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Abstract: We find non-negative integer solutions of the title equatidrerep is a prime andj > 1 is an integer.
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1 Introduction In this paper we find the solutions of the Diophantine

, , , equation(pd — 1)*+ p¥ = Z in the non-negative integers
The Diophantine equation of the ty@& + bY = ¢ has qu 2 q(apnd a zjrimga. g 9

been studied by many author’s over the several years. Cao

[2] proved that this equation has at most one solution

under certain conditions. Acul] proved that the .

Diophantine equation®2- 5 — 22 has only two solutions 2 Main Results

in non-negative integersy andz In 2011, Suvarnamani

et al. [1213 studied the Diophantine equation We first state the Catalan’s conjecture as a proposition
2+ p = 22 where p is a prime andx, y, z are  which was proved by Mihailescd].

non-negative integers. Peker et al5] [gave the  proposition2.1[4]. (a, b, X, y) = (3, 2, 2, 3) is the only
non-negative integer solutions of the Diophantine so|ution of the Diophantine equatiaf — b¥ = 1, where
equation of the form(4")* + p” = 2, wherep is an odd 4 b, x andy are integers with mifa, b, x, y} > 1.

(x,y,z2) = (1,0,3) is the only non-negative integer
solution of the Diophantine equatiorf 8 19 = Z2. He (p9— 1) 4 p¥ = 2 @

[7] also established thafx,y,z) = (1,0,2) is the only

non-negative integer solution of the Diophantine equationyherey, y, z andg(> 1) are non-negative integers apd
3 +5 = 7. Moreover he 8 11] showed that the jsa prime.

Diophantine equation 34 32/ = Z has no non-negative e find the solutions of the Diophantine equatidj ia
integer solution, but the Diophantine equation the following theorems.

24+ 3 = 7 has three non-negative integer solutions. In
2013, Sroysang 10] showed that the Diophantine
equation 23+ 32 = 7 has no non-negative integer
solution. In the same year, he&][showed that the
Diophantine equation*7- 8 = 72 has only one solution
which is (x,y,z) = (0,1,3) and he introduced an open
problem r(egargling(the se)t of all solutiofisy,z) for the (1, 0,2, 2, (x ¥y 2z 0
Diophantine equatiop* + (p+1)Y = Z%, wherex, y andz % ¥z 0)=(225 2).

are non-negative integers. By attempting this openProof. We prove this theorem by dividing it into two parts.
problem, Chotchaisthit 3] proved that (x,y,z p) € Part-l.y=0.

{(0,1,3,7), (2,2,5,3)} are the only non-negative integer In this case the equatio@)(becomes

solutions of the Diophantine equatiqg + (p+1)Y = 7

wherep is a Mersenne prime. Z-(9-1%=1 (3)

Theorem 2.2. The Diophantine equation
(-1 42 =2 (2)

has only three solutons(x, vy, z Q) =
= (0, 1, 3, 3) and
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If min{x, z} > 1 then by Proposition 2.1, the equati@®) (
has no solution.
Again the equationd) has no solution whenever either
z=0,1orx=0.
Now for x = 1, the equation3) has only one solution
which is given by(x, z, q) = (1, 2, 2)
Part-1l:y > 1.
In the equation Z), we observed that is odd and thus
Z =1(mod 4.
Letx = 0, then the equatior2] becomes
2V =72-1 (4)
Thus 2¥ = (z+1)(z— 1) and hence there exist two integers
mandnsuch that? =z+1and 2 =z— 1, wherem>n
and
m+n=aqy 5)

Now 2"(2™ " —1) =2M_2"=2,

This givesm= 2 andn = 1.

Sinceq > 1, equation) givesq = 3 andy = 1. Therefore
z=2"+1=3and thusx, y, z q = (0, 1, 3, 3) is a

solution of the equatior).

Now letx > 1.

since 2¥ = 0(mod 4 andZ = 1(mod 4), the equation
(2) gives

(29— 1) = 1(mod 4 6)

Again
29— 1=3(mod 4
Congruencesd) and (7) imply x is even.

Let x = 2k for some integek > 1. Then the equatior2)
becomes

()

2 =2 — (29— 1)
= 2% = (z+ (20— 1)) (z— (27— 1))

Thus we can find two non-negative integerands such
that 2 = z4 (29— 1)K and 2=z— (29— 1)k with r > s
and

r+s=aqy (8)
Now 25(2'S—1) = 2 — 25=2(29 - 1)k,
This impliess=1 and
2l _(29-1)k=1 9)

If r > 2 andk > 1, then by Proposition 2.1, the equation
(9) has no solution.

Sincer > 0, g > 1 andk > 1, it is remaining to examine
whenr =0,1,2 ork=1.

Clearly forr =0, 1,2, the equation9) has no solution.
Now for k = 1, the equation8) becomes

2t =201 (10)

From equationsg) and (L0), we get

2W=2 _ o9

This givesq=2 andy =2 asq > 1.

Alsoz= 25+ (29— 1)k =5,

Thus(x,y,z,9) = (2,2,5,2) is a solution of the equation
).

Theorem 2.3. Let p be an odd prime ang be an even
integer. Then the equatiot)(has no solution.

Proof. From the equationl), we see that is odd and

henceZ = 1(mod 4).

Lety = 0. Then the equatiorl] becomes
Z—(pi-1=1 (11)

Ifmin{x, z} > 1, then by Proposition 2.1, the equatidri)

has no solution.

It is clear that the equatiorif) has no solution when=

0,1 orx=0.

Lety > 1 and letx = 2t for some integet > 1. Then the

equation ) can be written as

p¥ =2 (p1-1)*

= p¥ = (z+ (p1-1)))(z— (pT-1)))

Thus we can find two non-negative integarandb such
thatp? = z+ (p9—1)! andp® = z— (p?— 1)t with a > b
anda+b=qy.

Now

pP°(p* P —1) = p?— p° =2(p? - 1)!

= 0=2(-1)"(mod p)

Which is an absurd.

Hence the equatiori) has no solution.

Theorem 2.4. Let p (# z) be an odd prime and > 1 be
a integer. Therix,z, p,q) = (3,3,3,1) is the only solution
of the Diophantine equation

(pA—1)+1=2 (12)

Proof. By Proposition 2.1, the equatiof?) has a unique
solution(x,z,p,q) = (3,3,3,1) if min{x,z} > 1.

It is remaining to examine when= 0,1 orz=0,1.
Clearly The equationl) has no solution wher = 0 or
z=0,1

Again if x =1, then the equatiorlp) gives

Z=pl

This impliesq=2 andp=2z

This contradicts t@ # z

Thus once again the equatiat?} has no solution.

Remark: For p =3 andg = 1, the equationl) becomes
X4 =2 (13)

Suvarnamani 13] showed that (x,y,2) € {(0,1,2),

(3,0,3), (4,2,5)} are the only solutions of the equation

(13) in the non-negative integersy andz. Sroysang11]
also found the same solutions of this equation.
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