)H
′
1(y))

2 =
1

hH

∫
H ′2(t)dt

(
φ(hK) f X

Y (x,y)
∫

B(0,1)
K2(‖v‖)g(x,v)dµ(v)

)
+ o

(
φ(hK)

hH

)
.

The hypothesis (H3) implies that the kernelH is square summable, therefore

Var
(

f̂N(x,y)
)
=

1
(nhHφ(hK))

[
f X
Y (x,y)

∫
H ′2(t)dt

∫

B(0,1)
K2(‖v‖)g(x,v)dµ(v)

]
+ o

(
1

nhHφ(hK)

)
.

�.
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Proof of Corollary 3.3. By definition of f̂N(x,y) and f̂D(x) we obtain

Cov
(

f̂N(x,y), f̂D(x)
)
=

1
n(hHφ(hK))2 cov(K1(x)H

′
1(y),K1(x))

=
1

n(hHφ(hk))2 (EK2
1(x)H

′
1(y)−EK1(x)H

′
1(y)EK1(x))

=
EK2

1(x)H
′
1(y)

n(hHφ(hk))2 −
(
EK1(x)H ′

1(y)
n(hHφ(hK))2

)(
EK1(x)

n(hHφ(hK))2

)
.

The proof of this Corollary is very similar to the one used forCorollary 3.1. To do this, replaceH2
1 with H1 then using

the fact that
(EK1(x)H1(y))

φ(hK)
= O(1) and

(EK1(x))
φ(hK)

= O(1) we deduce that

Cov
(

f̂N(x,y), f̂D(x)
)
=

1
n(φ(hk)

( f X
Y (x,y))

∫

B(0,1)
K2(‖v‖)g(x,v)dµ(v)+ o

(
1

nφ(hK)

)
. (13)

�.

Proof of Corollary 3.4. By definition of f̂D(x) we have

Var
(

f̂D(x)
)
=

1
n(φ(hK)2 (Var(K1))

=
EK2

1(x)
n(φ(hK)2 − n−1

(
EK1(x)
φ(hK)

)

=

∫
B(0,1)K2(‖v‖)g(x,v)dµ(v)

n(φ(hK)
+ o

(
1

nφ(hK)

)
. (14)

This allows us to complete the proof of Lemma 3.1.�.

Proof of of Lemma 3.2. The calculation of the squared error of the conditional distribution is with the same techniques
used in the previous Lemma 3.1 by a separate calculation of two parts: part bias and some variance for the two quantities,
as the squared error the conditional distribution can be expressed as

E

[
(F̂X

Y (x,y)−FX
Y (x,y))2

]
=
[
E

(
F̂X

Y (x,y)
)
−FX

Y (x,y)
]2

+Var
[
F̂X

Y (x,y)
]
.

Finally, Lemma 3.2 can be deduced from following corollaries.

Corollary 3.5. Under the hypotheses (H1)-(H6) we have

EĝN(x,y)

E f̂D(x)
−FX

Y (x,y) = BF
H(x,y)h

2
H +BF

K(x,y)hK + o(h2
H)+ o(hK).

Corollary 3.6. Under the hypotheses (H1)-(H6) we have

Var [ĝN(x,y)] =

∫
B(0,1)K2(‖v‖)g(x,v)dµ(v)

nφ(hK)

(
FX

Y (x,y)
∫

H2(t)dt

)
+ o

(
1

nφ(hK)

)
.

Corollary 3.7. Under the hypotheses (H1)-(H6) we have

Cov
[
ĝN(x,y), f̂D(x)

]
=

1
nφ(hK)

(
FX

Y (x,y)
)∫

B(0,1)
K2(‖v‖)g(x,v)dµ(v)+ o

(
1

nφ(hK)

)
.

�.

Remark 3.3. It is clear that, the results of Corollaries Corollary 3.2-3.4 and Corollary 3.6-3.7 allows to write

Var
[

f̂D(x)− ĝN(x,y)
]
= o

(
1

nhHφx(hK)

)
.
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3.2 Asymptotic normality

This section contains results on the asymptotic normality of ĥX
Y (x,y).

Theorem 3.2. Assume that (H1)-(H6) hold, and if the following equation (1) is verified, then we have for anyx ∈ A ,

(
nhHφx(hK)

σ2
h (x,y)

)1/2(
ĥX

Y (x,y)− hX
Y (x,y)−Bn(x,y)

)
D→ N (0,1) as n → ∞,

where
A = {x ∈ F , f X

Y (x,y)(1−FX
Y (x,y)) 6= 0},

and
D→ means the convergence in distribution.

Evidently, if one imposes some additional assumptions on the functionφx(·) and the bandwidth parameters (hK and
hH) our asymptotic normality can be improved by removing the bias termBn(x,y).

Corollary 3.8. Under the hypotheses of Theorem 4.1 and if the bandwidth parameters (hK andhH ) and if the function
φx(hK) satisfies:

lim
n→∞

(h2
H + hK)

√
nφx(hK) = 0,

we have (
nhHφx(hK)

σ2
h (x,y)

)1/2(
ĥX

Y (x,y)− hX
Y (x,y)

)
D→ N (0,1) as n → ∞.

Proof. Consider the decomposition

ĥX
Y (x,y)− hX

Y (x,y) =
1

f̂D(x)− ĝN(x,y)

(
f̂N(x,y)−E f̂N(x,y)

)

+
1

f̂D(x)− ĝN(x,y)

{
hX

Y (x,y)
(
EĝN(x,y)−FX

Y (x,y)
)
+
(
E f̂N(x,y)− f X

Y (x,y)
)}

+
hX

Y (x,y)

f̂D(x)− ĝN(x,y)

{
1−EĝN(x,y)−

(
f̂D(x)− ĝN(x,y)

)}
. (15)

Therefore, Theorem 3.2 and Corollary 3.8 are a consequence of Lemma 3.1, Lemma 3.2 and the following results.

Lemma 3.3. Under the hypotheses of Theorem 3.2

(
nhHφx(hK)

σ2
f (x,y)

)1/2(
f̂N(x,y)−E

[
f̂N(x,y)

])
−→ N (0,1).

Lemma 3.4. Under the hypotheses of Theorem 3.2

F̂D(x)− ĝN(x,y)→ 1−FX
Y (x,y) in probability,

and (
nhHφx(hK)

σ2
h (x,y)

)1/2(
f̂D(x)− ĝN(x,y)−1+E[ĝN(x,y)]

)
= oP(1).

�.

Proof of Lemma 3.3. Define

Γi(x,y) =

√
φx(hK)√

nhHE[K1(x)]
(∆i(x,y)−E[∆i(x,y)]) ,

and

Ωn :=
n

∑
i=1

Γi(x,y).

Thus
Ωn =

√
nhHφx(hK)

(
f̂N(x,y)−E

[
f̂N(x,y)

])
.
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So, our claimed result is now
Ωn −→ N (0,σ2

f (x,y)).

Therefore, we have

Var(Ωn) = nhHφx(hK)Var
(

f̂N(x,y)−E

[
f̂N(x,y)

])
.

Now, we need to evaluate the variance off̂N(x,y). For this we have for all 1≤ i ≤ n, ∆i(x,y) = H ′
i (y)Ki(x), so we have

Var( f̂N(x,y)) =
1

(nhHE[K1(x)])
2

n

∑
i=1

n

∑
j=1

Cov(∆i(x,y),∆ j(x,y)) =
1

n(hHE[K1(x)])
2Var (∆1(x,y)) .

Therefore

Var (∆1(x,y))≤ E
(
H ′2

1 (y)K2
1(x)

)
≤ E

(
K2

1(x)E
[
H ′2

1 (y)|X1
])
.

Now, by a change of variable in the following integral and by applying (H3) and (H5), one gets

E
(
H ′2

1 (y)|X1
)
=

∫

R

H ′2
(‖y− u‖

hH

)
f X
Y (x,u)du

≤ hH

∫

R

H ′2(t)
(

f X
Y (y− hHt,x)− f X

Y (x,y)
)

dt + hH f X
Y (x,y)

∫

R

H ′2(t)dt

≤ h1+b2
H

∫

R

|t|b2H ′2(t)dt + hH f X
Y (x,y)

∫

R

H ′2(t)dt

= hH

(
o(1)+ f X

Y (x,y)
∫

R

H ′2(t)dt

)
. (16)

By means of (16) and the fact that, asn → ∞, E
(
K2

1(x)
)
−→ β2φx(hK), one gets

Var (∆1(x,y)) = β2φx(hK)hH

(
o(1)+ f (x,y)

∫

R

H ′2(t)dt

)
.

So, using (H4), we get

1

n(hHE[K1(x)])
2Var (∆1(x,y)) =

β2φx(hK)

n(β1hHφx(hK))
2 hH

(
o(1)+ f X

Y (x,y)
∫

R

H ′2(t)dt

)

= o

(
1

nhHφx(hK)

)
+

β2 f X
Y (x,y)

β 2
1 nhHφx(hK)

∫

R

H ′2(t)dt.

Thus asn → ∞ we obtain

1

n(hHE[K1(x)])
2Var (∆1(x,y))−→

β2 f X
Y (x,y)

β 2
1 nhHφx(hK)

∫

R

H ′2(t)dt. (17)

Finally, the proof of Lemma is completed by using result (17), to get

Var(Ωn)−→
β2

β 2
1

f X
Y (x,y)

∫

R

H ′2(t)dt = σ2
f (x,y).

�.

Proof of Lemma 3.4.
It is clear that, the result of Corollary 3.2, Corollary 3.4 and Corollary 3.6 permits us

E

(
F̂D(x)− ĝN(x,y)−1+FX

Y (x,y)
)
−→ 0,

and
Var

(
F̂D(x)− ĝN(x,y)−1+FX

Y (x,y)
)
−→ 0,

then
F̂D(x)− ĝN(x,y)−1+FX

Y (x,y)
P−→0.
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Moreover, the asymptotic variance off̂D(x)− ĝN(x,y) given in Remark 3.3 allows to obtain

nhHφx(hK)

σh(x,y)2 Var
(

f̂D(x,y)− ĝN(x,y)−1+E(ĝN(x,y))
)
−→ 0.

By combining result with the fact that

E

(
f̂D(x)− ĝN(x,y)−1+E(ĝN(x,y))

)
= 0.

Finally, wee obtain the claimed result.�.

4 Remarques and Commentary

1. The hypothesis (H1) on the functional variableX can be divided into two parts:
(i) The first part is rarely used in non-parametric statistical functional, because it requires the introduction of a

reference measurement of the functional space. However, inthis paper the objective that we impose this condition.
In other words, it allows us to achieve a natural generalization of the squared error obtained by Vieu [22] in the
vector case.
The hypothesis (H1) is not very restrictive. Indeed, the first part of this hypothesis is verified, when, for example
X is a diffusion process satisfying standard conditions (seeNiang [4]).

(ii) The second part (5) is less restrictive than the following condition, given for all (r,v) ∈ R
+
∗ ×B(0,1) (x fixed):

∃C1,C2 > 0, 0<C1φ(r)g(x,v) ≤ w(r,x,v) ≤C2φ(r)g(x,v),

which is a classic property in functional analysis. Note that, this assumption is used to describe the phenomenon
of concentration of the probability measure of the explanatory variableX , since we have:

P(X ∈ B(x,r)) =
∫

B(0;1)
w(r,x,v)dµ(v) = φ(r)

∫

B(0,1)
g(x,v)dµ(v)+ o(φ(r))> 0.

This is a simple asymptotic separation of variables. This condition is designed to be able to adapt traditional
techniques of the case if different multi functional, even if the reference measureµ does not have the same
properties of the Lebesgue measure, such as translation invariance and homogeneity.
In the case of finite dimension, the hypothesis (H1) is satisfied when the density of the explanatory variableX is
of classC1 and strictly positive. Indeed, the density ofZ = r−1(x−X) andw(r,x,v) = rp f (x− rv), wheref is the
density ofX andp dimension, thereforew(r,x,v) = rp f (x)+ o(rp).

2. In this paper, we chose a condition of derivability as our goal is to find an expression for the rate of convergence
explicitly, asymptotically exact and keeps the usual form of the squared error (see Vieu [22]). However, if one proceeds
by a Lipschitz condition for example the conditional density of type:

∀(y1,y2) ∈ SR×SR,∀(x1,x2) ∈ Nx ×Nx,

| f x1(y1)− f x2(y2)| ≤ Ax((d(x1,x2)
2)+ |y1− y2|2),

which is less restrictive than the condition (2), we obtain a result for the conditional distribution and conditional
density respectively for example of type:

E

[
(F̂X

Y (x,y)−FX
Y (x,y))2

]
= O(h4

H + h4
K)+O

(
1

nφ(hk)

)
,

E

[
( f̂ X

Y (x,y)− f X
Y (x,y))2

]
= O(h4

H + h4
K)+O

(
1

nhHφ(hk)

)
.

But such an expression (implicitly) the rate of convergencewill not allow us to properly determine the smoothing
parameter. In other words, this condition of differentiability is a good compromise to obtain an explicit expression for
the rate of convergence. Note that this condition is often taken in the case of finite dimension.

3. The dimensionality of the observations (resp. model) is used in the expression of the rate of convergence of the two
lemmas Lemma 3.1 and Lemma 3.2. We find the ”dimensionality” of the model in the way, while the
”dimensionality” of the variable in the functional dispersion bias the property of concentration of the probability
measure of the functional variable which is closely relatedto the topological structure of the functional space of the
explanatory variable. Ours asymptotique results highlights the importance of the concentration properties on small
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balls of the probability measure of the underlying functional variable. This highlights the role of semi-metric the
quality of our estimate. A suitable choice of this parameterallows us to an interesting solution to the problem of
curse of dimensionality. (see [7]). Another argument has a dramatic effect in our estimation. This is the smoothing
parameterhK (resp.hH). The term of our rate of convergence, decomposed into two main parts: part bias proportional
to hK (resp.hH), and part dispersion inversely proportional tohK (resp.hH )(φ is an increasing function depending on
thehK), makes this relatively easy choice minimizing the main part of this expression to determine this parameter.
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