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Abstract: In this paper, a numerical solution of the combined KdV-MKdVequation is obtained by a quintic B-spline collocation finite
element method. In the solution process, a linearization technique has been applied to deal with the non-linear term appearing in the
equation. The computed results are compared with those given in the literature. The error normsL2 andL∞ are computed and found to
be sufficiently small. The Fourier stability analysis of themethod is also investigated and found unconditionally stable.
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1 Introduction

When many phenomena in the nature are mathematically
modelled, some of them usually result in the combined
KdV-MKdV equation which is modeling the wave
propagation in a one dimensional nonlinear lattice [1,2].
Hence it is of great interest for many scientists and
mathematicians. Therefore, its analytical and numerical
solutions are found by many authors using various
methods. In this paper, we will deal with the combined
KdV-mKdV equation given in the form

ut +6αuux+6β u2ux+uxxx = 0,β > 0,−30≤ x≤ 70 (1)

where u is the dependent variable, andt and x are the
independent time and space parameters, respectively. The
numerical solutions of Eq.(1) will be sought with the
boundary conditions and initial condition obtained from
its analytical solution given [3]

u(x, t) = λ/{Ccosh2(1
2

√
λ (x−λ t − ξ0))

+Dsinh2(1
2

√
λ(x−λ t − ξ0))}

(2)

whereξ0 is the integration constant and

C =
√

α2+β λ +α,

D =
√

α2+β λ −α.

If we takeα = 1, β = 1, λ = 1 andξ0 = 0 at t = 0, we
obtain the initial condition. Similarly if we takex = −30
and x = 70, we easily obtain the left and right hand
boundary conditions, respectively.

The main purpose of this study is to apply the quintic
B-spline collocation finite element method to develop a
numerical technique for solving the combined
KdV-MKdV equation. Eq.(1) has been solved by few
authors using various methods and techniques. In 1984,
Taha and Ablowitz derived differential-difference
equations that have as limiting forms the KdV, and MKdV
equations [3]. Huang and Zhang [4] have have obtained
new exact travelling waves solutions to the combined
KdV-MKdV and generalized Zakharov equations. Lu and
Shi [5] have established exact solutions for the combined
KdV-MKdV equation, constructing four new types of
Jacobi elliptic functions solutions and extending the
Jacobi eliptic functions expansion method. Yan and et al
[6] have studied the soliton perturbations for a combined
KdV-MKdV equation and derived the first-order effects
of perturbation on a soltion through constructing the
appropriate Green’s function. Naher and Abdullah [7]
have applied the improved (G′/G)-expansion method to
contruct some new exact traveling solutions including
soliton and periodic solutions of the combined
KdV-MKdV equation involving parameters.
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In this paper, we have used a linearization technique
to obtain the numerical solution of the combined
KdV-MKdV equation. The performance of the method
has been tested on a numerical example, and the stability
analysis of the numerical scheme has also been
investigated and found to be unconditionally stable.

2 The Finite Element Solution

Before starting to solve Eq. (1) with the boundary
conditions and the initial conditions obtained from the
exact solution given by Eq.(2) using quintic collocation
finite element method, we firstly define quintic B-spline
functions. Let us consider the interval[a,b] is partitioned
into M finite elements of uniformly equal length by the
knots xm, m = 0,1,2, ...,M such that
a = x0 < x1 · · · < xM = b andh = xm+1− xm. The quintic
B-splines φm(x) , (m = −1(1)M), at the knotsxm are
defined over the interval[a,b] by [8]

φm(x) =
1
h5
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0, otherwise.

(3)

The set of splines
{φ−2(x),φ−1(x), . . . ,φM+1(x),φM+2(x)} constitutes a base
for the functions defined over[a,b]. Therefore, an
approximation solutionUM(x, t) can be written in terms
of the quadratic B-splines trial functions as follows

UM(x, t) =
M+2

∑
j=−2

δ j(t)φ j(x) (4)

whereδm(t)’s are unknown, time dependent parameters to
be determined from the boundary and weighted residual
conditions. Each quintic B-spline functions covers six
elements so that each element[xm,xm+1] is covered by six
quintic B-spline functions. For this problem, the finite
elements are identified with the interval[xm,xm+1] and the
elements knotsxm,xm+1. Using the nodal valuesUm,U

′
m

and U
′′′
m given in terms of the following element

parametersδm(t)

UM(xm, t) =Um = δm−2+26δm−1+66δm+26δm+1+ δm+2,
U ′

m = 5
h (−δm−2−10δm−1+10δm+1+ δm+2),

U ′′
m = 20

h2 (δm−2+2δm−1−6δm +2δm+1+ δm+2),

U ′′′
m = 60

h3 (−δm−2+2δm−1−2δm+1+ δm+2),
(5)

the variation ofUM(x, t) over the typical element[xm,xm+1]
is given by

UM =
m+3

∑
j=m−2

δ j(t)φ j(x). (6)

For the linearization, we suppose that the quantity U to
be locally constant. This is equal to assuming that in Eq.
(1) all Us are equal to a local constantZm. If we put the
nodal values given by Eq.(5) into Eq.(1), and takeu= Zm
we obtain the following system of equations:

.

δ m−2+26
.

δm−1+66
.

δm +26
.

δm+1+
.

δ m+2 (7)

+6Zm

[

5
h
(−δm−2−10δm−1+10δm+1+ δm+2)

]

(8)

+ 6Z2
m

[

5
h
(−δm−2−10δm−1+10δm+1+ δm+2)

]

(9)

+

[

60
h3 (−δm−2+2δm−1−2δm+1+ δm+2)

]

= 0.

In Eq.(8), if we take the

.

δ =
δ n+1− δ n

∆ t

and

δ =
δ n+1+ δ n

2
and put them in their places, we obtain

δ n+1
m−2 (α1−α2−α3−α4)+δ n+1

m−1 (26α1−10α2−10α3+2α4)+

δ n+1
m (66α1)+δ n+1

m+1 (26α1+10α2+10α3−2α4)+

δ n+1
m+2 (α1+α2+α3+α4) = δ n

m−2(α1+α2+α3+α4)+
δ n

m−1 (26α1+10α2+10α3−2α4)+δ n
m (66α1)+

δ n
m+1 (26α1−10α2−10α3+2α4)+δ n

m+2 (α1−α2−α3−α4) ,
m = 0(1)M

(10)
where

α1 =
1

∆ t ,

α2 =
15Zm

h ,

α3 =
15Z2

m
h ,

α4 =
30
h3 .

This iterative system(10) consists ofM+1 equations and
M + 5 unknown parameters
(δ−2,δ−1,δ0, . . . ,δM,δM+1,δM+2)

T . In order for this
system to have a unique solution, we need four additional
constraints. These four additional constraints are obtained
from the boundary conditionsu(a, t) = u(b, t) = 0 and
their first derivativesu′(a, t) = u′(b, t) = 0 and then are
used to eliminateδ−2,δ−1,δM+1 and δM+2 from the
system (10) as follows

δ−2 =
165
4 δ0+

65
2 δ1+

9
4δ2,

δ−1 =− 33
8 δ0− 9

4δ1− 1
8δ2,

δM+1 =− 33
8 δM − 9

4δM−1− 1
8δM−2,

δM+2 =
165
4 δM + 65

2 δM−1+
9
4δM−2,
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Then, this system of equations becomes a matrix equation
with theM+1 unknownsd= (δ0,δ1, . . . ,δM)T in the form

Adn+1 = Bdn. (11)

Here, both of the matricesA andB are pentagonal(M +
1)×(M+1) matrices and therefore are easily solved using
a variant of Thomas algorithm.

2.1 Initial state

To be able to proceed with the newly obtained iterative
formula (10), first of all, we do need the initial vectord0

which is going to be determined from the initial and
boundary conditions. In order to achieve this, the
approximation (4) ought to be rewritten particularly for
the initial condition as

UM(x, t0)=
M+2

∑
m= −2

δm(t0)φm(x)

where theδm’s are unknown element parameters. Now, if
we force the initial numerical approximationUM(x, t0)
comply with the following boundary conditions to discard
δ−2,δ−1,δM+1 andδM+2

UM(x, t0) = u(xm, t0), m = 0,1, ...,M
(UM)x(a, t0) = 0, (UM)x(b, t0) = 0,
(UM)xx(a, t0) = 0, (UM)xx(b, t0) = 0,

we obtain the matrix form for the initial vectord0 as
follows

Wd0 = b

where

W =



























54 60 6
25.25 67.50 26.25 1

1 26 66 26 1
1 26 66 26 1

...
1 26 66 26 1

1 26.25 67.50 25.25
6 60 54



























d0 = (δ0,δ1,δ2, . . . ,δM−2,δM−1,δM)T

and

b = (u(x0, t0),u(x1, t0), . . . ,u(xM−1, t0),u(xM , t0))T .

2.2 Stability analysis

To investigate the stability analysis of the scheme, it is
convenient to use the von Neumann method in which the
growth factor of a typical Fourier mode is defined as

δ n
j = δ̂ nei jφ , (12)

whereφ is a real number (i =
√
−1). To apply the von

Neumann stability analysis, the nonlinear termu2ux in Eq.
(1) needs to be linearized by making the quantityu a local
constant so that the nonlinear termu2ux becomesZ2

mux.
Therefore, the generalizedmth row of Eq. (10) remains
the same.

Substituting the Fourier mode(12) into the iterative
formula (10) and writing δ̂ n+1 = gδ̂ n, the linearized
recurrence relationship results in the growth factorg as
follows:

g =
a− ib
a+ ib

where

a = h3(33+26cosφ + cos2φ),
b = 30∆ t(−2+5h2Zm(1+Zm)+ (2+ h2Zm(1+Zm))cosφ)sinφ ,

Since the stability condition|g| ≤ 1 is satisfied. Therefore
the linearized scheme is unconditionally stable.

3 Numerical examples and results

In this section, numerical results of the test problem
considered in the below have been obtained and all
computations have been executed on a Pentium i7 PC in
the Fortran code using double precision arithmetic. The
accuracy of the method is measured by the error normsL2
andL∞ defined as

L2 =
∥

∥Uexact −UN
∥

∥

2 =

√

√

√

√h
N

∑
j=0

∣

∣

∣
Uexact

j − (UN) j

∣

∣

∣

2
,

L∞ =
∥

∥Uexact −UN
∥

∥

∞ = max
j

∣

∣

∣
Uexact

j − (UN) j

∣

∣

∣

respectively. In this study, to implement the performance
of the scheme, as a test problem we consider the
combined KdV-MKdV equation(1) equation with the
boundary conditions and the initial condition taken from
the exact solution given in Eq.(2).

During the solution process, various time steps and
space steps have been taken over the problem domain
[−30,70]. The program has been run for different time
and space values. Then error normsL2 and L∞ are
computed and compared with those available in the
literature.

In Table 1, we have compared the error normsL2 and
L∞ with those of [3] computed by inverse scattering
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Fig. 1: The graph of numerical solutions att = 0

transform (IST) and combination IST forN = 200,
∆ t = 0.01. It is obvious from the table that the present
results are better than the compared ones. Table 2 shows a
comparison of the error normsL2 and L∞ with those of
[3] computed by IST and combination IST forN = 400,
∆ t = 0.01. Again, it is easily seen from the table that the
newly obtained results are better than the compared ones.
In table 3, we have tabulated the values of the error norms
L2 andL∞ for N = 400 at various values of∆ t. The table
clearly shows that the error norms are at acceptable level.
Moreover, it is seen from the table that as the values of∆ t
decrease so the error norms. In Table 4, we present the
values of the error normsL2 and L∞ for ∆ t = 0.001 at
various values ofN. From the table, it is clear that as the
number of partitions of the solution domain increase, the
error norms decrease. In the figure 1-5, we have shown
the graphs of the numerical solutions obtained in the
present article at various values oft. In figure 6, we have
shown the graph error att = 35. If we consider the fact
that the present method uses quintic B-splines, we can say
that the present method yields much better results.

Table 1: A comparison of the error normsL2 andL∞ for N = 200,∆ t = 0.01.
t Present Present IST[3] IST[3] Com. IST[3] Com. IST[3]

L2 L∞ L2 L∞ L2 L∞
5 0.000829 0.000451 0.00229 0.01234 0.00751 0.04293
35 0.003331 0.001868 0.00563 0.03237 0.03792 0.20920

Table 2: A comparison of the error normsL2 andL∞ for N = 400,∆ t = 0.01.
t Present Present IST[3] IST[3] Com. IST[3] Com. IST[3]

L2 L∞ L2 L∞ L2 L∞
5 0.000052 0.000025 0.00051 0.00313 0.00215 0.01263
35 0.000100 0.000065 0.00124 0.00701 0.01164 0.06360

4 Conclusions

In this paper, numerical solutions of the combined
KdV-MKdV equation based on the quintic B-spline finite
element method have been calculated and presented. A
test problem is worked out to examine the performance of
the present algorithm. The performance and efficiency of
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Fig. 2: The graph of numerical solutions att = 10
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Fig. 3: The graph of numerical solutions att = 20
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Fig. 4: The graph of numerical solutions att = 30
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Fig. 5: The graph of numerical solutions att = 35

the method are shown by calculating the error normsL2
and L∞. The obtained results show that the error norms
are sufficiently small during all computer runs. The
obtained results indicate that the present method is a
particularly successful numerical scheme to solve the
combined KdV-MKdV equation. As a conclusion, the
method can be efficiently applied to this type of
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Table 3: The values of the error normsL2 andL∞ for N = 400 at various values of∆ t.
t ∆ t = 0.5 ∆ t = 0.5 ∆ t = 0.1 ∆ t = 0.1 ∆ t = 0.05 ∆ t = 0.05 ∆ t = 0.01 ∆ t = 0.01

L2 L∞ L2 L∞ L2 L∞ L2 L∞
5 0.086799 0.057534 0.002153 0.001354 0.000420 0.000261 0.000052 0.000025
10 0.243529 0.146236 0.005701 0.003366 0.001008 0.000590 0.000046 0.000029
15 0.423256 0.241175 0.010697 0.006192 0.001793 0.001030 0.000058 0.000040
20 0.586533 0.318655 0.017129 0.009782 0.002771 0.001575 0.000073 0.000044
25 0.708646 0.368562 0.024980 0.014150 0.003941 0.002217 0.000075 0.000045
30 0.784421 0.394173 0.034232 0.019278 0.005297 0.002978 0.000098 0.000060
35 0.824944 0.407603 0.044877 0.025181 0.006846 0.003826 0.000100 0.000065

Table 4: The values of the error normsL2 andL∞ for ∆ t = 0.001 at various values ofN.

t N = 200 N = 200 N = 400 N = 400 N = 800 N = 800 N = 1000 N = 1000
L2 L∞ L2 L∞ L2 L∞ L2 L∞

5 0.000834 0.000449 0.000058 0.000031 0.000005 0.000002 0.000003 0.000002
10 0.001159 0.000689 0.000071 0.000044 0.000004 0.000002 0.000004 0.000002
15 0.001591 0.000930 0.000098 0.000061 0.000006 0.000003 0.000004 0.000002
20 0.002030 0.001135 0.000124 0.000074 0.000009 0.000006 0.000006 0.000003
25 0.002521 0.001529 0.000141 0.000082 0.000015 0.000009 0.000007 0.000003
30 0.002961 0.001699 0.000168 0.000104 0.000025 0.000015 0.000009 0.000005
35 0.003420 0.001922 0.000187 0.000114 0.000037 0.000022 0.000030 0.000020
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Fig. 6: The graph of errors att = 35

non-linear problems arising in physics and mathematics
with success.
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