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Abstract: In the paper, we present a new definition of fractional derivative with a smooth kernel which takes on two different
representations for the temporal and spatial variable. Thefirst works on the time variables; thus it is suitable to use the Laplace
transform. The second definition is related to the spatial variables, by a non-local fractional derivative, for which itis more convenient
to work with the Fourier transform. The interest for this newapproach with a regular kernel was born from the prospect that there is a
class of non-local systems, which have the ability to describe the material heterogeneities and the fluctuations of different scales,
which cannot be well described by classical local theories or by fractional models with singular kernel.
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1 Introduction

In the last decades the fractional calculus had a remarkabledevelopment as shown by the many mathematical volumes
dedicated to it (e.g. Baleanu et al. [1], Caponetto [2], Caputo [3], Diethelm [4], Hilfer [ 5], Jiao et al [6], Kilbas et al. [7],
Kyriakova [8], Mainardi [9], McBride [10], Miller and Ross [11], Petras [12], Samko et al [13], Podlubny [14], Sabatier
et al. [15], Torres and Malinowska [16], Ying and Chen [17]) and by the notable diffusion as shown by the many meetings
dedicated to it and the plethora of articles appeared in mathematical (e.g. Kilbas and Marzan [18], Heinsalu et al [19],
Luchko and Gorenflo [20]) and non mathematical journals.

The use of derivative of fractional order has also spread into many other fields of science besides mathematics and
physics (e.g. Laskin [21], Naber [22], Baleanu et al. [23], Zavada [24], Baleanu et al. [25], Caputo and Fabrizio
[26],[27]) such as biology (e.g. Cesarone et al. [28], Caputo and Cametti [29]), economy (e.g. Caputo [30]), demography
(e.g. Jumarie [31]), geophysics (e.g. Iaffaldano [32]), medicine (e.g El Sahed [33]) and bioengineering(e.g. Magin [34]).
However some complaint has been made for the somewhat cumbersome mathematical expression of its definition and
the consequent complications in the solutions of the fractional order differential equations.

In this note we suggest a new definition of fractional derivative, which assumes two different representations for the
temporal and spatial variable. The first representation works on time variables, where the real powers appearing in the
solutions of the usual fractional derivative will turn intointeger powers, with some simplifications in the formulae and
computations. In this framework, it is suitable to use the Laplace transform. The second representation is related to the
spatial variables, thus for this non-local fractional derivative it is more convenient to work with the Fourier transform.

The interest for this new approach is due to the necessity of using a model describing the behavior of classical
viscoelastic materials, thermal media, electromagnetic systems, etc. In fact, the original definition of fractional derivative
appears to be particularly convenient for those mechanicalphenomena, related with plasticity, fatigue, damage and with
electromagnetic hysteresis. When these effects are not present it seems more appropriate to use the new fractional
derivative.

We have also proposed a new non-local fractional derivativeable to describe material heterogeneities and structures
with different scales, which cannot be well described by classical local theories. So that, we rely that this spatial fractional
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derivative can play a meaningful role in the study of the macroscopic behaviors of some materials, related with nonlocal
interactions, which are prevalent in determining the properties of the material.

This work also contains some applications and simulations related to the behavior of these new derivatives, applied
to classical functions such as trigonometric functions. These simulations show some similarities with the corresponding
results by usual fractional derivative.

2 A new fractional time derivative

Let us recall the usual Caputo fractional time derivative (UFDt ) of orderα, given by

D(α)
t f (t) =

1
Γ (1−α)

∫ t

a

ḟ (τ)
(t − τ)α dτ (2.1)

with α ∈ [0,1] anda∈ [−∞, t) , f ∈ H1(a,b), b> a. By changing the kernel(t−τ)−α with the functionexp(− α
1−α t) and

1
Γ (1−α)

with M(α)
1−α , we obtain the following new definition of fractional time derivative NFDt

D
(α)
t f (t) =

M(α)

(1−α)

∫ t

a
ḟ (τ)exp

[

−α(t − τ)
1−α

]

dτ (2.2)

whereM(α) is a normalization function such thatM(0) = M(1) = 1. According to the definition (2.2), the NFDt is zero
when f (t) is constant, as in the UFDt , but, contrary to the UFDt , the kernel does not have singularity fort = τ.

The new NFDt can also be applied to functions that do not belong toH1(a,b). Indeed, the definition (2.2) can be
formulated also forf ∈ L1(−∞,b) and for anyα ∈ [0,1] as

D
(α)
t f (t) =

αM(α)

(1−α)

∫ t

−∞
( f (t)− f (τ))exp

[

−α(t − τ)
1−α

]

dτ

Now, it is worth to observe that if we put

σ =
1−α

α
∈ [0,∞] , α =

1
1+σ

∈ [0,1]

the definition (2.2) of NFDt assumes the form

D̃
(σ)
t f (t) =

N(σ)

σ

∫ t

a
ḟ (τ)exp

[

− (t − τ)
σ

]

dτ (2.3)

whereσ ∈ [0,∞] andN(σ) is the corresponding normalization term ofM(α), such thatN(0) = N(∞) = 1. Moreover,
because

lim
σ→0

1
σ

exp

[

− (t − τ)
σ

]

= δ (t − τ) (2.4)

and forα → 1, we haveσ → 0. Then (see [35] and [36])

lim
α→1

D
(α)
t f (t) = lim

α→1

M(α)

1−α

∫ t

a
ḟ (τ)exp

[

−α(t − τ)
1−α

]

dτ

(2.5)

= lim
σ→0

N(σ)

σ

∫ t

a
ḟ (τ)exp

[

− (t − τ)
σ

]

dτ = ḟ (t).

Otherwise, whenα → 0, thenσ →+∞. Hence,

lim
α→0

D
(α)
t f (t) = lim

α→0

M(α)

1−α

∫ t

a
ḟ (τ)exp

[

−α(t − τ)
1−α

]

dτ

(2.6)

= lim
σ→+∞

N(σ)

σ

∫ t

a
ḟ (τ)exp

[

− (t − τ)
σ

]

dτ = f (t)− f (a).
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Let us consider, the NFDt of a particular function, asf (t) = sinωt, for α = 0.66, a=−8 andω = 1

D
(0.66)
t sinωt =

M(0.66)
0.33

∫ t

a
cosτ exp−2(t− τ)dτ. (2.7)

The simulation of this derivative produces the following pictures

Fig.1. Simulation of NFDt (2.7), with α = 0.66
in the time interval[−8,25]

Fig.2. Simulation of UFDt (2.1), with α = 0.66
in the time interval[−8,25]

From these two simulations withα = 0.66, it appears as the classical NFDt is very similar to the UFDt .
Otherwise, when we study models withα close to 0, we see a different behavior

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


76 M. Caputo, M. Fabrizio: A new Definition of Fractional Derivative...

Fig.3. Simulation of NFDt (2.7) with α = 0.1
in the time interval[−8,50]

Fig.4. Simulation of UFDt (2.1), with α = 0.1
in the time interval [-8, 50]

So that, forα = 0.1 in Fig.3 and Fig. 4 we observe different actions between NFDt and UFDt simulations. In particular
the classical UFDt is more affected by past, compared with the NFDt which show a rapid stabilization.

If n≥ 1, andα ∈ [0,1] the fractional time derivativeD (α+n)
t f (t) of order(n+α) is defined by

D
(α+n)
t f (t) := D(α)

t (D
(n)
t f (t)). (2.8)

Theorem 1.For NFDt , if the function f(t) is such that

f (s)(a) = 0 , s= 1,2, ..,n

then, we have

D
(n)
t (D

(α)
t f (t)) = D

(α)
t (D

(n)
t f (t)) (2.9)

Proof.We begin consideringn= 1, then from definition (2.8) of D
(α+1)
t f (t), we obtain

D
(α)
t

(

D
(1)
t f (t)

)

=
M(α)

1−α

∫ t

a
f̈ (τ)exp

[

−α(t − τ)
1−α

]

dτ (2.10)
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Hence, after an integration by parts and assumingf ′(a) = 0, we have

D
(α)
t

(

D
(1)
t f (t)

)

=
M(α)

(1−α)

∫ t

a
(

d
dτ

ḟ (τ))exp−α(t − τ)
1−α

dτ =

M(α)

(1−α)

[

∫ t

a

d
dτ

( ḟ (τ)exp−α(t − τ)
1−α

dτ

(2.11)

− α
1−α

∫ t

a
ḟ (τ)exp−α(t − τ)

1−α
dτ

]

=
M(α)

(1−α)

[

ḟ (t)− α
1−α

∫ t

a
ḟ (τ)exp−α(t − τ)

1−α
dτ

]

otherwise

D
(1)
t (D

(α)
t f (t)) =

d
dt
(
M(α)

1−α

∫ t

a
ḟ (τ)exp−α(t − τ)

1−α
dτ) =

(2.12)
M(α)

1−α

[

ḟ (t)− α
1−α

∫ t

a
ḟ (τ)exp−α(t − τ)

1−α
dτ

]

.

It is easy to generalize the proof for anyn> 1.

In the following, we suppose the functionM(α) = 1.

3 The Laplace transform of the NFDt

In order to study the properties of the NFDt , defined in equation (2.3) with a = 0, has priority the computation of its
Laplace transform (LT) given with p variable

LT
[

D
(α)
t f (t)

]

=
1

(1−α)

∫ ∞

0
exp−pt

∫ t

0
ḟ (τ)exp−α(t − τ)

1−α
dτdt

Hence, from the property of Laplace transform of a convolution, we have

LT
[

D
(α)
t f (t)

]

=
1

(1−α)
LT( ḟ (t))LT(exp− αt

1−α
) =

(pLT( f (t)− f (0))
p+α(1− p)

Similarly,

LT
[

D
(α+1)
t f (t)

]

=
1

(1−α)
LT( f̈ (t))LT(exp− αt

1−α
) =

=
(p2LT [ f (t)]− p f(0)− f ′(0))

p+α(1− p)

Finally,

LT
[

D
(α+n)
t f (t)

]

=
1

1−α
LT

[

f (n+1)(t)
]

LT

[

exp− αt
1−α

]

=

=
pn+1LT [ f (t)]− pn f (0)− pn−1 f

′
(0)...− f (n)(0)

p+α(1− p)
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4 Fractional gradient operator

In this section, we introduce a new notion of fractional gradient able to describe non-local dependence in constitutive
equations (see [37] and [38]).

Let us consider a setΩ ∈ R
3 and a scalar functionu(·) : Ω → R, we define the fractional gradient of orderα ∈ [0,1]

as follows

∇(α)u(x) =
α

(1−α)
√

πα

∫

Ω
∇u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy (4.1)

with x,y ∈ Ω .
It is simple to prove from definition (4.1) and by the property

lim
α→1

α
(1−α)

√
π

exp

[

−α2(x− y)2

(1−α)2

]

= δ (x− y)

that
∇(1)u(x) = ∇u(x) and∇(0)u(x) =

∫

Ω
∇u(y)dy

So, whenα = 1, ∇(1)u(x) loses the non-locality, otherwise∇(0)u(x) is related with the mean value of∇u(y) onΩ .
In the case of a vectoru(x), we define the fractional tensor by

∇(α)u(x) =
α

(1−α)
√

πα

∫

Ω
∇u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy (4.2)

Thus, a material with non-local property may be described byfractional constitutive equations. As an example we
consider an elastic non-local material, defined by the following constitutive equation between the stress tensorT and
∇(α)u(x)

T(x, t) = A∇(α)u(x, t) , α ∈ (0,1]

whereA is a fourth order symmetric tensor, or in the integral form

T(x, t) =
αA

(1−α)
√

πα

∫

Ω
∇u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy

Likewise, we introduce the fractional divergence, defined for a smoothu(·) : Ω →R
3 by

∇(α) ·u(x) = α
(1−α)

√
πα

∫

Ω
∇ ·u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy (4.3)

Theorem 2.From definitions (4.1) and (4.3), we have for any u(x) : Ω → R, such that

∇u(x) ·n|∂Ω = 0 (4.4)

the following identity
∇ ·∇(α)u(x) = ∇(α) ·∇u(x) (4.5)

Proof.By means of (4.1), we obtain

∇ ·∇(α)u(x) =
α

(1−α)
√

πα

∫

Ω
∇u(y) ·∇x exp

[

−α2(x− y)2

(1−α)2

]

dy

= − α
(1−α)

√
πα

∫

Ω
∇u(y) ·∇exp

[

−α2(x− y)2

(1−α)2

]

dy

(4.6)

=
α

(1−α)
√

πα

∫

Ω
∇ ·∇u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy−

− α
(1−α)

√
πα

∫

∂Ω
∇u(y) ·nexp

[

−α2(x− y)2

(1−α)2

]

dy
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hence, from the boundary condition (4.4), the identity (4.5) is proved, because (4.6) coincides with

∇(α) ·∇u(x) =
α

(1−α)
√

πα

∫

Ω
∇ ·∇u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy

5 Fourier transform of fractional gradient and divergence

For a smooth functionu(x) : R3 →R the Fourier transform (FT) of the fractional gradient is defined by

FT(∇(α)u(x))(ξ ) =
∫

R3
∇(α)u(x)exp[−2π iξ ·x] dx

Thus, if we consider the gradient of (4.1), the Fourier transform is given by

FT(∇α u)(ξ ) =
α

(1−α)
√

πα
FT(

∫

R3
∇u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy)(ξ ) =

=
α

(1−α)
√

πα
FT(∇u)(ξ )FT(exp

[

− α2x2

(1−α)2

]

)(ξ )

where

FT(exp

[

− α2x2

(1−α)2

]

)(ξ ) =
(1−α)

√
π

α
exp

[

−π2(1−α)2ξ 2

α2

]

.

Thus, we obtain:

FT(∇αu)(ξ ) =
√

π1−αFT(∇u)(ξ )exp

[

−π2(1−α)2ξ 2

α2

]

The Fourier transform of fractional divergence is defined by

FT(∇α ·u)(ξ ) = α
(1−α)

√
πα

FT(
∫

Ω
∇ ·u(y)exp

[

−α2(x− y)2

(1−α)2

]

dy)(ξ )

from which we have

FT(∇α ·u)(ξ ) =
√

π1−αFT(∇ ·u)(ξ )exp

[

−π2(1−α)2ξ 2

α2

]

6 Fractional Laplacian

In the study of partial differential equations, there is a great interest on fractional Laplacian. Using the definitionsof
fractional gradient and divergence, we can suggest the representation of fractional Laplacian for a smooth functionf (x):
Ω →R

3, such that∇ f (x) ·n|∂Ω = 0, as

(∇2)α f (x) =
α

(1−α)
√

πα

∫

Ω
∇ ·∇ f (y)exp

[

−α2(x− y)2

(1−α)2

]

dy

By Theorem 2.1, we have
(∇2)α f (x) = ∇ ·∇α f (x) = ∇α ·∇ f (x)

Now, we suppose that
f (x) = 0 , on ∂Ω

then we extend the functionf (x) = 0 onR3\Ω . So, we consider the Fourier transform

FT((∇2)α f (x)) =
α

(1−α)
√

πα
FT(

∫

R3
∇2 f (y)exp

[

−α2(x− y)2

(1−α)2

]

dy)(ξ )

(6.1)

=
α

(1−α)
√

πα
FT(∇ ·∇ f (x))(ξ )FT(exp

[

− α2x2

(1−α)2

]

)(ξ )

= 4π |ξ |2FT( f (x))(ξ )
√

π1−α exp

[

− (1−α)2ξ 2

α2

]
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Finally, if α = 1 we obtain from (6.1)

FT(∇2 f (x)) = − lim
α→1

4π |ξ |2FT( f (x))(ξ )
√

π1−α exp

[

− (1−α)2ξ 2

α2

]

=

= −4π |ξ |2LT( f (x))(ξ )

7 The memory operators

The fractional derivatives are memory operators which usually represent dissipation of energy (see [39], [9], [14]) or
damage (see [26]) in the medium as in the case of anelastic media or reassessment of the porosity in the diffusion in
porous media. Moreover, in general they are in agreement with the Second principle of thermodynamics [39] and [40].

They are accepted not only because they represent appropriately a variety of phenomena, but also because they have the
“elegant and rigorous property” that when the order of differentiation is integer, they coincide with the classic derivative of
that order. However this property is not relevant to the effect they represent in the physical phenomena and one wonders
if using other differential operators, possibly simpler but without this property, one may obtain the same results of the
fractional derivatives.

7.1 The response to a linear trend

The effects of the fractional memory formalism (SMFP) by thenew fractional derivative (NFDt), compared with the
Caputo derivative (UFDt) on a linear trend, are readily obtained from their definitions applied to the simple linear function
as in formulae (2.2) and (2.3). We find the results illustrated in the following figures.

Fig.5. Deformation of a linear trend caused by the SMFP,
the NFDt and the Caputo derivative in the case when the order of differentiation is 0.2.

Fig.6. Deformation of a linear trend caused by the SMFP,
the NFDt and the Caputo derivative in the case when the order of differentiation is 0.5.
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Fig.7. Deformation of a linear trend caused by the SMFP,
the NFDt and the Caputo derivative in the case, when the order of differentiation is 0.8.

In the following Figs. 8, 9 and 10, we show the Fourier spectra, frequency response curves of the SMFP, the NFDt and
of the Caputo derivative, concerning the LT domain responsefunctions.

Fig.8.Laplace transform response of the memory formalism (SMFP)
for the orders of differentiation z = 0.2, z = 0.5 and z = 0.8.

Fig.9. Laplace transform response of the memory formalism (NFD)
for the orders of differentiation z = 0.2, z = 0.5 and z = 0.8.

Fig.10. Laplace transform response of the memory formalism(UFD)
for the orders of differentiation z = 0.2, z = 0.5 and z = 0.8.

We note in the figures 8 and 9 the asymptotic behavior of the memory formalism and of the new derivative, while that the
curves of the Caputo derivative, for the larger values of thevariable, are linearly increasing and diverging.
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7.2 The distributed order of the memory operator SMFP P(z)

The simple definition of the memory operator SMFP readily allows a definition of the distributed order fractional memory
operator, which is simpler and easier to handle that the Caputo derivative (see [41])

The distributed order operatorP(z) is defined for the fractional derivative of Caputo [3], [42], by

aP(α)
b f (t) =)

∫ b

a
g(α)dα

[

D(α)
t f (t)

]

=a P(α)
b

∫ b

a
g(α)dα

[

∫ t

0
exp(− α

1−α
(t − τ)) ḟ (τ)dτ

]

(7.1)

whereg(α) is a weight function and 0< a< b< 1.
Following the method of Caputo [3], [42] is readily seen that for the Fubini-Tonelli theorem, we maychange the order

of integration indα anddt provided

∫ b

a
g(α)dα

[

∫ t

0
exp(− α

1−α
(t − τ)) f (m+1)(τ)dτ

]

is summable with respect toτ in the interval[a,b] with 0< a< b< 1, which is readily verified.
The solution if found using theLT of (7.1) which is

LTaP(α)
b f (t) =

∫ ∞

0

∫ b

a
g(α)dα

[

D(α)
t f (t)

]

exp(−pt)dt =

(7.2)

=

∫ ∞

0

∫ b

a
g(α)dα

[

∫ t

0
exp(− α

1−α
(t − τ)) ḟ (τ)dτ

]

exp(−pt)dt

or

LTaP(α)
b f (t) =

∫ b

a

{

∫ ∞

0

[

∫ t

0
exp(− α

1−α
(t − τ)) ḟ (τ)dτ

]

exp(−pt)dt

}

g(α)dα

and finally obtain

LTaP(α)
b f (t) =

∫ b

a

p
p+α

F(p)dα = F(p)
∫ b

a

pg(α)

log(p+α)
dα (7.3)

which represents the filtering properties of the operator and is simpler than that obtained using the Caputo derivative.
As an example we may consider the simple caseg(α) = 1 which gives

LTaP(α)
b f (t) = pF(p)

∫ b

a

g(α)

p+α
dα = pF(p) log

p+b
p+a

hence, the response is

plog
p+b
p+a

whose filtering properties are readily computed.
Other cases of practical interest, as in the note of Caputo [42], may be considered such as wheng(α) is a linear function

of α. Also the distributed order SFDF could be readily formulated, however its expression is somewhat complicated and
we believe that it may be of scarce practical use.

Fig 11.LT domain response function of the distributed order fractional derivative with b = 0.8, a = 0.3.
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8 Appendix

1 - We rewrite the definition (2.3) in the new form

D̃
(ν)
t f (t) =V(ν)

∫ t

a
ḟ (τ)exp−ν(t − τ)dτ (8.1)

obtained from equation (2.2) or (2.3) with ν = 1
σ > 0, whereV(ν) =.νN(1/ν).

Then, we have

Theorem 3.If the function f∈W1,1(a,b), then the integral in (8.1) exists for t∈ [a,b] andD̃
(ν)
t f (t) ∈ L1 [a,b] .

Proof.Let us write

D̃
(ν)
t f (t) = V(ν)

∫ t

a
ḟ (τ)exp−ν(t − τ)dτ =

(8.2)

= V(ν)
∫ ∞

−∞
pν(t − s)q(s)ds

wherepν(y) = exp(−vy), when 0< y < b− a, with p(y) = 0 wheny < 0 or y > b− a, q(y) = ḟ (y) whena ≤ y ≤ b.
Finally, q(y) = 0 wheny< aor y> b. Hence under the hypotheses of the theorem, the functionspν , q∈ L1(a,b). Then,
by the classical results on Lebesgue integrals (see [41]), the integral (8.1) exists almost everywhere int ∈ [a,b] and

D̃
(ν)
t f (t) ∈ L1 [a,b].

2 - It is of some interest to see the fractional derivatives ofthe elementary and transcendental functions according to
the new definition (2.2). We begin with sinωt, whose fractional derivative is given by

D
(α)
t (sinωt) = E(α)

∫ t

0
ω exp(− α

1−α
(t − s))cosωs ds

whereE(α) = M(α)
1−α . Then

D
(α)
t (sinωt) = E(α)ω exp

[

− α
1−α

t

]

∫ t

0
exp(

α
1−α

s)cosωs ds=

=
E(α)ω

( α
1−α )

2+ω2 (
α

1−α
cosωt +ω sinωt − α

1−α
exp(− α

1−α
t)) =

(8.3)

=
E(α)ω

(( α
1−α )

2+ω2)
(((

α
1−α

)2+ω2)0.5sin(ωt +a)− α
1−α

exp

[

− α
1−α

t

]

) =

= E(α)cosa(sin(ωt +a)− sinaexp

[

− α
1−α

t

]

)

wherea is such that

tana=
αω

(1−α)
, sina=

α/1−α
((α/1−α))2+ω2)0.5 , cosa=

ω
((α/1−α))2+ω2)0.5

We note that the new derivative of sinωt implies only a change of the phasea and the amplitude variation ωE(α)

(( α
1−α )2+ω2)0.5

Now we seeD (α)
t (cosωt). With the same procedure we find

D
(α)
t (cosωt) = E(α)exp(− α

1−α
)t
∫ t

0
exp(

α
1−α

s)sinωsds=

= E(α)cosa

[

cos(ωt +b)− cosaexp(− α
1−α

t)

]
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where again we note the same phase change and amplitude variation noted for the case of sinωt. Moreover, we observe
thatb is related toa by

tana=
1

tanb

Hence, we considerD (α)
t (expωt), then we find

D
(α)
t (expωt) =

E(α)ω
α

1−α +ω

{

exp(ωt)−exp

[

− α
1−α

t

]}

=

E(α)ω
α

1−α +ω
exp(ωt)

{

1−exp−(ω +
α

1−α
t)

}

Finally

D
(α)
t t =

M(α)

1−α

∫ t

0
exp(− α

1−α
(t − s))ds=

M(α)

α
(1−exp− α

1−α
t). 0< α ≤ 1
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Matematiche,41, 73–83 (1995).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	A new fractional time derivative
	The Laplace transform of the NFDt
	Fractional gradient operator
	Fourier transform of fractional gradient and divergence
	Fractional Laplacian
	The memory operators
	Appendix

