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Abstract: Vehicles Frequently Appearing Together, or VFATs, can be clues in solving criminal cases. Traditional sequence mining
approaches help identify VFATs from passing-through records collected at monitoring sites. However, huge traffic datastreams hinder
fast identification of VFATs. In this paper, we present a multi-threaded approach to fast identification of VFATs based onmulti-core
processors, called Frequent Sequential Mining based on Multi-Cores (FSMMC). It parallels the execution of tasks, partitions large
volumes of data, and obtains VFATs by merging local candidates discovered in different threads running on different processor cores.
Through local parallel reduction, FSMMC eliminates the repetitive patterns and reduces computational effort. Moreover, it achieves
workload balance by the dynamic distribution of tasks to a pool of threads where the thread that finishes first joins another running
thread. Both theoretical analysis and case studies show that FSMMC takes full advantage of multi-core computing platforms and
has higher speed-up when searching VFATs among massive passing through records, compared with other approaches without multi-
threading.
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1 Introduction

When solving criminal cases, Vehicles Frequently
Appearing Together, or VFATs, can sometimes be
valuable clues. Collecting records on vehicles passing
through from different monitoring sites and then
searching for vehicles frequently appearing together has
been proven to be an effective manner to find VFATs.
However, such investigation always involves large traffic
streams and therefore takes a long time. Moreover,
VFATs have high mobility and can usually escape notice.
How to quickly identify VFATs from massive traffic data
streams therefore becomes a key issue.

In recent years, various methods of data mining have
matured and been applied widely in various fields,
including the discovery of motifs in DNA sequences, the
analysis of web log and customer shopping sequences,
and study of XML query access patterns [1]. Frequent
pattern discovery or sequential mining, which was
pioneered by the works of Agrawal et al. in the Apriori
algorithm [2], could be used to find VFATs. The problem

with frequent patterns, given a minimum support
thresholdmin sup, is in discovering all the item sets that
occur at leastmin suptimes in the database. Here, vehicles
frequently appearing together can be regarded as frequent
patterns, i.e., they often appear somewhere as a whole.

High-performance computation utilities, such as
multi-core and many-core servers, offer ideal mining
platforms. The problem in finding VFATs is therefore
how to fully exploit the parallelism, or harness the power
of these multi-core processors. A number of works have
focused on parallel formulations for finding frequent
patterns on shared-memory computers and GPU nodes [3,
4]. Indeed, many parallel computing models already exist.
For example, OpenMP is a well-known parallel
framework supporting multi-platform shared-memory
parallel programming in C/C++. Although OpenMP is
simple to use because of its automatic data layout and
decomposition by directives, it lacks reliable error
handling and fine-grained mechanisms to control
thread-processor mapping. In this paper, we present a
novel parallel frequent sequential mining approach
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employing multi-cores called FSMMC (Frequent
Sequential Mining based on Multi-Cores) to search for
VFATs. FSMMC takes threads as the “parallel unit” and
can minimize memory bandwidth and maximize cache
reuse. Both theoretical analysis and case studies indicate
that it is an efficient multi-core implementation.

The structure of the paper is as follows. In section 2,
we briefly define the problem of extracting frequent
patterns with multi-core processors, describe the
approach in depth, and provide the necessary theoretical
background. In section 3, we theoretically evaluate the
performance of the approach; we thus prove that the
method is precise, with lower calculation complexity and
more feasibility. Section 4 presents the detailed
experimental results, comparing the approach with
different numbers of running threads on a multi-core
processor. In section 5 we then review the current state of
parallel pattern mining technology. Finally, section 6
concludes the paper and gives directions for future work.

2 The FSMMC Approach

2.1 Definitions

Definition 1 The itemset of vehicle passing record in a
given database D, is denoted as a quadruple, i.e.,
Ip,t,l ,d =< p, t, l ,d > , in which p represents the vehicle
plate number, t represents the time of passing through
monitoring sites, l represents the location of monitoring
sites, and d represents the vehicle driving direction.

Definition 2 A sequence s is an ordered list of itemsets in
a period of time Dt , denoted as
S=< Ip1,t1,l1,d1, Ip2,t2,l2,d2, . . . , Ipm,tm,lm,dm >.

Definition 3 The term motorcade sequence is used to
represent the group of vehicles passing through the same
monitoring sites in the same direction in the time of
interval∆t , denoted as: ;

Sm =







(p1, . . . , pi , . . . , p j , . . . , pn)

∣

∣

∣

∣

∣

∣

< Ip1,t1,l ,d, . . . , Ipi ,ti ,l ,d, . . . , Ip j ,t j ,l ,d, . . . , Ipn,tn,l ,d >∈ S
∣

∣ti − t j
∣

∣≤ ∆t ,n∈ {1, . . . ,m}
l ∈ {l1, . . . , lm} ,d ∈ {d1, . . . ,dm}







(1)

The length of Sm, denoted as|Sm|, is the number of the
itemsets Sm holds.

Definition 4 Given a database D storing the vehicle
passing records, the support of the sequence Sm , or the
reliability as the suspect VFAT, is denoted as
sup(Sm) = St ∗Sl/Dt , where St denotes the count of Sm
occurring, and sl denotes the number of passing
monitoring sites Sm covers.

Definition 5 Given a minimum support threshold
min sup, if sup(Sm) ≥ min sup, Sm is then called a
frequent sequence S

′
, i.e., VFATs. The collection of S

′
is

denoted as LN when|S
′
|= N.

Definition 6 Given a database D storing the vehicle
passing records, all Sm it holds are called candidate
sequences, denoted as CN when |Sm| = N. In other
words,LN = {CN|sup(CN)≥ min sup}.

Definition 7 In the multi-thread environment, the
subsequence of CN acquired on thread i is called CiN.
There exists∑n

i=1Ci
N =CN, where n is the total number of

running threads. To distinguish different motorcade
sequences from CiN,VSm

Ci
N

is used to represent the set of Ci
N

when its sequential value is Sm.

Definition 8 Given a sequence database D storing the
vehicle passing records, let Ts be the serial sequence
mining time with a single-core processor, and let T(q) be
the parallel sequence mining time with q-core processors.
The speed-up is then defined as S(q) = Ts/T(q).

2.2 The FSMMC Approach

The FSMMC approach is designed to be executed on a
shared memory system. It partitions the workload into
independent tasks, but assumes that the whole dataset is
accessible to all threads. In this way, each thread runs
independently through lock-free programming without
the need for inter-thread communication.

In order to combine the properties of multi-core
processors, the FSMMC approach can be further divided
into three phases: 1) the global database is divided into
several local datasets for each thread by means of the
equidistant static projection method; 2) local motorcade
sequential patterns are located in each thread by local
parallel reduction; 3) local motorcade patterns are
dynamically combined into the frequent sequential
patterns. These phases are illustrated in Figure 1.

1) The complete databaseD is partitioned to Di and
assigned to the threadi(i = 1,2, . . . ,n) for loading. The
global databaseD is divided intoD1,D2, . . . ,Dn, andD =
∪n

i=1Di . If there are R records inD, then the recordsRi

for threadi are shown as (2). Here,M j
i represents recordj

in the local databaseDi andTp represents record p in the
global databaseD.

Ri =
{

M j
i

∣

∣

∣
M j

i = Tp, p=
⌊

n
R

⌋

∗ (i −1)+ j,

p∈
[⌊

n
R

⌋

∗ (i −1),
⌊

n
R

⌋

∗ i
]}

(2)

2) For thread i(i = 1,2, . . . ,n), the local database is
scanned once to find all motorcade sequential
patterns; where necessary, they are then reduced and
stored in files.BecauseDi is always too large to store in
memory wholly, FSMMC needs further division to get
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Fig. 1: The process of FSMMC approach.

smaller datasetsD
′

i . Then, it spawnsn threads, each
scanningD

′

i to get candidate sequences. Considering this
step is one of the most costly steps, we use local parallel
reduction to eliminate the repetitive patterns. It is very
likely that one certain task has a lower computational cost
than all the others. Therefore, FSMMC creates the thread
pool within which each thread is assigned to one certain
task of pattern searching. Those which finish searching
first will join in with other threads. In other words,
FSMMC allows each thread to process asynchronously,
which can help to gain space and reduce running time
efficiently.

3) Local motorcade patterns are combined in each
storing file and final frequent sequences are derived.
After being processed by each thread, the reduction
objects need to be merged. First, FSMMC puts the tasks
of combining files in a global task list after the files have
been regularly marked, making sure each task has a
number corresponding to its rank. Then, every thread
selects a task from the list as their own assignment and
independently eliminates infrequent motorcade items.
Since all threads are independent of each other, only their
calculation workloads required to be balanced in order to
boost performance.

FSMMC repeatedly checks whether there is an idle
core. If one exists, it selects a new task from the global
task list and runs it. All frequent motorcade sequences
will then be finally identified when the task list becomes
empty.

3 Performance Evaluation

In this section, we evaluate the performance of FSMMC
by checking its running time. Suppose the time we spend
on the first phase, i.e., the phase where the global
databaseD is divided intoD1,D2, . . . ,Dn, is T1. The time
that the threadi(i = 1,2, . . . ,n) spends on databaseDi to
find the motorcade sequential patternSmj is

Q j
i ( j = 1,2, . . . ,m; i = 1,2, . . . ,n). We usem to indicate

the number of motorcade sequences onDi and n as the
total number of threads. The total time threadi spends on
Di to find all the local sequences can then be represented

as:
Ti = ∑m

j=1Q j
i , i = 1,2, . . . ,n (3)

On the other hand, through the parallel computation
on multi-cores, the time for generating all the motorcade
sequential patterns is:

T2 = Max(Ti) = Max
(

∑m
j=1Q j

i

)

, i = 1,2, . . . ,n (4)

However, the time for the traditional serial
computational method to find the sequential patterns is
equivalent to the sum time of each thread treated
separately, as is:

T
′

2 = ∑n
i=1Ti = ∑n

i=1∑m
j=1Q j

i , i = 1,2, . . . ,n (5)

In the third phase (combining local patterns to obtain
all the motorcades’ frequent sequences), the time that
threadi takes is:

Ti = ∑k
j=qF j

i + ti ,q= 1,2, . . . ,k; i = 1,2, . . . ,n (6)

in which, F j
i represents the processing time for filej, k

means the total number of files for combining, andti is
the system overhead for threads accessing the global task
list, fetching new assignments and other system
operations. Remarkably,ti ≤ ∑k

j=qF j
i . So, the time

FSMMC spends on this phase by parallel processing on
multi-cores is:

T3 ≈ Max(Ti)≈ Max
(

∑k
j=q

F j
i + ti

)

,

q= 1,2, . . . ,k; i = 1,2, . . . ,n (7)

However, relative to parallel processing, the time for
traditional serial sequential processing approximates to:

T
′

3 ≈ ∑n
i=1Ti = ∑n

i=1∑k
j=q

(F j
i + ti),

q= 1,2, . . . ,k; i = 1,2, . . . ,n (8)

In conclusion, the total time with FSMMC is:

T = T1+T2+T3 = T1+Max
(

∑m
j=1Q j

i

)

+

Max
(

∑k
j=q

F j
i + ti

)

,q= 1,2, . . . ,k; i = 1,2, . . . ,n (9)

The total running time with the traditional serial
approach is:

T
′
= T1+T

′

2 +T
′

3 = T1+∑n
i=1∑m

j=1Q j
i +

∑n
i=1∑k

j=q
(F j

i + ti),q= 1,2, . . . ,k; i = 1,2, . . . ,n (10)

Therefore, becauseMax(∑m
j=1Q j

i ) ≤ ∑n
i=1 ∑m

j=1Q j
i

and Max(∑k
j=qF j

i + ti) ≤ ∑n
i=1 ∑k

j=q(F
j

i + ti), FSMMC
approach can achieve higher performance on multi-core
processors.
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4 Case Studies

4.1 Case Environments

The FSMMC approach has been successfully used in fast
identification of VFATs based on massive traffic data
streams. In the experiment, VFATs are defined as N
suspect motorcades, which pass through the monitoring
sites with the support overmin sup.

In the testing phase, the attributes of vehicle passing
records include plate number, time of passing by
monitoring sites, location of monitoring sites and vehicle
driving direction. We ran the test program on an Intel
Core 2 processor with 2.40G Hz and 2GB RAM running
Windows XP. The databases used contained about
3,000,000 records. The FSMMC approach was
implemented with JDK 1.6.

4.2 Case Results

We ran the FSMMC approach in different scales of traffic
streams by spawning varying numbers of threads, where
each thread executed the same code for frequent sequence
mining. The approach provided good extensibility by
optionally changing the number of threads optionally.
Input datasets of the same size were used and all the
results were saved in a file on hard disks to be used later.
The results generated are shown in Figure 2. When the
min supis assigned 2.50, VFATs are the top 15 records. A
more detailed analysis of the average running time used
to search for VFATs is illustrated in Figure 3.

As shown in the Figure 3, the more sequences
generated, the more calculation time for file reduction is
required. However, as the number of threads increases,
the increase becomes less, especially when the dataset has
more than 1,000,000 records. Specific to a certain
multi-core system, the approach can employ resources of
existing multi-core processors through multithread
programming technology, leading to better results on
larger volumes of datasets.

In order to verify the effectiveness of the FSMMC
approach more intuitively, we analysed the speed-up of
different threads on a four-core and a two-core processor
(using the same datasets with 2,700,000 records). Figure
4 shows the average T(2) is about 897.4 seconds in a
multithreading environment from one thread to five
threads, whereas T(4) is about 261.2 seconds. Thus, the
average S(4)/S(2) is approximately 3.44. Furthermore, as
can be seen in Figure 4, a processor with more cores can
obtain more stable results. Due to the dynamic task
distribution mechanisms and local parallel reduction, the
FSMMC approach reduces idle core time and the time
required to combine sequences. It incorporates runtime
performance characteristics and succeeds in using
multi-core processor collaboration to optimize the
performance of the parallel approach. This approach

Fig. 2: VFATs found in the case whereN = 2(vehicles), δt =
60(seconds) andmin sup=2.5.

Fig. 3: Running time of searching for VFATs from different
scales of passing vehicles by FSMMC on a four-core processor.

could therefore achieve good performance in identifying
VFATs from massive traffic data streams.

Fig. 4: Running time and speed-ups on multiple cores with
different thread numbers.
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5 Related Works

The efficient analysis of spatio-temporal data, generated
by moving vehicles, is an essential requirement for
intelligent transportation services. To our knowledge,
such research currently focuses mainly on the methods of
efficiently extracting long sharable frequent routes [5,6],
or Swarms [7], but not deliberately trailing vehicles. In
contrast to the ridesharing application, the identification
of VFATs involves a huge amount of data and therefore
demands more mining power.

Frequent pattern mining is a core field in data mining
research. Since the first solution to the problem of
frequent item-set mining was presented by Agrawal et al.
[8], various specialized in-memory data structures have
been proposed to improve mining efficiency [9]. It has
been recognized that the set of all frequent item-sets is
too large to be analysed and the information they contain
is therefore redundant. To remedy this, numerous works
have studied parallel frequent pattern mining on clusters
to improve mining efficiency [10,11]. These works
explore a spectrum of trade-offs between computation,
communication, memory usage, synchronization, and the
use of problem-specific information in parallel data
mining. However, the experiments showed
synchronization costs became quite large if the data
distributions were skewed or the nodes were not equally
capable.

Considering multi-core systems with lower
inter-processor communication costs and limited off-chip
bandwidth, parallel frequent pattern mining on multi-core
processors was pioneered by Buehrer et al. [12,13]. Based
on the serial algorithm gSpan [14] and the similar study
by Worlein et al. [15], Buehrer et al. proposed a parallel
frequent graph mining algorithm with excellent scale-up
properties. Their contribution comprises an efficient way
to decompose work and to explore the search space in a
depth-first way. They also proposed a way to exploit
temporal locality of the cache. However, this method
needs excessive memory consumption due to its static
embedding techniques. Lucchese et al. proposed similar
strategies for mining closed frequent item-sets, which
contain optimizations for improving cache usage when
creating conditional databases (called projections in their
paper) [16]. Tatikonda et al. studied the approaches on
parallel frequent tree mining [17]. Their algorithm could
scale up very well with the number of cores, leading to a
quasi-linear speed-up in a lot of real-world databases.
However, it costs too much time for memory accesses.

The past few years have also witnessed the emergence
of several novel approaches other than the multi-core ones
for the implementation and deployment of large-scale
data mining. MapReduce, which has been popularized by
Google, is a scalable and fault-tolerant data processing
model that enables to process a massive volume of data in
parallel with many low-end computing nodes. We in [18]
introduce a parallel implementation of BIDE algorithm
on MapReduce, called BIDE-MR. The experiments on an

Apache Hadoop cluster show that BIDE-MR attains good
parallelization. However, the approach presented in this
paper is easier to be implemented since it effectively
utilizes the multi-core structure of the single node.

6 Conclusions

This paper presents a novel approach to the fast
identification of VFATs from massive traffic data streams
on multi-core processors. To harness the power of the
multi-core processors, we use a dynamic task distribution
mechanism to balance the workloads of different threads.
A thread-steal happens when a task is not comparable
with the cumulative cost of the other tasks. Both
theoretical analysis and case studies show that the
approach takes good advantage of multi-core computing
platforms and has higher performance and speed-up,
compared with other approaches without multi-threading.

It is notable that sequential pattern mining requires
iterative scans of the sequence dataset with numerous data
comparisons and analyses. In other words, it is memory
intensive. Therefore, optimizations of massive storage
access are always needed. Other problems, such as how to
increase the certainty of thread scheduling and how to
limit the search space to further improve accuracy, still
need to be studied.
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