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A suggested program with fuzzy linear fractional objective and integer decision vari-
ables (FILFP) is considered. The fuzzy coefficients are involved in the numerator of
the linear objective function and can be characterized by trapezoidal fuzzy numbers.
The purpose of this paper is to outline an algorithm available to solve (FILFP). In addi-
tion, an illustrative example is included to demonstrate the correctness of the proposed
solution algorithm.
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1 Introduction

Fractional programs arise in management decision making as well as outside of it. They
also occur sometimes indirectly in modeling where initially no ration is involved. Earlier
applications and a more recent comprehensive survey can be found in [16]. The efficiency
of a system is sometimes characterized by a ratio of technical and/or economical terms.
The survey in [16] includes examples from information theory, applied mathematics and
physics, among others.

A number of studies have been done by authors in the field of linear, nonlinear and
integer fractional programming problems, some of them under fuzziness [6, 12-15, 18, 19].
For interesting review of the work in the field of fuzzy mathematical programming and its
applications, we refer to [2, 3].

According to our experience, it is believed that the solution method in fuzzy integer
linear fractional programming has not been given comprehensive attention in the literature
before.

In the present paper we consider a single-objective integer linear fractional program
involving fuzzy parameters in the numerator of the objective. In this setting, use of Charnes
and Cooper transformation [4] seems inhibitive.
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Section 2 contains the mathematical formulation of fuzzy integer linear fractional pro-
gram. In addition, a nonfuzzy version of the formulated model is stated along with the
solution concept. Also, an equivalent fuzzy linear fractional program is constructed corre-
sponding to the problem under consideration via Gomory’ cutting-plane algorithm. Some
basic fuzzy concepts are reported in Section 3. An algorithm is described to solve the prob-
lem of concern in Section 4. In section 5 we demonstrate the proposed solution algorithm
with a numerical example. Finally, the paper is concluded in Section 6.

2 Problem Motivation and the Solution Concept

The problem studied in this paper is the following integer linear fractional program
involving fuzzy parameters in the objective function. The problem of concern is formulated
as follows:

max
(cT x + θ̃

T
x) + c0

dT x + d0
(2.1)

subject to

x ∈ M.

In problem (2.1), c, d ∈ Rn and c0, d0 ∈ R. The set M is defined as the feasible region
and might be, for example, of the form

M = {x ∈ Rn|Ax ≤ b, x ≥ 0 and integer} (2.2)

where A is an m × n matrix, x is an n-vector of the integer decision variables, b is an
m-vector of the constraint right-hand sides, Rn is the n-dimensional Euclidean space and
T denotes the transpose.

It is assumed that θ̃ is an n-vector of fuzzy parameters and for simplicity, let θ̃ =
[θ∼1 , θ∼2 , . . . , θ∼n ]. Moreover, we suppose that the feasible region M is compact set and that
dT x + d0 � 0 for all x ∈ M , where M is a nonconvex polyhedron in general.

The set of constraints Ax ≤ b, x ≥ 0 will be denoted throughout this paper by MR

and can be obtained by dropping the integer requirement on the decision variables xj for
all j = 1, 2, . . . , n in (2.2).

In what follows, an equivalent fuzzy linear fractional program associated with program
(2.1) can be stated with the help of the cutting-plane technique [5, 7, 17]. This equivalent
program can be written in the form

max
(cT x + θ̃

T
x) + c0

dT x + d0
(2.3)
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subject to

x ∈ [M ],

where [M ] is defined as the convex hull of the set of feasible solutions M defined by (2.2).
The point to be noted here is that the optimal solution of program (2.1) is the same the
optimal solution of program (2.3), see [9, 10].

To find the convex hull [M ], the Gomory’s cutting plane algorithm will be used [5, 7,
17] and for this, we consider the equivalent fuzzy linear fractional program (2.3) in the
form

max
(cT x + θ̃

T
x) + c0

dT x + d0
(2.4)

subject to

x ∈ M
(s)
R ,

where M
(s)
R is defined as

M
(s)
R = {x ∈ Rn|A(s)x ≤ b(s), x ≥ 0}. (2.5)

In addition,

A(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A

. . .

a1

.

.

as

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and b(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

. . .

b1

.

.

bs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

are the original constraint matrix A and the right-hand side vector b, respectively, with s-
additional constraints each corresponding to an efficient cut in the form aix ≤ bi [5, 7]. By
an efficient cut, we mean that a cut which is not redundant. Therefore, the feasible solution
set M

(s)
R = [M ]. For more details, the reader is referred to [9].

Now, by introducing the transformation

ρ =
1

dT x + d0
(2.7)

with the following additional variable change [4]

yj = xjρ for all j = 1, 2, . . . , n, (2.8)

program (2.4) can be reduced to

max (cT y + θ̃
T
y) + c0ρ, (2.9)



450 Omar M. Saad et al.

subject to

A(s)y − b(s)ρ ≤ 0,

dT y + d0ρ = 1,

ρ � 0, y ≥ 0.

It should be noted here that problem (2.9) above is a parametric single-objective fuzzy
nonlinear programming problem.

The next section reports some fuzzy concept introduced in [11] needed later to construct
the solution algorithm.

3 Theoretical Fuzzy Foundations

Fuzzy set theory has been developed for solving problems in which descriptions of
activities and observations are imprecise, vague and uncertain. The term “fuzzy” refers
to the situation in which there are no well-defined boundaries of the set of activities or
observations to which the descriptions apply.

A fuzzy set is a class of objects with membership grades. A membership function,
which assigns to each object a grade of membership, is associated with each fuzzy set.
Usually the membership grades are in [0, 1]. When the grade of membership for an object
in a set is one, this object is absolutely in that set; when the grade of membership is zero,
the object is absolutely not in that set. Borderline cases are assigned numbers between zero
and one.

A fuzzy number is defined differently by many authors. The most frequently used
definition belongs to a trapezoidal fuzzy type.

Definition 3.1 ([11]). It is appropriate to recall that a real fuzzy number ã is a continuous
fuzzy subset from the real line R whose membership function µã(a) is defined by

(1) A continuous mapping from R to the closed interval [0, 1],
(2) µã(a) = 0 for all a ∈ (−∞, a1],
(3) µã(a) is strictly increasing on [a1, a2],
(4) µã(a) = 1 for all a ∈ [a2, a3],
(5) µã(a) is strictly decreasing on [a3, a4],
(6) µã(a) = 0 for all a ∈ [a4, +∞).

Figure 3.1 illustrates the graph of a possible shape of a membership function of fuzzy
number ã.

Here the vector of fuzzy parameters θ̃ involved in problems (2.1) and in its equivalent
one (2.9) is a vector of fuzzy numbers whose membership function is µθ̃(θ).
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Figure 3.1: Membership function of a fuzzy number ã.

Throughout this paper, a membership function in the following form will be elicited

µã(a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, a ≤ a1,

1 −
(

a−a2
a1−a2

)2

, a1 ≤ a ≤ a2,

1, a2 ≤ a ≤ a3,

1 −
(

a−a3
a4−a3

)2

, a3 ≤ a ≤ a4,

0, otherwise.

In what follows, we give the definition of the α-level set or α-cut of the fuzzy vector
θ̃ = [θ∼1 , θ∼2 , . . . , θ∼n ].

Definition 3.2 ( [11]). The α-level set of the vector of fuzzy parameters θ̃ in problems
(2.1) and (2.9) is defined as the ordinary set Lα(θ̃) for which the degree of its membership
function exceeds the level α ∈ [0, 1], where

Lα(θ̃) = {θ ∈ R | µθ̃(θ) ≥ α}. (3.1)

For a certain degree α = α∗ ∈ [0, 1], estimated by the decision maker, the problem
(2.9) can be understood as the following nonfuzzy α-nonlinear programming problem (α-
NLPP):

max (cT y + θT y) + c0ρ, (3.2)

subject to

A(s)y − b(s)ρ ≤ 0,

dT y + d0ρ = 1,
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θ ∈ Lα(θ̃),

ρ � 0, y ≥ 0.

It should be emphasized that in the α-nonlinear programming problem (α-NLPP) (3.2)
the vector of parameters θ is treated as a vector of decision variable rather than constants.

Based on the concept of the α-cut of the fuzzy vector θ̃ = [θ∼1 , θ∼2 , . . . , θ∼n ] defined
earlier, problem (α-NLPP) (3.2) can be rewritten as follows:

max (cT y + θT y) + c0ρ, (3.3)

subject to

A(s)y − b(s)ρ ≤ 0,

dT y + d0ρ = 1,

�j ≤ θj ≤ uj , j = 1, 2, . . . , n,

ρ � 0, y ≥ 0,

where �j and uj are lower and upper bounds on the variables θj , j = 1, 2, . . . , n, respec-
tively.

It should be noted that constraint θ ∈ Lα(θ̃) in problem (3.2) has been replaced by the
equivalent one �j ≤ θj ≤ uj , j = 1, 2, . . . , n in problem (3.3).

Let

f(y, θ, ρ) = (cT y + θT y) + c0ρ

and Y denote the set of the feasible solutions of problem (3.3). The following definition
can be introduced.

Definition 3.3. A point (y∗
j , θ∗j , ρ

∗
j ) ∈ Y is said to be an α-optimal solution of problem (α-

NLPP) (3.3) if and only if there is no other point (yj , θj , ρj) ∈ Y such that f(yj , θj , ρj) ≺
f(y∗

j , θ∗j , ρ
∗
j ), where θ∗j , j = 1, 2, . . . , n, are called α-level optimal parameters.

In concluding this section, if (y∗
j , ρ∗j ) is an α-optimal solution of problem (3.3) with

the corresponding α-level optimal parameters θ∗j , j = 1, 2, . . . , n, then x∗
j = y∗

j /ρ∗j , j =
1, 2, . . . , n, is an α-optimal solution of problem (2.4), which is also an α-optimal solution
of the formulated fuzzy integer linear fractional problem (2.1).

It is clear that a systematic variation of the α-level set of the vector of fuzzy parameters
θ̃ will yield another α-optimal solution of fuzzy integer linear fractional problem (2.1).
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4 Solution Algorithm

In this section, a solution algorithm to solve fuzzy integer linear fractional programming
problem (2.1) is described in two main phases. For the sake of completeness, the suggested
algorithm can be summarized in the following manner.

Phase I

Step 1: Characterize the set M
(s)
R = [M ] and this can be done in the following substeps:

(a) Use Balinski’s algorithm [1] to find all the vertices of the feasible region MR.

(b) Select one of the non-integer vertices x1 = (x1
1, x

2
2, . . . , x

1
n) of the solution space.

In the tableau of this vertex, choose the row vector where the basic variable has the largest
fractional part and construct its corresponding cut in the form a1x ≤ b1, see [5,7].

(c) Add the first cut a1x ≤ b1 to the original set of constraints MR. This will yield a
new feasible region M

(1)
R .

(d) Repeat again the steps (a) to (c) until, some step r; the obtained vertices of the
solution space become all integers.

(e) Eliminate (drop) all the redundant constraints of the applied cuts.

(f) Add all the constraints of the applied s-efficient cuts to the original set of constraints
MR to get M

(s)
R , where M

(s)
R =]M ].

Step 2: Formulate the equivalent fuzzy linear fractional program in the form of problem
(2.4).

Phase II

Step 1: Make the transformations given by (2.7) and (2.8) to transform problem (2.4) to a
fuzzy nonlinear program in the form of problem (2.9).

Step 2: Start with an initial level set α = α∗ = 0.

Step 3: Determine points (θ1, θ2, θ3, θ4) for the vector of fuzzy parameters θ̃ in problem
(2.9) to elicit a membership function µθ̃(θ) satisfying assumptions (1)-(6) in Definition 3.1.

Step 4: Convert problem (2.9) into its nofuzzy version (α-NLPP) (3.2) or (3.3).

Step 5: Solve problem (3.3) using the usual parametric nonlinear programming approach
to find its optimal integer solution (y∗

j , θ∗j , ρ
∗
j ). Then, the optimal solution of problem

(2.9) can be obtained directly and therefore the optimal integer solution of the problem
of concern (FILPP) (2.1) is found explicitly as x∗

j = y∗
j /ρ∗j , j = 1, 2, . . . , n, with the

corresponding α-level optimal parameters θ∗j , j = 1, 2, . . . , n.

Step 6: Set α = (α∗ + step) ∈ [0, 1] and go to step 1 of Phase II.

Step 7: Repeat again the above procedure of Phase II until the interval [0, 1] is fully ex-
hausted. Then, stop.
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The following numerical example demonstrates the steps of the suggested solution al-
gorithm described above.

5 An Illustrative Example

The problem under consideration is the following integer linear fractional program in-
volving fuzzy parameter θ̃ in the objective function

P1 : max z(x, θ̃) =
(1 + 2θ̃)x1 − 4

−x2 + 3

subject to

x ∈ M,

where

M = {x ∈ R2| − x1 + 4x2 ≤ 0, 2x1 − x2 ≤ 8;x1, x2 ≥ 0 and integer}.

The convex hull M
(s)
R = [M ] is given by

[M ] = {x ∈ R2| − x1 + 4x2 ≤ 0, 2x1 − x2 ≤ 8; x1 ≤ 4;x1, x2 ≥ 0},

where s = 1 an efficient Gomory cut: x1 ≤ 4. Hence, the fuzzy linear fractional program
equivalent to program P1 can be formulated as

P2 : max z(x, θ̃) =
(1 + 2θ̃)x1 − 4

−x2 + 3

subject to

x ∈ [M ].

Now, using Charnes-Cooper Transformation method [4], then problem P2 above can
be understood as the following fuzzy nonlinear problem in the form

P3 : max z(x, ρ, θ̃) = (1 + 2θ̃)y1 − 4
3
y2 − 4

3

subject to

−y1 + 4y2 ≤ 0,

2y1 − 11
3

y2 ≤ 8
3
,

y1 − 4
3
y2 ≤ 4

3
,

y1, y2 ≥ 0.
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Let the fuzzy parameter θ̃ be defined by the fuzzy numbers θ̃ = (0, 3, 5, 7) and its
membership function be elicited as

µθ̃(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 θ ≤ θ1,

1 −
(

θ−θ2
θ1−θ2

)2

, θ1 ≤ θ ≤ θ2,

1, θ2 ≤ θ ≤ θ3,

1 −
(

θ−θ3
θ4−θ3

)2

, θ3 ≤ θ ≤ θ4,

0, otherwise.

Now, the nonfuzzy nonlinear problem associated with the original problem P1 can be
written as

P4 : max z(x, ρ, θ) = (1 + 2θ)y1 − 4
3
y2 − 4

3

subject to

−y1 + 4y2 ≤ 0,

2y1 − 11
3

y2 ≤ 8
3
,

y1 − 4
3
y2 ≤ 4

3
,

0 ≤ θ ≤ 7,

y1, y2 ≥ 0.

The above problem P4 has been solved using Gino software package [8] and the results
are reported in Table 5.1.

α-level set Range of θ The optimal integer solution
α = 0 0 ≤ θ ≤ 7 θ = 0, (x∗

1, x
∗
2) = (4, 0)

θ ∈ (0, 7], (x∗
1, x

∗
2) = (4, 1)

α = 0.36 0.6 ≤ θ ≤ 6.6 (x∗
1, x

∗
2) = (4, 1)

α = 0.84 1.8 ≤ θ ≤ 5.8 (x∗
1, x

∗
2) = (4, 1)

α = 1 3 ≤ θ ≤ 5 (x∗
1, x

∗
2) = (4, 1)

Table 5.1: Results of the Illustrative Example.

6 Conclusion

In the presented paper a solution algorithm has been proposed to solve fuzzy integer
linear fractional programs (FILFPP). Some fuzzy concepts have been given to convert prob-
lem (FILFPP) to a nofuzzy version and the Charnes & Cooper transformations have been
used to complete the solution process.
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Summarizing, many aspects and general questions remain to be studied and explored in
the area of fuzzy integer linear fractional programming. Despite the limitations, we believe
that this paper is an attempt to establish underlying results which hopefully will help others
to answer of these questions.

There are however several open points for future research in the area of (FILFPP), in
our opinion, to be studied. Some of these points of interest are stated in the following:

(i) An algorithm is required for solving single-objective integer linear fractional pro-
grams with fuzzy parameters in the constraint function.

(ii) Stability of the integer optimal solution should be investigated for (FILFPP).

(iii) An algorithm is required for solving multiobjective integer linear fractional programs
with fuzzy parameters in (i) in the objective functions and (ii) in the constraint func-
tion.

(iv) Stability of the integer efficient solution should be investigated for fuzzy multiobjec-
tive integer linear fractional programming problems.

(v) Computer codes are needed to be constructed to solve the problems recommended
above.
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