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Abstract: Based on a space sparse representation of underwater target, and combining compressed sensing sparse reconstruction
principle, we present a new high-accuracy DOA estimation method. The proposed method can be used in narrowband and wideband
scenarios. We demonstrate the effectiveness of the proposed method on simulated data by plots of spatial spectra, computation time
and root mean square error. We observe that our approach has number of advantages over other DOA estimation methods including
decreasing the calculated quantity, and the use of feasibility and superiority in the micro underwater location platform, as well as not
requiring high demand of array.
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1 Introduction

With the developing of ocean exploration and the
strengthening of national defense construction, the study
of underwater acoustic target location method has been an
active research area. The underwater acoustic target DOA
estimation is one of the important methods of the
underwater acoustic location. Moreover, the research for
underwater acoustic target location method which is
based on micro underwater location platform (such as
UUV) has been aroused great interest. This micro
platform must have good mobility and accuracy in
practical application. Considing the load capacity of the
micro platform, the size of array aperture can not be too
big, and the data acquisition and processing can not be
too much. Therefore, the traditional high resolution DOA
technology can not be completely applied to the micro
underwater location platform, such as beam-forming [3],
Capons method [5] and subspace-based methods such as
MUSIC [4]. Capons method and MUSIC are able to
resolve sources within a Rayleigh cell (i.e., achieve
super-resolution), provided that theSNR is moderately
high, the sources are not strongly correlated, and the
number of snapshots is sufficient. There are some
disadvantages when the above-mentioned algorithms are
used in micro underwater location platform and the
underwater acoustic target DOA estimation. Therefore,

the research of underwater acoustic target location based
on the micro underwater location platform is very
necessary and has great application prospect.

In recent years, compressed sensing theory has been
an active research area, playing a fundamental role in
many applications involving visual electronics, medical
imaging devices, radio receiver, radar imaging and so on.
D. Malioutov [7] first proposed spatial sparsity for DOA
estimation, which showed that the source localization
problem can be cast as a sparse representations recovery
problem in a redundant dictionary using theℓ1− SVD [7]
method. Recently, spatial sparsity was linked to the
theoretical results of the compressed sensing (CS) [8]
framework, utilizing a spatial CS approach for DOA
estimation. A.C Gurbuz also achieved the DOA
estimation based on the CS in time domain. W. Ying
proposed space compressive sampling array for DOA
estimation [8, 9], it can reduce the array dimension while
still maintaining high accuracy [11, 12]. At present, the
above-mentioned research of DOA estimation based on
CS is not involved in the application of sonar, which also
provides a new approach for micro underwater location
platform (such as UUV). Therefore, based on the above
research results and combined with the characteristics of
acoustic location, we can realize a further study on the
underwater acoustic target DOA estimation problem,
which is based on micro underwater location platform.
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Then we propose a new high-accuracy DOA estimation
method of underwater acoustic target, which can be apply
to the micro underwater location platform. This method is
compared with the existing high-accuracy DOA
estimation method from different facets (such as the
number of array elementN, array element spacingd, the
number of snapshots and the time consumed, etc) by
simulation, and obtains some useful results. This method
will play an active effect to the development of
underwater acoustic target location. The paper is
organized as follows. Firstly, the compressive sensing
theory is simply introduced. Secondly, the underwater
acoustic target DOA estimation method based on CS will
be formulated. Then, the performance of the algorithms is
experimentally analyzed. And some performance analysis
and comparison will be drawn. Finally, we make some
conclusions for this paper.

2 Compressed Sensing Theory

The main goal of the CS theory is to recover the signal
x from the measurementsy, in the presence of the white
zero-mean Gaussian noise.

The simplest version of the sparse representation
problem without noise is to find a sparsex ∈ CN , given
y ∈ C

M, which are related byy = Φx, with M < N. In
practice, a noiseless measurement model is rarely
appropriate; therefore, noise [10, 11] must be introduced.
A sparse representation problem with additive Gaussian
noise takes the following from:

y = Φx+ n. (1)

where Φ is an M × N sensing matrix giving us
information aboutx. The assumption of sparsity of is
crucial since the problem is ill-posed with it. The solution
to the ill-posed problem is only possible when some
properties of the signalx can be sparse or compressible in
some sparsity basis providing the following
representation.

x = ψd. (2)

whereψ ∈ RN×N is a sparsity basis, andd is a vector of
the sizeN×1 with contains onlyJ ≪ N nonzero elements.
Then consider the signalx is J− sparse.

But the sensing matrixΦ obey the RIP [16] can use
the CS theory recover the signalx form the measurements
y at high accuracy. So it is important to choose a suitable
sensing matrix. And the Gaussian and Bernoulli is often
used.

For the problem of signal reconstruction, if the signal
vector x is sparse or compressible, we can get the
solutions for (1). An ideal measure of sparsity is the count
of nonzero entries denoted by‖ x ‖0

0 ,which we also call
the ℓ0 − norm. Hence, mathematically, we need find the
solution to min ‖ x ‖0

0 subject to y = Φx. Many
approximations have been devised over the years,

including greedy approximations (matching pursuit
algorithm (MP), stepwise regression, and orthogonal
matching pursuit algorithm (OMP)), as well asℓ1 andℓp

relaxations, where‖ x ‖0
0 is replaced by‖ x ‖1, and‖ x ‖p

p,
for p < 1. For the latter two, it has been shown recently
that if x is sparse enough with respect toΦ, then these
approximations in fact lead to exact solutions for precise
definitions of these notions).These results are practically
very significant, since theℓ1 relaxation min‖ x ‖1 subject
to belong toy = Φx+ n belong to a convex optimization
problem, and the global optimum can be found for
real-valued data by linear programming.

Therefore, equation (1) can be solved by the solution
of convex optimization as following representation.

min ‖ x ‖ℓ1 s.t ‖ Y −ΦX ‖ℓ2≪ ε. (3)

whereε is a parameter specifying how much noise we
wish to allow. Theℓ2 − term forces the residualY −ΦX
to be small, whereas theℓ2− term enforces sparsity of the
representation.

3 Underwater Acoustic Target DOA
Estimation Method Base On CS

3.1 Space sparse representation of underwater
acoustic target signal

Now, we consider a uniform linear array (ULA) ofN
sensors by inter-sensor spacing ofd. ThenJ narrowband
sources from the far-field, which have a known center
frequency off , impinge on the uniform linear array. The
sources arrive on the array from the unknown
θn(n = 1,2,3,4,J), which we wish to estimate. The linear
array response to the impinging plane waves can be
expressed as:

a(θn) = [1,e− jπ cos(θn), ...,e− jπ(N−1)cos(θn)]. (4)

The transposed matrixAJ(θ ) can be expressed as:

AJ(θ ) = [a(θ1),a(θ2), ...,a(θJ)]. (5)

Uniformly we discrete the underwater acoustic target
signal space intoK >> J possible angles of arrival and
construct a redundant matrix ofK atoms corresponding to
the array responses of the respective angles of arrival. Then
the transposed matrixA(θ ) can be expressed as:

A(θ ) = [a(θ1),a(θ2), ...,a(θK)]. (6)

whereθ = [θ1, ...,θK ] is the vector of unknown source
locations. According to the theory of compressed sensing,
the array received signal can be expressed as:

x(t) = A(θ )S(t)+ n(t). (7)
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where t is the discrete time index, andS(t) is sparse
vector of the sizeK × 1, with K ≫ J, and it only hasJ
nonzero elements which correspond to the signal angles
of arrival. Andn(t) is the noise vector of the sizeN × 1.
Then considerx(t) is J − sparse, andA(θ ) is a sparsity
basis for array received signalx(t).

3.2 Underwater acoustic target DOA model
based on CS

According to the theory of compressed sensing and the
above (7), the underwater acoustic target DOA estimation
problem can be formulated as:

y(t) = Φx(t) = ΦA(θ )S(t)+Φn(t). (8)

whereΦ is Gaussian random measurement matrix of
the size ofM ×N. And y(t) is the array output of the size
of M ×1. Compared with the traditional array output, this
array output contains much less data. As a result, it greatly
reduces the hardware complexity and the amount of data
processing, which is benefit to use in the micro underwater
location platform.

In order to ensure the accuracy of the estimation, it
must need more snapshot samples. Then equation (8) can
be reformulated into the matrix form:

Y = ΦX = ΦAS+N. (9)

where Y = [y(1),y(2), ...,y(L)], S = [s(1),s(2), ...,s(L)]
and N = [n(1),n(2), ...,n(L)], and theL represents the
number of snapshots. The sparse vectorsS can be solved
from (9) using the joint CS recovery algorithms such as
regularized M-FOCUSS, SOMP, etc.

3.3 Underwater acoustic target DOA estimation
method based on CS

In this paper, we use the convex relaxation methods of
mixed norm to realize the DOA estimation of underwater
acoustic target. According to the above (3) and (9), the
solution of it can be expressed as:

min ‖ S ‖ℓ1 s.t ‖ Y −ΦAS ‖ℓ2≪ ε. (10)

whereε is a constant and relate to the noise, and the
result is better whenε = 0.6.We calculate the average of
each row ofŜ to get a column vector, when the S is fixed by
(10), and the column vector can be expressed as following
equation:

Ŝ = [
L

∑
j=1

S1 j/L
L

∑
j=1

S2 j/L ...
L

∑
j=1

SK j/L]. (11)

where the Si j(i = 1,2,3, ...,K; j = 1,2,3, ...,L)
correspond to the element of matrixS of i− th row and

j− th column, andŜ was the sparse column vector which
only contain a small number of non-zero elements. We
illustrate the steps for underwater acoustic target DOA
estimation method based on CS in Fig.1.

Sensor observations:

X=[x(t1), x(t2), ,x(tL)]

lUnderwater acoustic array

signal sparse representation

X=AS+N

The design of the projection matrix

Y= X= AS+ N

Underwater acoustic array

signal sparse reconstruction

s.tS l1 Y-ΦAS l2min ≤ε

S

The underwater

target DOAestimation

The non-zero elements

of spares column vector

Correspond to

Signal matrix S Sparse column

vectorSCompute an average of

each row

Fig. 1: Block diagram of steps for underwater acoustic
target DOA estimation method based con CS.

Combined with the discussion of the section 3.1, the
underwater acoustic target signal space is discredited into
K >> J possible angles of arrival. The location of each
angle corresponds to the location of each element in the
sparse vector̂S.And the method can be shown as the Fig.2.
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Fig. 2: The space sparsity model of underwater acoustic
target.

Then, the DOA estimation of the underwater acoustic
target can be achieved by locating the nonzero elements of
Ŝ . For example, whenK = 181, the target space is evenly
divided into 181 spatial angles from−90◦ to 90◦, each of
the elements and the corresponding to the signal vector
containing 181 elements, i.e.−90◦ corresponds to the first
element in the vector matrix,−89◦ corresponds to a vector
of second elements, and so on. For example, the 20− th
element in the matrix̂S is nonzero, so you can determine a
target’s DOA angle of−70◦. Specific process as shown in
Fig.3:

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1560 W. Biao et. al. : DOA Estimation Based on Compressive SensingMethod...

Ŝ  =

Ŝ1 

Ŝ2

.

.

.

Ŝ20

.

.

.

Ŝ181

0

0

.

.

.

1

.

.

.

0

-90°

-89°

.

.

.

-70°

.

.

.

90°

Fig. 3: The corresponding relation between signal vector
and space angle.

4 Experimental Results

In this section, we present several experimental results for
our convex relaxation underwater acoustic target
localization scheme. First, we compare the spectra of our
convex relaxation method to those of MUSIC [4], Capons
method [5] and beam-forming [3]. Next, we analyze the
performance of the proposed method by computer
simulation. The performance of our method is compared
with the Capons method, beam-forming, and MUSIC.

4.1 Spectra for convex relaxation of mixed-norm
algorithm

We consider a uniform linear array ofN = 40
hydrophones separated by half a wavelength of actual
narrowband underwater acoustic target signals. Two
narrowband underwater acoustic target signals in the
far-field impinge on this array from distinctDOAs. The
signal direction angles of these two targets are set to
−10◦ and 10◦ respectively. And the frequencies of these
two targets are set to 800kHz and 1000kHz respectively.
The total number of snapshots isL = 1024, and squeezed
number isM = 8. The additive noise is Gaussian with the
SNR = 10dB and the number of potential locations is
K = 721,which is used convex relaxation of mixed-norm
algorithm to recover. In Fig.4, we compare the spectrum
obtained using our proposed method with those of
beam-forming, Capons method and MUSIC.
Beam-forming, Capons method, MUSIC and our
technique are able to resolve the two sources. However,
our proposed method gives the sharper peaks and
showcases the best performance, then the estimation
performance of Capons method and MUSIC is relatively
poor. Therefore, estimation of underwater target of CS
based on DOA method is effective and feasible. Then we
will continue to analyze the comparison and analysis of
the proposed method and several common methods.
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Fig. 4: Spatial spectra for beam-forming, Capons method,
MUSIC, and the proposed method for two underwater
acoustic targets. DOAs:−10◦ and 10◦, SNR = 10dB.
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Fig. 5: Comparison of the ability to distinguish for
beam-forming, Capons method, MUSIC, and the proposed
method (convex relaxation of mixed-norm algorithm)
DOAs: −1◦ and 1◦, SNR = 10dB.

4.2 Analysis the performance of these
algorithms

Next we analyze the performance of these algorithms in
differentDOAs, N, d andL.

4.2.1 Resolution analysis

In Fig.5, we compare the ability to distinguish the two
sources using our proposed method with those of
beam-forming, Capons method and MUSIC. In the plot,
the SNR is 10dB, and the sources are closely spaced (2◦

separation). We can find that the beam-forming algorithm
cannot distinguish two targets. The performance of
Capons method is also a sharp variation, the two peaks
cannot be obviously distinguished. Although MUSIC

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 3, 1557-1565 (2015) /www.naturalspublishing.com/Journals.asp 1561

algorithm can estimate two target direction angles, but the
performance changes obviously . However, our proposed
method can still accurately distinguish two targets, with a
relatively high resolution and the sharper peaks.

4.2.2 Analyze the performance of these algorithms in
differentSNR, N, d andL

Next we analyze the performance of these algorithms in
different SNR, N, d and L. Fig.6 shows that the
performance of different algorithms with differentSNR.
We compare the spectrum obtained using our proposed
method with those of beam-forming, Capons method, and
MUSIC. In the top plot, theSNR is 15dB, and the sources
are closely spaced (5◦ separation). Our technique and
MUSIC are able to resolve the two sources, whereas
beam-forming and Capons method merge the two peaks.
In the bottom plot, we decrease theSNR to 0dB, and our
proposed method is still able to resolve the two sources.
Therefore, the proposed method has the relatively
superior robustness at high levels of noise.

Fig.7 shows that the performance of different
algorithms in differentN andd respectively. Fig.7(a), (b),
(c) and (d) represent four cases respectively. Compared
with (a) and (b), we can discover that with the decrease of
N, beam-forming and Capons method are not able to
estimate theDOAs, but the proposed method shows better
performance. Compared with (a) and (c), we can also
conclude that beam-forming algorithm has bad effect due
to the limited array aperture, whend is reduced to 0.2.
MUSIC and Capons Method performance also become
very poor. In the plot of (d), when we decrease bothN
and d, we can easily find that beam-forming, Capons
method and MUSIC can hardly distinguish the two
angles. However, our technology is still having high
resolution, with two sharp spectral peaks. This is very
helpful to the micro underwater location platform as it
can reduce the size of the array which is used in location
platform. Continue to analyze the performance of these
algorithms in differentL. As we can see from Fig.8, when
the snapshot number is reduced from 1024 to 20, Capons
method is almost failed to distinguish the two targets. As
we know, MUSIC algorithm needs the sufficient number
of snapshots to realize the estimation of angles. So the
performance of this method is also very poor. However,
beam-forming can estimate two target direction angles,
but tow spectrum peaks are not very sharp. Obviously, the
proposed method has the best performance when the
number of snapshots is very few.

4.2.3 Analysis of the algorithm complexity

According to the above analysis, our proposed method
only needs few snapshots, so we can draw a conclusion
that the proposed method will take less time to estimate
the DOA. Then we calculate the running time of these
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Fig. 6: (a) and (b). Spatial spectra for beam-forming,
Capons method, MUSIC, and the proposed method.DOAs:
0◦ and 5◦. Top:SNR = 15dB. Bottom:SNR = 0dB.
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Fig. 7: The performance of these algorithms withDOAs
of −10◦ and 10◦ (SNR = 10dB), L = 1024.(a)N = 40,d =
0.5.(b)N = 16,d = 0.5.(c)N = 40,d = 0.2.(d)N = 16,d =
0.2.
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Fig. 8: The performance of these algorithms withDOAs of
−10◦ and 10◦ (SNR = 10dB). (a)L = 1024. (b)L = 20.

algorithms by experiments. Through the analysis of data
in the table, it is easy to draw a conclusion that proposed
method takes the fewest time.

Table 1: The time of these algorithms to achieve the DOA
estimation.

Algorithm proposed Beam-
forming

Capons MUSIC

Time/s 0.1076652 0.1144021 0.1122652 0.1250766

In summary,when changing these parameters
(DOAs,N,d,L), the proposed method is more robust than
beam-forming, Capons method and MUSIC algorithm.
The proposed method has strong resolution. And the
calculation of proposed method is least. These
characteristics make the proposed method more suitable
for micro underwater location platform of the underwater
acoustic target DOA estimation.
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4.3 Wideband Underwater Acoustic Target
Location

The technology and method of narrowband signal
processing array is relatively mature, but with the array
signal environment is increasingly complex and the signal
has more diversified forms, so that the density and range
of signal distribution in space and frequency domain has
been increased greatly. However, disadvantage of
narrowband array signal processing technology is also
increasingly prominent. Therefore, the research on
method of wideband signal processing array has great
practical significance. Therefore, in this section, we will
continue to study the underwater target wideband DOA
problem based on CS.

The main difficulty arises when wideband signals are
conside impossibility to represent the delays by simple
phase shifts. A way we used to deal with this issue is to
separate the signal spectrum into several narrowband
regions, each of which yields to narrowband processing.
To work in frequency domain, the time-samples are
grouped into several snapshots, and transformed into the
frequency domain:

X( f j) = A( f ,θ )S( f j)+N( f j). (12)

where j represents for the points of Fourier Transform. In
this section, we also select Gauss projection matrix as our
sparse sampling matrix of wideband signal. Then the
equation (8) can be reformulated into the frequency form:

Y ( f j) = ΦX( f j) = ΦA( f ,θ )S( f j)+ΦN( f j). (13)

whereΦ is anM×N sensing matrix giving us information
aboutX , X( f j) is anM×1 array received matrix.A( f j ,θ )
is M×K array manifold.S( f j) is K×1 signal vector.N( f j)
is M×1 noise vector. According to the above analysis, the
solution of it can be expressed as:

min ‖ S( f j) ‖ℓ0 s.t Y ( f j) = ΦA( f j ,θ )+ΦN( f j). (14)

To solve theℓ0 − norm problem, the main method is the
basis pursuit algorithm (BP [27]) and the matching
pursuit algorithm (such as MP, OMP [28] etc.) at present.
Now we analyze the performance of these algorithms in
differentN, DOAs. In the plot(a) of Fig.9, we present an
example of using the same 40− elements uniform linear
array as one used throughout this paper, but the signals
are now wideband. We consider two chips withDOAs
−10◦ and 10◦ with frequency span from 100Hz to 140Hz,
andL = 100 time samples for beam-forming, MUSIC and
our proposed method. Plot(a) shows that our proposed
method has an excellent performance over the
conventional methods. Then we reduce the number of
arrays from 40 to 20, the others are kept the same as (a).
Compare with (a) and (b), we can find that the
performance of Capons method and MUSIC begin to
degenerate. However, the performance of our method is
still very good. In the plot(c), we reduce the array
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Fig. 9: The performance of these algorithms withL = 100
SNR = 10dB. (a)N = 40,DOAs: −10◦ and−10◦; (b)N =
20,DOAs:−10◦ and−10◦; (c) N = 20,DOAs: −2◦ and 2◦.

dimension, but also change theDOAs. Now two wideband
sources are closely spaced (4◦ separation). Using
beam-forming method, the two peaks are merged, but
using our convex relaxation of mixed-norm algorithm,
they are well resolved, and the side lobes are suppressed
almost to zero.
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Fig. 10: The RMSE comparison of the three estimation
methods.

We next compare the root mean square error of the
DOA estimation produced by our approach and MUSIC
algorithm. In Fig.10, we assume that a wideband
underwater acoustic target signal in the far-field impinge
on the array from a certain incident angle, and in theSNR
of 10dB to 20dB. The number of experiments is set to
100. We can get the root mean square error of the two
methods. From the figure, we can obviously find that the
root mean square error of MUSIC is higher than our
proposed method, whenSNR is less than 5dB. We can
draw a conclusion that, with the increase of theSNR,
RMSE value is smaller and almost close to the zero. Our
proposed method has little error even in a lowSNR. So
our technology has higher precision in DOA estimation.

5 Conclusions

In this paper, we explored a formulation of the sensor
array underwater acoustic target localization problem in a
sparse signal representation framework. According to the
distribution characteristics of the underwater target space,
we started with a scheme for targets localization with an
underwater target signal sparse representation model in
spatial domain. The scheme can be applied to narrowband
and wideband scenarios. We described how to estimate
each signal direction angle, through the corresponding
relationship between signal vectors and space angles.
Then we used the convex relaxation method of mixed
norm to realize underwater acoustic target DOA
estimation method based on compressed sensing. Finally,
we examined various aspects of our approach, such as the
number of snapshots. Several advantages over existing
underwater acoustic target localization were identified,
including increased resolution, decreased the calculated
quantity, reduced the demand of the array. And there are a
lot of research and application value to underwater
acoustic array especially the underwater acoustic array of

micro underwater platforms (such as UUV) to locate the
targets.
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