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Abstract: In this paper, we study the solution related to a class of fuzzy differential equations which are called fuzzy Cauchy-Euler
differential equations of first-order. We first, investigate the proper spaces which are contained of generalized differentiable fuzzy-
valued functions, based on the solution functions representation in the crisp case of equation. Next, we obtain the solution function and
the existence conditions of it, in details. Finally, it is illustrated by solving two numerical examples.
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1 Introduction

Solving differential equations in the conditions of
uncertainty is interesting and applicable in mathematics
and engineering sciences. Up to now, many studies have
been done on such equations (for examples [1,2,3,4,5,6,
7,8]). Also, some numerical methods can be seen in [9,
10,11,12]. The first-order linear fuzzy differential
equations are samples of such equations that are presented
more in application. Such an equation may be appeared in
one of three forms, with fuzzy initial valuey(0) = y0
(a). y′(t) = a(t)y(t)+b(t),
(b). y′(t)+ (−a(t))y(t) = b(t) or
(c). y′(t)+ (−b(t)) = a(t)y(t).

The possibility solutions of equation (a) are obtained
in [2] and [13], by assuminga(t) is a continuous positive
or negative real function, defined on time interval[0,T]
and using the generalized differentiability concept
(G-differentiability), which is introduced by Bede et al.
[1]. Recently, we obtain all solutions of equations (a), (b)
and (c), under generalized differentiability concept, by
using length function properties on fuzzy-valued
functions [14]. A class of linear differential equations are
known to Cauchy-Euler equations which appear in
number of physics and engineering applications. In this
paper, we consider a Cauchy-Euler equation of first-order
under uncertainty and in the following form

{

(t −α)y′(t)+u(t) = βy(t),
y(a) = y0, t ∈ I = [a,b], t 6= α.

(1)

Wherey0 is a fuzzy number, andα andβ are real numbers.
We wish to study the existence of solution to the equation
(1), when the functionu(t) is a fuzzy polynomial of degree
at mostn, around pointt = α, i.e.

u(t) =
n

∑
i=0

(t −α)iui (2)

whereui for i = 0,1, ...,n are fuzzy numbers. For this end,
we first, point out the structure of solutions related to the
crisp form of the equation. Accordingly, we introduce the
proper spaces of fuzzy-valued functions, which can be
included the solution of the problem (1). On these spaces,
we give some results of generalized differentiability, ((i)
or (ii)-differentiability). Next, we explain the details
attaining to solution formula and express the conditions of
it’s existence, given as Theorem 4.1. Finally, the solution
expression is applied for solving two numerical examples.

2 Preliminaries

An arbitrary fuzzy number can be represented by an
ordered pair of functionsu= (u−r ,u

+
r ) on interval[0,1] as

parametric form such thatu−r is a left continuous,
bounded and non-decreasing function,u+r is a left
continuous, bounded and non-increasing function and
u−r ≤ u+r . We denote ther-cut form of a fuzzy numberu
as[u]r = [u−r ,u

+
r ]. The set all fuzzy numbers is denoted by
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RF . If u,v∈ RF andλ ∈ R, thenu+ v andλu are defined
by

[u+ v]r = [u]r +[v]r

= [u−r + v−r ,u
+
r + v+r ],

and

[λu]r = λ [u]r

= [min(λu−r ,λu+r ),max(λu−r ,λu+r )],

for all r ∈ [0,1] (see [15]).

Definition 2.1.[1,4]. Let u,v∈ RF . If there existsw∈ RF
such that,u = v+w thenw is called the H-difference of
u,v and it is denoted asu⊖ v.
We note thatu⊖ v 6= u− v= u+(−1)v.

Definition 2.2.[1,14]. Let f : (a,b)→ RF . Fix t0 ∈ (a,b).
We say f is G-differentiable att0, if the H-differences
f (t0 + h)⊖ f (t0), f (t0)⊖ f (t0 − h) for all h > 0 or all
h < 0, sufficiently close to 0 exist, and an element
f ′(t0) ∈ RF exists, such that either
(i):

lim
h→0+

f (t0+h)⊖ f (t0)
h

= lim
h→0+

f (t0)⊖ f (t0−h)
h

= f ′(t0)

or (ii):

lim
h→0−

f (t0+h)⊖ f (t0)
h

= lim
h→0−

f (t0)⊖ f (t0−h)
h

= f ′(t0)

or (iii):

lim
h→0+

f (t0+h)⊖ f (t0)
h

= lim
h→0−

f (t0+h)⊖ f (t0)
h

= f ′(t0)

or (iv):

lim
h→0+

f (t0)⊖ f (t0−h)
h

= lim
h→0−

f (t0)⊖ f (t0−h)
h

= f ′(t0).

A straightforward way to calculating[ f ′(t)]r is visible in
[14], Theorem 2.13, also see [16], Theorem 5.

Definition 2.3.[17]. We say that a pointt0 ∈ (a,b) is a
switching point for the differentiability of f , if
G-differentiability changes from type(i) to type (ii), or
from type(ii) to type(i), in Definition 2.2.

Chalco et al. [18], have been demonstrated ift0 be a
switching point, thenf at t0 is a differentiable function
in the sense(iii ) or (iv). Moreover, if f is differentiable
on over(a,b) in the sense(iii ) (or (iv)) then f ′(t) = {c},
wherec∈ R is a real number.

3 Structure of solution space

In this section, we attempt to obtain a proper space of
fuzzy-valued functions which can be included the
solution of equation (1). For this purpose, let us point out
the structure of solution function in the crisp case of the
equation. In the crisp case, the solution is considered as
exponential functiony(t) = (t −α)r , where the unknown
number r should be found such thaty satisfies in the
equation (1). Since the behaviour of solution in the
uncertainty case should reflects the behaviour of solution
in the crisp case of the equation, namely 1-cut equation of
(1), then we define a space of requirement fuzzy-valued
functions as follows:
Considerα ∈ R andI = [a,b]. We set

Fα(I) =
{

f : I →RF | f (t) =
n

∑
i=0

|t −α|αi vi , αi ∈ R, vi ∈ RF

}

.

The following result shows that the setFα(I) includes
some G-differentiable functions on (a,b), except
presumably at pointt = α.

Theorem 3.1.Consider f (t) = ∑n
i=0 |t −α|αi vi ∈ Fα(I)

such that numbersαi for i = 0,1, ...,n have same sign. In
this case
(a). For α ≤ a, the function f is (i)-differentiable on
(a,b), if αi ≥ 0 and is (ii)-differentiable on(a,b), if
αi ≤ 0.
(b). For α ≥ b, the function f is (ii)-differentiable on
(a,b), if αi ≥ 0 and is (i)-differentiable on(a,b), if
αi ≤ 0.
(c). Fora < α < b, if αi ≥ 0 then f is (ii)-differentiable
on (a,α) and (i)-differentiable on(α,b) and if αi ≤ 0
then f is (i)-differentiable on (a,α) and
(ii)-differentiable on(α,b).
Also, for each cases (a), (b) and (c), we have

f ′(t) =
n

∑
i=0

αi |t −α|αi−1 v′i (3)

wherev′i =

{

−vi; a< t < α < b or α ≥ b,
vi ; a< α < t < b, or α ≤ a .

Proof. Let us, denote f (t) = ∑n
i=0 fi(t), where

fi(t) = gi(t) vi andgi(t) = |t−α|αi . According to Lemma
4 in [2], it is sufficient to show that the functionsfi(t)
have the same type of G-differentiability. For case (a), we
getgi(t) = (t −α)αi , for i ∈ {0,1, ...,n} and then

gi(t)g
′
i(t) = αi(t −α)2αi−1

, t ∈ (a,b). (4)

Therefore, the productgi(t)g′i(t) has the same sign asαi .
Since the numbersαi have the same sign, then by cases
(a) and (b) of Theorem 5, in [2], we find that the functions
fi(t) are(i)-differentiable, ifαi ≥ 0, i = 0,1, ...,n and(ii)-
differentiable ifαi ≤ 0, i = 0,1, ...,n.
(b). Sinceα ≥ b, we get fori = 0,1, ...,n, following

gi(t)g
′
i(t) =−αi(α − t)2αi−1

, t ∈ (a,b). (5)
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Therefore, the reasoning is similar to case (a), with−αi
instead ofα.
(c). Sinceα ∈ (a,b), then the functionsgi(t) are satisfy in
equations (5) and (4) on intervals (a,α) and (α,b),
respectively. Therefore, the reasoning is straightforward
for this case, by considering the reasons (a) and (b).
Finally, by Theorem 2 and Lemma 4 in [2], we get
f ′(t) = ∑n

i=0g′i(t) vi , where g′i(t) = αi(t − α)αi−1, for
whena< α < t < b or α ≤ a andg′i(t) =−αi(α − t)αi−1,
for whena< t < α < b or α ≥ b, which simply gives us
the equality (3). �.

As a consequently, we should consider the special
class of functions belong toFα(I). In fact, Theorem 3.1
shows that, if the valuesα0,α1, ...,αn, associated to
function f ∈ Fα(I), are all non-negative or all
non-positive, thenf is appropriate for using from the
point of view G-differentiability. We thus, consider two
the following family of functions

F+
α (I) =

{

f ∈ Fα(I)| αi ≥ 0, i = 0,1, ...,n
}

and

F−
α (I) =

{

f ∈ Fα(I)| αi ≤ 0, i = 0,1, ...,n
}

.

One is note that, iff ∈ F−
α (I) and α ∈ (a,b), then the

functions f and f ′ are discontinues at pointt = α. While
if f ∈ F+

α (I) andα ∈ (a,b), then by (3), the functionsf
and f ′ are continuous on intervalI , provided thatαi ≥ 1
for i = 0,1, ...,n. Furthermore, we get the following
result.

Corollary 3.2. Let f (t) = ∑n
i=0 |t −α|αi vi ∈ F+

α (I) and
α ∈ (a,b). If αi ∈ {0}∪ (1,+∞) for i = 0,1, ...,n, then f
has a switching point at pointt = α and furtherf ′(α) = 0.

Proof. Considering Theorem 3.1 case (c), it is sufficient
that, we showf is (iii )-differentiable at pointt = α. For
h sufficiently close to zero, such thatα + h ∈ (a,b), we
obtain

lim
h→0+

f (α +h)⊖ f (α)

h
= lim

h→0+

1
h

n

∑
i=0

hαi vi = 0

and

lim
h→0−

f (α +h)⊖ f (α)

h
= lim

h→0−

1
h

n

∑
i=0

(−h)αi vi = 0

that gives us the required conclusion.�.
In final this section, we consider fuzzy-values

functions which are appeared in the fuzzy polynomial
form. A fuzzy polynomial around pointα and considered
on intervalI , can be seen as a function with two criteria
belong toF+

α (I). Indeed

n

∑
i=0

(t −α)iui =
n

∑
i=0

|t −α|iu′i , (6)

whereu′i =

{

−ui; t < α, i is odd
ui ; Otherwise .

Remark 3.3. Consider the fuzzy polynomial
f (t) = ∑n

i=0(t −α)iui on the real axest. By Theorem 3.1
and equality (6), we find that if t > α then f is
(i)-differentiable and ift < α then f is (ii)-differentiable
and also, for both cases(i) or (ii)-differentiability, we
have

f ′(t) =
n

∑
i=1

i(t −α)i−1ui . (7)

Furthermore, it is easy to deduce that

lim
h→0+

f (α +h)⊖ f (α)

h
= lim

h→0−

f (α +h)⊖ f (α)

h
= v1,

that results thatf has a switching point att = α.

4 Solution of fuzzy Cauchy-Euler equation

In this section, obtaining solution for fuzzy Cauchy-Euler
equation in form (1), is discussed whereu(t) is given as
(2). Sinceu(t) is a fuzzy polynomial aroundα, then we
focus on the spaceF+

α (I) for sake of finding solution.
Suppose that the equation

(t −α)y′(t)+u(t) = βy(t) (8)

has solution as fuzzy polynomialyp(t) = ∑n
i=0(t −α)ivi .

Then
(t −α)y′p(t)+u(t) = βyp(t)

By substituting (7), we get the following equality

n

∑
i=1

i(t −α)ivi +
n

∑
i=0

(t −α)iui = β
n

∑
i=0

(t −α)ivi .

It is easy to deduce that

mvm+um = βvm, m= 0,1, ...,n

that is
βvm⊖mvm = um, m= 0,1, ...,n.

If we assume thatβ > n then the last equality is equal to
(β −m)vm = um, that means that

vm =
1

β −m
um, m= 0,1, ...,n.

We thus, obtainyp as the following function

yp(t) =
n

∑
i=0

(t −α)i

β − i
ui , (9)

which is obtained, uniquely.
Now, we consider the equation (8) on interval

I = [a,b], with fuzzy initial conditiony(a) = y0. For the
sake of instituting the initial condition, we addition a
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complementary functionyh(t) and represent the solution
function as

y(t) = yp(t)+ yh(t).

Whereas the polynomialyp(t) is unique solution of
equation (8), then the functionyh(t) should be satisfied
the following homogeneous equation

(t −α)y′h(t) = βyh(t).

It is easy to check that the last equation has solution as
follows

yh(t) =

{

−(α − t)β v; a≤ t < α < b, or α ≥ b,
(t −α)β v; a< α < t ≤ b, or α ≤ a,

(10)

wherev is an arbitrary fuzzy number. Now, we obtain the
fuzzy numberv based on initial conditiony(a) = y0, i.e.
yp(a)+ yh(a) = y0. By (10) we get

yh(a) =

{

−(α −a)β c; α > a,
(a−α)β c; α < a,

wherec is an arbitrary fuzzy number. This equality can be
written as

yh(a) = |a−α|β u

with u=

{

−c; α > a,
c; α < a.

Considering (9), the initial condition leads to the following
equality

n

∑
i=0

(a−α)i
β − i

ui + |a−α|βu= y0,

that gives

u= |a−α|−β
{

y0⊖
( n

∑
i=0

(a−α)i

β − i
ui

)}

, (11)

provided that theH-difference exists.

Therefore, the solution function of equation (1) is
found as follows

y(t) =
n

∑
i=0

(t −α)i

β − i
ui + |t−α|β u,

with v′ given as (11).
The G-differentiability properties the functiony(t)
simply, can be produced by Theorem 3.1 and Remark 3.3.
In fact, we have proved the following result.

Theorem 4.1.Consider the initial value problem

{

(t −α)y′(t)+∑n
i=0(t −α)iui = βy(t),

y(a) = y0, a≤ t ≤ b, t 6= α.

Whereα andβ are real numbers andy0 is a fuzzy number.
If β > n and the H-difference

y0⊖
n

∑
i=0

(a−α)i

β − i
ui (12)

exists, then the equation has solution as

y(t) =
n

∑
i=0

(t −α)i

β − i
ui + |t−α|β u, (13)

whereu= |a−α|−β
{

y0⊖
(

∑n
i=0

(a−α)i

β−i ui

)}

. Further,y(t)

is a(i)-differentiable function on(a,b), for α ≤ a and it is
a (ii)-differentiable function on(a,b), for α ≥ b and has a
switching point att = α, for α ∈ (a,b).

5 Numerical examples

In order to the practical application and observe the
behavior of solution function, we solve two examples.

Example 5.1.Consider fuzzy differential equation
{

(t −1)y′(t)+u0+(t −1)u1 =
3
2y(t),

y(0) = y0, t ≥ 0, t 6= 1.
(14)

Where[u0]
r = 1

4[r,2− r], [u1]
r = 1

4[1+ r,3− r] and
[y0]

r = [r,2 − r], 0 ≤ r ≤ 1. For these values, the
H-difference (12) exist, because

[

y0⊖ (
2
3

u0−2u1)
]r

=
1
6
[9−2r,13−2r].

We thus, obtain of (13), the following

y(t) =
2
3

u0+2(t−1)u1+ |t−1|
3
2 u, t > 0,

which represents two criteria as solution for equation (14),
one is(i)-differentiable fort > 1, with the followingr-cuts

[y1(t)]
r =

[1
6

r +
1
2
(1+ r)(t−1)+

1
6
(9+2r)(t−1)

3
2 ,

1
3
−

1
6

r +
1
2
(3− r)(t−1)+

1
6
(13−2r)(t−1)

3
2

]

and other is(ii)-differentiable fort < 1, with the following
r-cuts

[y2(t)]
r =

[1
6

r +
1
2
(3− r)(t−1)+

1
6
(9+2r)(1− t)

3
2 ,

1
3
−

1
6

r +
1
2
(1+ r)(t−1)+

1
6
(13−2r)(1− t)

3
2

]

.

Also, y(t) has a switching point att = 1, by Theorem 4.1.
The graphical representation of the solution function

y(t), mean functionsy1(t) and y2(t), for three r-cuts
r = 0, r = 0.5 andr = 1, can be seen in Fig. 1.
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Fig. 1 The solution of example 5.1.

Example 5.2.Let us consider a fuzzy differential equation
in different form as follows

{

(t − 1
2)y

′(t)+eta= 2y(t),
y(0) = y0, 0≤ t ≤ 1, t 6= 1

2.
(15)

Where[a]r = [1
2r,1− 1

2r], and[y0]
r = [− 1

2 +
13
8 ,

11
4 − 13

8 r],
0≤ r ≤ 1.
Since t ∈ [0,1], then a linear approximation can be a
suitable alternative for factoreta. Therefore, we write

eta∼= (1+ t)a=
(

(t −
1
2
)+

3
2

)

a

that is(t− 1
2)a+

3
2a, by assumingt > 1

2. We thus, solve the
following approximate equation instead of equation (15)

{

(t − 1
2)y

′(t)+u0+(t − 1
2)u1 = 2y(t),

y(0) = y0,
1
2 < t ≤ 1.

(16)

Whereu0 =
3
2a andu1 = a.

The H-difference (12) exist, because
[

y0⊖ (
1
2

u0−
1
2

u1)
]r

=
[

y0⊖ (
3
4

a−
1
2

a)
]r

= [r,2− r].

Then u = 4[r,2− r] and we obtain the solution function
of (16) as follows, which is(i)-differentiable on interval
(1

2,1), by Theorem 4.1.

y(t) =
1
2

u0+(t−
1
2
)u1+(t−

1
2
)2u.

The other words

[y(t)]r =
[3

8
r +

1
2

r(t −
1
2
)+4r(t−

1
2
)2
,

3
4
−

3
8

r +(1−
1
2

r)(t −
1
2
)+4(2− r)(t−

1
2
)2
]

.

The graphical representation of solution, forr = 0,
r = 0.5 andr = 1 of r-cuts, can be seen in Fig. 2.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

 

 
r=0
r=0.5
r=1

Fig. 2 The solution of example 5.2.

6 Conclusion

In this work, we obtain the solution function
representation for a class of first-order fuzzy
Cauchy-Euler differential equations, under generalized
differentiability concept. Against the previous methods,
proposed on fuzzy differential equations, we saw that the
solution function can be obtained by studying the proper
spaces of generalized differentiable fuzzy-valued
functions. In other words, in our method, it is not
necessary to turned the problem into a system of ordinary
differential equations.
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