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Abstract: We find non-negative integer solutions of the title equation,wherep is a prime andq > 1 is an integer.
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1 Introduction

The Diophantine equation of the typeax + by = cz has
been studied by many author’s over the several years. Cao
[2] proved that this equation has at most one solution
under certain conditions. Acu [1] proved that the
Diophantine equation 2x +5y = z2 has only two solutions
in non-negative integersx,y andz. In 2011, Suvarnamani
et al. [12,13] studied the Diophantine equation
2x + py = z2 where p is a prime andx, y, z are
non-negative integers. Peker et al. [5] gave the
non-negative integer solutions of the Diophantine
equation of the form(4n)x + py = z2, wherep is an odd
prime. In 2012, Sroysang [6] established that
(x,y,z) = (1,0,3) is the only non-negative integer
solution of the Diophantine equation 8x + 19y = z2. He
[7] also established that(x,y,z) = (1,0,2) is the only
non-negative integer solution of the Diophantine equation
3x + 5y = z2. Moreover he [8,11] showed that the
Diophantine equation 31x +32y = z2 has no non-negative
integer solution, but the Diophantine equation
2x + 3y = z2 has three non-negative integer solutions. In
2013, Sroysang [10] showed that the Diophantine
equation 23x + 32y = z2 has no non-negative integer
solution. In the same year, he [9] showed that the
Diophantine equation 7x + 8y = z2 has only one solution
which is (x,y,z) = (0,1,3) and he introduced an open
problem regarding the set of all solutions(x,y,z) for the
Diophantine equationpx +(p+1)y = z2, wherex, y andz
are non-negative integers. By attempting this open
problem, Chotchaisthit [3] proved that (x,y,z, p) ∈
{(0,1,3,7), (2,2,5,3)} are the only non-negative integer
solutions of the Diophantine equationpx +(p+1)y = z2

wherep is a Mersenne prime.

In this paper we find the solutions of the Diophantine
equation(pq −1)x + pqy = z2 in the non-negative integers
x, y, z, q and a primep.

2 Main Results

We first state the Catalan’s conjecture as a proposition
which was proved by Mihailescu [4].

Proposition 2.1 [4]. (a, b, x, y) = (3, 2, 2, 3) is the only
solution of the Diophantine equationax − by = 1, where
a, b, x andy are integers with min{a, b, x, y}> 1.

We now solve the Diophantine equation

(pq −1)x + pqy = z2 (1)

wherex, y, z, andq(> 1) are non-negative integers andp
is a prime.
We find the solutions of the Diophantine equation (1) via
the following theorems.

Theorem 2.2. The Diophantine equation

(2q −1)x +2qy = z2 (2)

has only three solutions (x, y, z, q) =
(1, 0, 2, 2), (x, y, z, q) = (0, 1, 3, 3) and
(x, y, z, q) = (2, 2, 5, 2).

Proof. We prove this theorem by dividing it into two parts.
Part-I:y = 0.
In this case the equation (2) becomes

z2− (2q −1)x = 1 (3)
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If min{x, z} > 1 then by Proposition 2.1, the equation (3)
has no solution.
Again the equation (3) has no solution whenever either
z = 0, 1 or x = 0.
Now for x = 1, the equation (3) has only one solution
which is given by(x, z, q) = (1, 2, 2)
Part-II:y ≥ 1.
In the equation (2), we observed thatz is odd and thus
z2 ≡ 1(mod 4).
Let x = 0, then the equation (2) becomes

2qy = z2−1 (4)

Thus 2qy =(z+1)(z−1) and hence there exist two integers
m andn such that 2m = z+1 and 2n = z−1, wherem > n
and

m+ n = qy (5)

Now 2n(2m−n −1) = 2m −2n = 2.
This givesm = 2 andn = 1.
Sinceq > 1, equation (5) givesq = 3 andy = 1. Therefore
z = 2n + 1 = 3 and thus(x, y, z, q) = (0, 1, 3, 3) is a
solution of the equation (2).
Now let x ≥ 1.
since 2qy ≡ 0(mod 4) and z2 ≡ 1(mod 4), the equation
(2) gives

(2q −1)x ≡ 1(mod 4) (6)

Again
2q −1≡ 3(mod 4) (7)

Congruences (6) and (7) imply x is even.
Let x = 2k for some integerk ≥ 1. Then the equation (2)
becomes

2qy = z2− (2q −1)2k

⇒ 2qy = (z+(2q −1)k)(z− (2q −1)k)

Thus we can find two non-negative integersr ands such
that 2r = z+(2q − 1)k and 2s = z− (2q − 1)k with r > s
and

r+ s = qy (8)

Now 2s(2r−s −1) = 2r −2s = 2(2q −1)k.
This impliess = 1 and

2r−1− (2q −1)k = 1 (9)

If r > 2 andk > 1, then by Proposition 2.1, the equation
(9) has no solution.
Sincer ≥ 0, q > 1 andk ≥ 1, it is remaining to examine
whenr = 0,1,2 or k = 1.
Clearly forr = 0,1,2, the equation (9) has no solution.
Now for k = 1, the equation (8) becomes

2r−1 = 2q−1 (10)

From equations (8) and (10), we get

2qy−2 = 2q

This givesq = 2 andy = 2 asq > 1.
Also z = 2s +(2q −1)k = 5.
Thus(x,y,z,q) = (2,2,5,2) is a solution of the equation
(2).

Theorem 2.3. Let p be an odd prime andx be an even
integer. Then the equation (1) has no solution.

Proof. From the equation (1), we see thatz is odd and
hencez2 ≡ 1(mod 4).
Let y = 0. Then the equation (1) becomes

z2− (pq −1)x = 1 (11)

If min{x, z}> 1, then by Proposition 2.1, the equation (11)
has no solution.
It is clear that the equation (11) has no solution whenz =
0,1 or x = 0.
Let y ≥ 1 and letx = 2t for some integert ≥ 1. Then the
equation (2) can be written as

pqy = z2− (pq −1)2t

⇒ pqy = (z+(pq −1)t)(z− (pq −1)t)

Thus we can find two non-negative integersa andb such
that pa = z+(pq −1)t andpb = z− (pq −1)t with a > b
anda+ b = qy.
Now
pb(pa−b −1) = pa − pb = 2(pq −1)t

⇒ 0≡ 2(−1)t(mod p)
Which is an absurd.
Hence the equation (1) has no solution.

Theorem 2.4. Let p (6= z) be an odd prime andq ≥ 1 be
a integer. Then(x,z, p,q) = (3,3,3,1) is the only solution
of the Diophantine equation

(pq −1)x +1= z2 (12)

Proof. By Proposition 2.1, the equation (12) has a unique

solution(x,z, p,q) = (3,3,3,1) if min{x,z}> 1.
It is remaining to examine whenx = 0,1 or z = 0,1.
Clearly The equation (12) has no solution whenx = 0 or
z = 0,1
Again if x = 1, then the equation (12) gives

z2 = pq

This impliesq = 2 andp = z.
This contradicts top 6= z.
Thus once again the equation (12) has no solution.
Remark: For p = 3 andq = 1, the equation (1) becomes

2x +3y = z2 (13)

Suvarnamani [13] showed that (x,y,z) ∈ {(0,1,2),
(3,0,3), (4,2,5)} are the only solutions of the equation
(13) in the non-negative integersx,y andz. Sroysang [11]
also found the same solutions of this equation.
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